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Abstract

Actuator and sensor placement for active control of high-Reynolds number flows is largely based on experi-

ence and trial-and-error because of the system’s large dimensionality and complexity. A novel strategy for

estimating how to select and place a linear feedback control system using co-located actuator(s)/sensor(s)

suitable for affecting the dynamics of compressible, viscous flows is developed. The methodology uses the

flow’s gain and receptivity information from the forward and adjoint global modes of the baseflow obtained

from direct/large eddy simulations. The baseflow can be an equilibrium (steady-state) or a time-averaged

solution of the compressible Navier-Stokes equations. The method uses structural sensitivity arguments to

determine regions of the flow-field with high dynamical sensitivity, and a search procedure determines effec-

tive actuator/sensor locations. The control algorithm is flexible, and different types of control and feedback

can be considered. The efficacy of the method is demonstrated with three different flow control problems:

flow stabilization in a Mach 0.65 diffuser, noise reduction of an axisymmetric Mach 1.5 jet, and noise reduc-

tion of a turbulent Mach 0.9 jet. For the diffuser, global stabilization is achieved for low Reynolds numbers

resulting in complete suppression of vortex shedding. For longer domains and higher Reynolds number flows

in the diffuser, although significant reduction in growth rates of the unstable modes was achieved, complete

stabilization could not be attained. For the axisymmetric Mach 1.5 jet, equilibrium and time-averaged con-

figurations are compared to examine the differences in global stability. The jet’s optimal transient response

that leads to the largest pressure fluctuations away from the jet is used to relate the global modes needed for

the control methodology to the radiated sound. The spectrum also contains modes that are hydrodynami-

cally bound to the jet, without significant sound field contributions. Direct numerical simulations using the

control show significant noise reduction, with additional reduction with increase in control gain. Eigenanal-

ysis of the controlled mean flows reveal fundamental changes in the spectrum at frequencies lower than that

used by the control, with the quieter flows having unstable eigenvalues that correspond to eigenfunctions

without significant support in the acoustic field. Analysis of the mean flow quantities shows that the control-

induced mean flow changes only become obvious beyond 15 radii from the nozzle. Reduced order analysis

using Proper Orthogonal Decomposition (POD) shows flow regularization in the quieter flows. The active
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control strategy is then applied to a Mach 0.9 turbulent jet. The global analysis of the time-and-azimuthal

averaged baseline flow showed that the flow supports acoustically efficient super-directive and multi-directive

global modes. Significant noise reduction was obtained and, similar to the axisymmetric case, the global

analysis of the time-and-azimuthal averaged flow for the quiet jet show the existence of an unstable mode

at a low Strouhal number, that lacks any significant sound-field support. The variation of mean quantities

at the centerline and the lipline for the loud and quiet jets also showed trends similar to the axisymmetric

case.
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Chapter 1

Introduction

Flow control is a rapidly evolving and active field of research that can have significant impact on aircraft

performance (by drag minimization, lift increase, mixing enhancement in combustors) and attractiveness

(by making them sufficiently quiet to satisfy regulations). Passive and active flow control strategies have

been developed and improved for a variety of flows. But developing efficient flow control strategies is not

straightforward. Rigorous testing of the strategies is iterative and involves labor and cost-intensive equipment

and experiments. Hence, computational tools are attractive for developing strategies for flow control. The

present work focusses on the development of an active control strategy for compressible flows.

Two different flow control problems are addressed in this dissertation: (1) flow stabilization in diffusers

and (2) noise reduction in compressible jets. Section 1.1 reviews the use of global modes. Section 1.2

summarize the use of adjoint methods for flow control. Numerical methods for large scale eigenvalue problem

computation are reviewed in Section 1.3. Section 1.4 and Section 1.5 summarize current understanding

and practice of flow control in diffusers and noise reduction in jets. Accomplishments are summarized in

Section 1.6, and the structure of the dissertation appears in Section 1.7.

1.1 Review of Global Modes

The term ‘global instability analysis’ was introduced by Joseph (1966) as a methodology that monitors

perturbation energy at all times and establishes bounds on its growth. Chomaz et al. (1988) used the

term ‘global instability’ to describe those flows where the disturbance remains at, or propagates upstream

and/or downstream, from its point of introduction. The development in time and space of small-amplitude

perturbations superposed upon a given flow can be described by the linearized Navier-Stokes, continuity,

and energy equations. The forward linearized disturbance equations, ∂Q′/∂t = LQ′, using the global mode

assumption Q′ ≡ Q̂eωt gives rise to the eigenvalue problem (EVP) LQ̂ = ωQ̂, where L is the linearized

Navier-Stokes operator. The solution of this EVP permits identification of global instability characteristics of

eigenmodes of a given basic state, such as temporal amplification rates and their frequency spatial structure.
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A recent article by Theofilis (2011) reviews extensively global linear instability. As mentioned earlier

the term global instability analysis was introduced by Joseph (1966); it was used by Homsy (1973) and

Reddy & Voyé (1988) for 1D basic flows. A more general global instability approach evolved during the

1980s towards the analysis of two-dimensional basic states. Two and three dimensional instabilities of a

spatially periodic shear layer were studied by Pierrehumbert & Widnall (1982). Eriksson & Rizzi (1985)

introduced time-stepping and spectral transformation to the stability analysis of inhomogeneous steady and

time-periodic flows. Pierrehumbert (1986) investigated short-wavelength elliptic instability in inviscid vortex

flows. The first viscous global analysis were reported by Jackson (1987) and Zebib (1987), who studied the

instability of flow around a cylinder.

The distinction between convective and absolute (global) fluid dynamic instabilities was discussed by

Briggs (1964). Huerre & Monkewitz (1990) further discussed this approach for the hydrodynamic stability

theory of spatially developing flows pertaining to local and global instability concepts. They suggested the

concept of a self-excited, low-amplitude “wavemaker” region based on local instability, that acts as a source

for the downstream instability waves for spatially developing flows according to the Ginzburg-Landau model.

Using a Ginzburg-Landau model, Chomaz et al. (1988) showed that self-sustained resonances may appear

via a Hopf bifurcation when the system exhibits a region of local absolute instability that is sufficiently large.

In another annual review, Chomaz (2005) assessed stability analysis approaches to understand the dynam-

ics of open flows such as mixing layers, jets, wakes, separation bubbles and boundary layers. He emphasized

how the fully global theory accounts for the amplification of noise and the onset of a global mode. Theofilis

(2011) introduced the terms BiGlobal and TriGlobal analysis to describe the analysis of 2D and 3D basic

states. The first TriGlobal analysis — spheroid at an angle of attack by the solution of 3D EVP — was

done by Tezuka & Suzuki (2006). Brès & Colonius (2008) investigated the three dimensional instabilities

in compressible cavity flows for a range of conditions and cavity aspect ratios. The global stability of a

jet in cross-flow by Bagheri et al. (2009) constituted the first simulation-based global stability analysis of

a fully three-dimensional base flow. Rodŕıguez Álvarez & Theofilis (2010) studied the structural changes

in laminar separation bubbles in which the composite flow fields were reconstructed by linear superposi-

tion of a two-dimensional boundary layer flow with an embedded laminar separation bubble and its leading

three-dimensional global eigenmodes.
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1.2 Adjoint-based Methods for Control

An obvious desire of flow control is to actuate a flow where the flow is most sensitive, or receptive, to small

disturbances. The solution of the adjoint problem L†Q̂† = ωQ̂† provides information of the spatial location

of maximum receptivity of the system (Schmid & Henningson (2000)). However, the location of maximum

receptivity does not necessarily imply that the flow control will be effective. Adjoint-based methods that

involve a spatial overlap of the forward and adjoint global modes of the system have been used to obtain the

optimal location of control. Giannetti & Luchini (2007) defined a “wavemaker” region, defined as the part of

the domain D where ζ(x, y) ≡ ||Q̂(x,y)|| ||̂Q†(x,y)||∫
D

Q̂·Q̂† dS
has a large magnitude, given a global mode Q̂ and adjoint

mode Q̂† to show that, in this region, a change in the linearized operatorL creates the largest possible change

in the corresponding eigenvalue ω. The wavemaker region indicates a region of high dynamical sensitivity

(Chomaz (2005)), where an actuator could have powerful influence on the flow, and localized feedback may

be effective. Research in global mode-based flow control has been done for incompressible and compressible

regimes as discussed in the following sections.

Adjoint-based methods for flow control were used by Hill (1992) to suppress the vortex shedding from

a cylinder by placing a small cylinder in the wake of a larger one. Giannetti & Luchini (2007) used both

direct and adjoint global modes of an incompressible flow past a cylinder near the critical Reynolds numbers

to identify the spatial regions of the flow most sensitive to momentum forcing and mass injection. The

analysis showed that the maximum of the perturbation envelope amplitude was reached downstream of the

separation bubble, but the highest receptivity was attained in the near wake of the cylinder, close to the

cylinder. The large difference between the spatial structure of the direct and adjoint modes suggested that

the instability mechanism cannot be identified from the study of either eigenfunctions separately. Giannetti

et al. (2010) subsequently investigated the sensitivity of the three-dimensional secondary instability of a

circular-cylinder wake by identifying the region of maximum coupling between the velocity components was

localized by using the most unstable Floquet mode and its adjoint mode. Henningson & Åkervik (2008)

used global modes to perform flow control for two-dimensional disturbances in the Blasius boundary layer

and a globally unstable boundary-layer flow along a shallow cavity. The global modes of the system were

shown to be a good starting point for reduced order models to control growing disturbances. Marquet et al.

(2008) used adjoint-based methods to study the sensitivity analysis of the unstable eigenmode responsible

for vortex shedding from a cylinder. They demonstrated how this can be used to identify regions of the

baseflow that contribute to the onset of vortex shedding. Chen & Rowley (2011) developed an H2 optimal

controller for the control of a supercritical, infinite-domain formulation of a system based on the linearized
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complex Ginzburg-Landau equation (which is a model for the evolution of small fluid perturbations, such

as in a bluff body wake). Their optimal results were very close to those given by the “wavemaker” theory,

which utilizes the forward and adjoint global modes of a system for optimal actuator placement for their

model. Qadri et al. (2013) investigated the spiral mode which develops during vortex breakdown with a

linear global stability analysis around the steady bubble and its wake. The linear direct and adjoint global

modes of the linearized Navier-Stokes equations were overlapped to obtain the structural sensitivity of the

spiral mode, which identifies the wavemaker region. The concept of operator structural sensitivity was used

by Sipp et al. (2010) and applied to a variety of flows.

Relatively less research has been carried out in global instabilities and control of compressible fluids. Much

of the research has been devoted to understanding the underlying instability mechanisms and not control.

Open-loop control using adjoint based methods for compressible afterbody flows has been investigated by

Meliga et al. (2010). They evaluated the sensitivity of one particular eigenvalue to forcing by resolution

of adjoint equations and showed that the oscillating mode of the baseflow can be stabilized by a steady

blowing at the wall – the so-called base-bleed control. Meliga & Chomaz (2011) used adjoint global modes

and sensitivity analysis to identify the regions of an impinging jet suitable for different kinds of actuation,

and (passive) control of the flow is observed when a small airfoil is placed in the flow in the specific locations

identified by the analysis. Nichols & Lele (2011) performed global analysis of a cold supersonic jet and found

that in addition to Kelvin-Helmholtz modes, the jet supported upstream-propagating modes that could not

be resolved by previous analyses of parabolized stability equations (PSE). Continuous and discrete adjoint

methods in the low Mach number regime have been investigated by Chandler et al. (2012) for a low-density

jet. A low Mach number formulation was used, and they formulated a discrete adjoint method consistent

with the continuous adjoint method. The most unstable global mode calculated with the discrete-adjoint

had exactly the same eigenvalue as the corresponding forward global mode, but had numerical artifacts near

the inlet of the jet. The continuous-adjoint global mode showed no numerical artifacts but had a slightly

different eigenvalue.

1.3 Numerical Methods for Global Mode Computation

The computation of forward and adjoint global modes of the linearized Navier-Stokes equations involves

solving large eigenvalue problems. The size of the matrix is (Ng × Nv)
2, where Ng is the number of grid

points and Nv is the number of variables per grid point. At present, there are open source libraries that

can solve such eigenvalue problems. In general, the aim is to recover the part of the eigenspectrum which
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contains the most interesting dynamics from a physical point of view — here, the most unstable/least stable

global linear eigenmodes. The following two packages are popular among researchers:

• ARPACK (ARnoldi PACKage) by Lehoucq et al. (1997)

• SLEPc (Scalable Library for Eigenvalue Problem Computation) by Hernandez et al. (2005)

Eigenvalue algorithms like the Arnoldi method and its variants (Hernandez et al. (2007)) are widely used.

ARPACK uses the IRAM (Implicitly Restarted Arnoldi Method) but presents implementation challenges.

SLEPc, on the other hand, is more coding-friendly and has an implementation of the Krylov-Schur method,

which is IRAM with a very effective restarting technique. The computation of eigenvalues involves solving

linear systems of equations, using either direct solvers or iterative ones with Krylov subspace methods like

GMRES with preconditioners. Using an iterative linear solver makes the overall solution process less robust

but permits larger problem sizes. Direct solvers that involve an LU factorization are more accurate, and the

factorization needs to be done just once. MUMPS (MUltifrontal Massively Parallel Solver (Amestoy et al.

(2001)) is an open source package capable of LU factorization of large sparse matrices.

1.4 Flow Control in Diffusers

Curved subsonic diffusers are a common feature in tactical aircraft where it is advantageous to bury the

engine within the airframe to hide it from exterior view. One consequence of this approach is that the large

duct curvature and the adverse pressure gradient felt by the incoming boundary layers lead to unwanted

flow conditions caused by massive separation that induce performance loss (drag increase and total pressure

loss to the engine) and unsteady loads on the engine fan. Improving the flow quality at the engine fan face

through flow control enables more aggressive S-duct designs that may yield enhanced aircraft performance.

Previous experimental studies have shown that large adverse pressure gradients in a diffuser cause flow

separation. Reneau et al. (1967) categorized stall regimes for a planar diffuser geometry. Experimental

studies have shown that the control of the large scale vortex shedding can significantly improve the pressure

recovery in diffusers. For example, Rao (1971) used radial splitter vanes in conical diffusers to obtain a

steady exit flow in the diffuser. Steady mass injection using vortex generator jets was employed in conical

diffusers by Nishi et al. (1998) and Nicoll & Ramaprian (1970). Control was achieved in wide angled conical

diffusers using a star-tail pipe by Welsh (1976). Tennant (1973) used rotating cylinders to provide moving

walls for separation control. Active feedback control was used by Kwong & Dowling (1994), in which the air

supplied through the wall jets is modulated in response to the unsteady pressures within the diffuser. Seifert

et al. (1996) carried out experiments using periodic mass injection for airfoil stall delay. They found that
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the control flow depends on many parameters, such as the location of the blowing slot and the frequency

of imposed oscillations. Separation control in a two-dimensional serpentine duct was obtained by Amitay

et al. (2002) using an array of synthetic jets. Experiments using multiple frequency excitation to affect the

formation and interaction of large-scale vortices was used by Narayanan & Banaszuk (2003) for separation

control in planar diffuser geometries. Suzuki et al. (2004) developed a reduced-order model for large-scale

unsteadiness in a two-dimensional diffuser to show how periodic mass injection near the separation point

reduces stagnation pressure loss.

1.5 Noise Reduction in Compressible Jets

Noise levels in tactical jet aircraft have increased as the jet exit velocity and airflow from these engines have

increased to produce added thrust. Their noise levels can exceed 150 dB, which can lead to hearing loss,

and which are beyond the ability of currently-available hearing protection to attenuate the noise to safe

levels (Bowes et al., 2009). Noise reduction is also a major concern for the design of supersonic commercial

aircraft. Supersonic aircraft are typically powered by low-bypass turbofan engines so that noise reduction

techniques used in high-bypass subsonic commercial aircraft are not useful. Higher exit velocities and the

presence of shock cells in low-bypass engine exhausts cause jet noise to be the dominant component of the

overall aircraft noise.

Since the 1960s, there has been a continuous effort to describe the dynamics of far-field jet noise using

linear instability theory. The current thinking is that the noise producing modes identified using linear

analyses are, in general, best characterized as wavepackets, which are intermittent, advecting disturbances

correlated over distances that exceed the integral scales of turbulence. The earliest work that detected

wavepacket behavior in the acoustic fields of jets was by Mollo-Christensen (1963, 1967), who identified

long correlation distances for the large eddies in a turbulent jet and attempted to reconstruct the pressure

fluctuations with a model emitter, using simple functions which had similar behavior. Large-scale, coherent

structures were observed by Crow & Champagne (1971) for an incompressible turbulent jet. Similar large-

scale structures, which advect at nearly constant speed were identified in plane turbulent mixing layers by

Brown et al. (1974). Experiments on low-Reynolds-number axisymmetric supersonic jets by McLaughlin

et al. (1975) showed that acoustic radiation generated by the dominant instability was primarily due to

Mach waves. Moore (1977) found that a significant increase in jet noise can be produced by low amplitude

shear layer instability excitation at the nozzle at the correct Strouhal number. The acoustic measurements

of Morrison & McLaughlin (1979) and Troutt & McLaughlin (1982) showed that the major portion of the
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sound radiated by low Reynolds number supersonic jets was produced by the saturation and disintegration of

the large-scale instability that occurs near the end of the potential core. Experiments on low-Mach-number

jets by Laufer & Yen (1983) showed that acoustic sources were associated with the nonlinear saturation

of the unstable wave amplitudes of the shear layer occurring at the vortex-pairing locations. The modal

distributions of coherent structures in the near-nozzle region of an axisymmetric jet were investigated by

Cohen & Wygnanski (1987), and a linear model was developed to predict the spectral distribution of the jet

velocity perturbations.

There were considerable theoretical efforts to describe noise generation in supersonic jets using instability

wave theory. Tam (1971) developed a theory based on instabilities of the shear layer at the boundary of the

jet close to the nozzle. Crighton & Gaster (1976) modelled coherent axisymmetric structures in a turbulent

jet as linear instability modes of the mean velocity profile. Michalke (1984) reviewed the theoretical results

for jet instability of axisymmetric jets including effects of nozzle-jet interactions. A mathematical model

for tone-excited jets was developed by Tam & Morris (1985), who described the excitation of the intrinsic

jet instabilities by the upstream tones and their interaction with the jet mean flow. The effects of these

instabilities on the broadband noise were also discussed. Tam & Hu (1989) analytically identified three

families of instability waves in high-speed jets, which had been experimentally observed by Oertel (1979).

Tam & Chen (1994) extended the instability wave solution of Tam & Burton (1984) and developed a

stochastic instability wave theory for turbulent mixing noise of supersonic jets. More recently, Goldstein &

Leib (2005) solved the relevant acoustic equations for a weakly non-parallel mean flow and demonstrated

that linear instability waves must be accounted for in order to construct a proper causal solution to the

jet noise problem. Other recent efforts in instability related noise generation include that by Samanta &

Freund (2008) in which a model was developed using the Wiener-Hopf method for the scattering of vortical

disturbances into upstream propagating acoustic modes at a shrouded-jet exit. Samanta & Freund (2015)

used a similar approach to quantify the far-field directivity to evaluate the acoustic efficiency of different

instability modes in a similar configuration.

Until the late 1990s, experiments were the major benchmark for confirming instability based jet noise

theories. Later, direct numerical simulations came into prominence enabling precise predictions of jet noise.

The sound field of a perfectly expanded, Mach 1.92 turbulent jet was computed by Freund et al. (2000) and

mechanisms of noise generation in a low Reynolds number Mach 0.9 jet were investigated by Freund (2001).

Bodony & Lele (2005) used large eddy simulations to predict jet noise from cold and heated turbulent jets.

Detailed reviews of both approaches in the context of jet noise are presented by Wang et al. (2006) and

Bodony & Lele (2008). Early attempts in computing the acoustic characteristics of instability waves include
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those by Balakumar (1998) and Yen & Messersmith (1999), in which Parabolized Stability Equations (PSE)

were used to compute the instability waves inside the jet and computed the far-field noise radiated from these

jets. Linear and nonlinear evolution of disturbances in an axisymmetric, supersonic, low Reynolds number

jet were studied using the PSE method by Malik & Chang (2000), and good agreement was obtained with

the experimental data of Morrison & McLaughlin (1980). Piot et al. (2006) also used the PSE method for

supersonic axisymmetric jets and obtained good agreement for the levels of acoustic radiation with those

from large eddy simulations. Cheung et al. (2007) used a hybrid nonlinear PSE-acoustic analogy approach

and found that the method can capture the near-field hydrodynamics and the far-field acoustic radiation

for supersonic jets. Cheung & Lele (2009) used the PSE method to examine the effects of heating on

two-dimensional compressible mixing layers. Pressure fluctuations associated with large-scale structures are

modeled with the PSE method by Gudmundsson & Colonius (2009) for linear disturbances on heated and

unheated turbulent mean flows. This technique was extended by Sinha et al. (2014), in conjunction with

Proper Orthogonal Decomposition (POD) of the turbulent mean flow for prediction of far-field jet noise,

and the results suggested that linear wavepackets are responsible for the loudest portion of the acoustic

field. Cavalieri et al. (2011) modelled the sound field from direct numerical simulations using simplified

wavepacket models. PSE analysis has also been used to educe wavepackets in the velocity fields of high

Reynolds number, subsonic jets from time-resolved PIV measurements by Cavalieri et al. (2013).

For control, prior noise reduction work has been entirely experience-based. The most successful noise

reduction strategies to date are chevrons or vortex generators (Samimy et al., 1993) for passive control and

arc filament actuators (Samimy et al., 2007) for active control. Computationally, adjoint-based methods

have shown good promise in controlling far-field noise. Wei & Freund (2006) used an adjoint-based opti-

mization procedure and achieved 11 dB noise reduction of far-field sound with internal energy control for a

two-dimensional compressible shear layer. Using a similar approach, Kim et al. (2014) obtained a reduction

of ≈ 3.5 dB for a Mach 1.3 turbulent jet. The suggested mechanism of control in their simulations was the

disruption of the coherence of acoustically efficient axisymmetric flow structures. Vishnampet et al. (2015)

demonstrated a discrete-adjoint based optimization procedure for aeroacoustic control of a turbulent mixing

layer. They showed that the continuous-adjoint suffers exponential error growth in (reverse) time and hence

could potentially affect the noise reduction obtained in past efforts. In the context of the wavepacket-based

description of jet noise, Jordan & Colonius (2013) reviewed the literature on wavepacket modelling of jet

noise using PSE, POD and global modes. The global modes are more reliable than PSE analysis as they

do not invoke any approximations of the flow field. Nichols & Lele (2011) used the global mode analysis to

obtain the optimal transient response of a cold, supersonic jet and identified upstream-propagating modes
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which could not be resolved by the earlier PSE analyses. However, there have not been efforts directed

towards utilizing the information in the linear wavepackets, in the context of global modes, for developing

strategies for active jet noise control.

1.6 Contributions

The main contributions of this dissertation are the following:

1. A novel active control strategy based on global linear modes has been developed for designing effec-

tive co-located actuator(s)/sensor(s) for linear feedback control of compressible flows. The developed

methodology is generic and flexible. It can be used to determine effective actuator(s)/sensors(s) for

any combination of control and feedback variables.

2. The control strategy was successfully applied to stabilize a low Reynolds number separated boundary

layer in a Mach 0.65 diffuser. In certain cases, it was shown that the developed controller could attain

complete global stabilization and complete suppression of vortex shedding. For higher Reynolds num-

bers and longer domains, although complete stabilization could not be attained, significant reduction

in the growth rate (∼ 50%) of the most unstable eigenvalue was observed.

3. The flow control strategy was successful in determining effective controllers for noise reduction in an

axisymmetric Mach 1.5 jet and a turbulent Mach 0.9 jet. For the axisymmetric jet, at the target

surface at r/R = 15, a maximum reduction of ∼ 4.5 dB was obtained at an angle of ≈ 300, and for

the turbulent jet, at the target surface at r/D = 7, a consistent reduction of 3-4 dB was obtained for

all angles > 400, with a maximum reduction of approximately 4 dB at 900.

4. In both the Mach 1.5 and Mach 0.9 jet noise reduction studies, the control action destabilized a very

low frequency global mode whose dynamical importance grew relative to the uncontrolled jet. Such a

mode does not appear to have been studied before and its importance to jet noise reduction warrants

future investigation.

1.7 Dissertation Structure

The thesis is organized as follows:
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• Chapter 2 describes the elements of the active control strategy we employ from a general point of view.

Flowcharts of the flow control procedure are provided and a general formulation is described.

• Chapter 3 addresses flow stabilization of a separated boundary layer in a Mach 0.65 diffuser. The

governing equations and the formulation of the global eigenvalue problem in generalized coordinates is

described, and different test cases for the verification of the eigenvalue solver are detailed. The details

of the steady baseflow, control development, controlled simulations and analysis are presented.

• Chapter 4 addresses noise reduction of an axisymmetric Mach 1.5 jet. The governing equations and

numerical methods are discussed, and the flow solutions (equilibrium and time-averaged) and their

eigenanalysis are presented. The control development, results and analysis of noise controlled flows are

described in detail.

• Chapter 5 is devoted to noise reduction of a Mach 0.9 turbulent jet. The flow conditions and details of

the LES numerics for the baseflow computation are presented. The eigenanalysis of the baseline flow,

control development, results and analysis of controlled simulations are given in detail.

• Chapter 6 discusses the conclusions and the shortcomings of the current strategy, and directions are

provided to overcome them.

• Appendices A-G provide derivation of the linearized equations, test cases for verification, and details

of the numerical methods.
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Chapter 2

Flow Control Formulation

The simulation-based control approach has the five basic elements shown in Fig. 2.1. First, the to-be-

improved baseline flow is computed using direct numerical simulations, large eddy simulations, RANS etc.

We define a control objective (reduction of noise, drag, stagnation pressure loss) and a linear feedback

control strategy informed by structural sensitivity analysis is developed. Simulations are performed using

the control to assess its performance, and the baseline and controlled flows are analyzed to identify possible

mechanisms of control using flow visualization and other linear and non-linear methods of analysis.

In the present work, we focus on active flow control of compressible flows. The two major questions

posed by an active flow control strategy are: (1) where to sense and where to control? and (2) what to sense

and what to control?. We utilize the global (temporal) modes of the flow-field to answer the questions posed

in (1) and (2).

The general control strategy is described in this chapter. The detailed formulation specific to the govern-

ing equations employed are described in Chapter 3 (generalized coordinates) and Chapter 4 (axisymmetric

coordinates).

Governing
Equations

Baseflow
Solution

(DNS, LES,
RANS etc.)

Control
Objective
(drag,

noise etc.)

Controlled
Simulations

Mechanism
of Control

Control/Feedback
Location

Control/Feedback
Type

Figure 2.1: Basic flowchart of an active flow control strategy.
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2.1 Baseflow Solution

In general, the discretized flow equations are written as

dQ

dt
= R̃(Q), (2.1)

whereQ is the vector of unknowns and R̃ is the discretized right hand side, including all boundary conditions.

Details of R̃ are given in Chapters 3 and 4. Two types of baseflow solutions can be used to perform the

eigenanalysis – a true equilibrium flow (R̃(Q) → 0) and a time-average solution. For globally unstable

equilibrium solutions, the method of Selective Frequency Damping (Åkervik et al. (2006)) may be used to

numerically converge on the baseflow. This involves adding a dissipative relaxation term proportional to the

high-frequency content of the fluctuations of the corresponding variable being solved for to the right hand

side of the NS equations,

dQ

dt
= R̃(Q)− χ(Q− Q̄)

dQ̄

dt
= (Q− Q̄)/∆,

where Q̄ is the temporally filtered solution. The filter width (∆) and gain (χ) are parameters to be chosen.

The equations are simultaneously advanced in time and a judicious choice of the parameters χ and ∆ will

force the solution (Q) and the filtered solution (Q̄) to a steady state solution of the Navier-Stokes equations.

As Q → Q̄, R̃(Q) → 0. The cut-off frequency ωc = 1/∆ should be less than the lowest frequency of

instabilities at which the growth rate is expected and χ ≈ twice the growth rate of the dominant disturbance

(Åkervik et al. (2006)). An eigenanalysis of the unsteady flow can be used to estimate the values of the SFD

parameters, χ and ∆.

2.2 Global Eigenvalue Problem

2.2.1 Flow Equations

Linearization of (2.1) for small perturbation Q′ to baseflow Q̄ yields

dQ′

dt
= L(Q̄)Q′, (2.2)
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where L is the discrete right hand side operator evaluated about the baseflow Q̄. The eigenvalue problem

we consider is based on a modal decomposition of the form

Q′(x, t) = Q̂(x)eωt, (2.3)

wherem is the azimuthal mode number, ω is the eigenvalue and Q̂ is the eigenmode. In general the equations

lead to a generalized eigenvalue problem

LQ̂ = ωMQ̂. (2.4)

The matrix M is diagonal but not invertible.

2.2.2 Adjoint Eigenvalue Problem

We have the forward eigenvalue problem given by (2.4)

ωMQ̂ = L(Q̄)Q̂,

where L(Q̄) is the linearized Navier-Stokes operator. The discrete adjoint formulation of Giannetti & Luchini

(2007) considers the left eigenvectors of L(Q̄) as the adjoint eigenmodes of the system, which is inconsistent

since it does not take into account the definition of the inner product to define the adjoint system for the

Navier-Stokes equations. We use the volume correction formulation as in Chandler et al. (2012), which is

consistent with the formulation of the continuous adjoint problem. The inner product is defined as

〈Q̂†, Q̂〉 = 1

V

∮

V
Q̂†

H
Q̂ dV ,

where V is the volume of the domain. Q̂†
H
Q̂ =

∑
i Q̂

†
∗
i Q̂i where ‘*’ denotes the complex conjugate and

where the superscript ‘H ’ denotes a complex conjugate transpose. Using this definition of the inner product,

we have

∮

V
Q̂†

H
ωMQ̂dV =

∮

V
Q̂†

H
L(Q̄)Q̂ dV (2.5)

Discretization of (2.5) using the trapezoidal rule gives

Q̂†
H
ωMDQ̂ = Q̂†

H
DLQ̂, (2.6)
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where D = diag(v1/V, v2/V, . . . , vn/V ) is a diagonal matrix in which V is the volume of the domain, and vi

is the volume associated with the ith grid point. (2.6) can be rearranged to give

(ω∗MDQ̂†)HQ̂ = (LHDHQ̂†)HQ̂.

Since the above is true for arbitrary Q̂, we obtain the discrete adjoint eigenvalue problem as

ω∗MDQ̂† = LHDHQ̂†, (2.7)

which can be written as

ω∗MQ̂† = D−1LHDQ̂†.

Hence, the discrete adjoint matrix can be written as

L† = D−1LTD,

since L is a real matrix and, hence, LH = LT. Since this is a similarity transformation for LT, it can

be seen that the eigenspectrum of the forward eigenvalue problem (defined by (L,M)) and the discrete

adjoint eigenvalue problem (defined by (L†,M)) are exactly the same whereas the eigenmodes will differ,

and therefore, corresponding to every eigenvalue, we obtain a forward-adjoint pair of eigenmodes.

2.2.3 Eigenvalue Solver

The eigenvalue solver addresses the forward and adjoint systems (2.4) and (2.7). The solver uses PETSc

(Balay et al., 2012b,a, 1997) for the matrix construction and SLEPc (Hernandez et al., 2005) to solve the

global eigenvalue problem. The Krylov-Schur implementation of the Implicitly Restarted Arnoldi Method

(IRAM), in conjunction with the shift-and-invert spectral transformation andMUMPS (Amestoy et al., 2001)

for the LU factorization of the linearized Navier-Stokes operator, is used to obtain the eigenvalues that are

closest to a specified target in absolute value in the complex plane and the corresponding eigenmodes.

2.2.4 Shift-and-Invert

A spectral transformation is used for computing internal eigenvalues and to obtain accelerated convergence.

It transforms the original problem by mapping the eigenvalues to a new position while eigenvectors remain
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unchanged. The shift-and-invert spectral transformation is used to accelerate the convergence of eigenvalues

in the neighborhood of a given target eigenvalue. Consider the standard eigenvalue problem,

Ax = λx. (2.8)

In the shift-and-invert case, with a target value of ω, the method solves the following eigenvalue problem,

(A− ωI)−1x = θx (2.9)

where θ denotes the eigenvalues of the shifted operator (A − ωI)−1. The eigenvectors remain unchanged

and the relation between the eigenvalues of problems (2.8) and (2.9) is

λ = ω +
1

θ
. (2.10)

2.2.5 Structural Sensitivity Analysis

We have the generalized forward eigenvalue problem given by,

LQ̂ = ωMQ̂

Now, let us perturb the equation with a change of operator given by δL,

(L+ δL)(Q̂+ δQ̂) = (ω + δω)M(Q̂+ δQ̂)

LQ̂+LδQ̂+ δLQ̂+ δLδQ̂ = ωMQ̂+ ωMδQ̂+ δωMQ̂+ δωMδQ̂

Using the definitions of the forward eigenvalue problem, and ignoring higher order terms, we can simplify

as,

✚
✚LQ̂+LδQ̂+ δLQ̂+✟

✟
✟✟✯

H.O.T
δLδQ̂ = ✟

✟
✟

ωMQ̂+ ωMδQ̂+ δωMQ̂+✘✘✘✘✘✿H.O.T
δωMδQ̂

LδQ̂+ δLQ̂ = ωMδQ̂+ δωMQ̂
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Multiplying by the discrete adjoint, we get,

Q̂†
T
DLδQ̂+ Q̂†

T
DδLQ̂ = Q̂†

T
DωMδQ̂+ Q̂†

T
ωDMQ̂.

Using the definition of the adjoint eigenvalue problem, we have Q̂†
T
DL = ωQ̂†

T
DM . This gives

✘✘✘✘✘✘
Q̂†

T
DLδQ̂+ Q̂†

T
DδLQ̂ = ✘✘✘✘✘✘✘

Q̂†
T
DωMδQ̂+ Q̂†

T
δωDMQ̂

Q̂†
T
DδLQ̂ = Q̂†

T
δωMDQ̂.

Hence, we obtain the discrete structural sensitivity as,

δω =
Q̂†

T
DδLQ̂

Q̂†
T
DMQ̂

.

2.2.6 Linear Feedback Control

The framework developed for the global eigenanalysis is utilized to develop a control strategy using co-located

linear feedback, where the feedback sensing is based on the difference between the instantaneous value of

the flow variable from that of the baseflow. The Navier-Stokes equations with the control forcing terms is

given by,

dQ

dt
= R̃(Q) + αC(Q− Q̄)︸ ︷︷ ︸

Forcing F (x,t)

, (2.11)

where Q ≡ (ρ, ρu, ρv, ρw, ρE), α is the control gain and the C is a Gaussian supported control matrix

designed to alter the eigensystem of the linearized operator. For example, for a ρw (control) - ρu (feedback)

pair, we have

C =




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0




︸ ︷︷ ︸
C̃

×e−(x−x0)
2/ℓ2x−(y−y0)

2/ℓ2y−(z−z0)
2/ℓ2z , (2.12)
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where (x0, y0, z0) is the center of the actuator and (ℓx, ℓy, ℓz) is the support in the x, y and z directions

respectively. For this linear system, the control gain α is a free parameter that can be varied to change the

strength of the control. A discrete structural sensitivity analysis gives the eigenspectrum shift due to the

control as

δω = α
Q̂†

T
DCQ̂

Q̂†
T
DMQ̂

. (2.13)

The objective we pursue is to optimize the movement of the chosen target eigenvalue. The optimization

seeks, for the case of stabilization, the solution

C∗ def≡ argmin
C,||C̃||=1

Re(α−1δω), (2.14)

with respect to the parameters {{cij}5i,j=1, x0, y0, z0, ℓx, ℓy, ℓz}. The optimization is performed using the

Trust-Region-Reflective algorithm (Han, 1977). Fig. 2.2 shows the complete flowchart for the active control

strategy and analysis.
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Governing Equations
dQ
dt =R̃(Q)

Baseflow Solution (Q̄)
(equilibrium or time-average)

Linearization
dQ′

dt =L(Q̄)Q′

Global
Mode Solver

L(Q̄)Q̂ = ωMQ̂

Structural Sen-
sitivity Analysis

(most sensitive region)
δω

PETSc
(build the
matrix)

SLEPc
(solve the EVP
using IRAM)

Forward
Global

Modes (Q̂)

Adjoint
Global

Modes (Q̂†)

Optimization
(obtain sensor/actuator)

Linear Feedback Control
dQ
dt = R̃(Q) + αC(Q− Q̄)︸ ︷︷ ︸

Forcing F (x,t)

Controlled Simulations
(for different gain (α) values)

Control
Trends

Flow Vi-
sualization

Modal
Analysis
of Control

POD
Analysis

Q′= Q̂(r, z)eimθ+ωt

Figure 2.2: Flowchart of the present control strategy and analysis.
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Chapter 3

Control of a Separated Boundary
Layer in a Diffuser

The control strategy developed in Chapter 2 is applied to the control of a separated boundary layer in a Mach

0.65 diffuser. Section 3.1 describes the governing equations and the formulation of the global eigenvalue

problem in generalized coordinates. The verification of the eigenvalue solver with different test cases is

detailed in Section 3.2. The baseflow, control development and the controlled simulations and analysis for

the Mach 0.65 diffuser are given in Section 3.3. Section 3.4 gives the details of the formulation and results

of its application in stabilizing the flow within the diffuser.

3.1 Governing Equations

The compressible Navier-Stokes equations in physical coordinates are given by

∂ρ

∂t
+

∂

∂xi
(ρui) = 0

∂ρui
∂t

+
∂

∂xj
(ρuiuj + pδij − τij) = 0 (3.1)

∂ρE

∂t
+

∂

∂xj
[(ρE + p)uj + qj − uiτij ] = 0

where repeated indices are summed. We solve (3.1) on a non-uniform, non-orthogonal mesh defined by the

smooth mappings

x = X(ξ, t), with inverse ξ = Ξ(x, t)

whereX−1 = Ξ and Jacobian J = |∂X/∂Ξ|. It can be shown that (3.1) maps into an equivalent conservative

form in the computational variables ξ (Vinokur (1974)). The time integration is performed using the

fourth order Runge-Kutta method. Finite differences are used to approximate the spatial derivatives in the

computational coordinates. We use the summation-by-parts operators (Strand (1994)) which, when coupled

to the simultaneous-approximation-term (SAT) boundary condition (Svärd et al. (2007), Svärd & Nordström

(2008)), yield a provably stable method which has been shown to be accurate (Bodony (2010)). The spatial
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approximation to ∂/∂ξ is P−1Q where Q has the property that Q + QT = diag(−1, 0, . . . , 0, 1). Sponge

zones (Colonius (2004)) are used to prevent spurious reflections from the boundaries and to maintain the

flow by using a specified target state, Qtarget. For the SAT formulation, which is a penalization approach,

a penalty term is added to the right-hand-side of the governing equations. Following the notation in Svärd

et al. (2007), the penalized equation with SAT and sponge terms is

∂Q

∂t
= R(Q) + σiP

−1E1A
+(Q− gi)︸ ︷︷ ︸

SAT inviscid

+
σv
Re

P−1E1I(Q− gv)
︸ ︷︷ ︸

SAT viscous

−Asκ
ns(Q−Qtarget)︸ ︷︷ ︸
Sponge zone

(3.2)

where σi and σv are the penalty parameters for the inviscid and viscous boundary conditions, respectively,

and E1 = (1, 0, . . . , 0)T . Here R(Q) represents the divergence of the fluxes in the governing equations, A+

is a Roe matrix, and I is the identity matrix. It is known that σi ≤ −2 and

σv ≤ − 1

4p0
max

(
γµ

Prρ
,
5µ

3ρ

)
(3.3)

for stability. Also, As is the amplitude of the sponge, ns, the spatial strength and κ is the scaled coordinate

which ranges from 0 at the interior of the sponge to 1 at the exterior.

For the present work, the two-dimensional compressible Navier-Stokes equations in generalized coordi-

nates are solved,

∂Q

∂t
= −J

[
∂Ê

∂ξ
+
∂F̂

∂η

]
+

J

Re

[
∂Êv

∂ξ
+
∂F̂v

∂η

]

+ σiP
−1E1TkΛ

+T−1
k (I − gi(Q))︸ ︷︷ ︸

SAT inviscid

+
σv
Re

P−1E1(I − gv(Q))
︸ ︷︷ ︸

SAT viscous

−Asκ
ns(Q−Qtarget)︸ ︷︷ ︸
Sponge Zone

(3.4)

where J is the grid Jacobian, Ê and F̂ are the inviscid fluxes and Êv = 1
J (ξxEv + ξyFv) and F̂v =

1
J (ηxEv + ηyFv) are the viscous fluxes with

Q =




ρ

ρu

ρv

ρE



, Ev =




0

τxx

τxy

f4



, Fv =




0

τxy

τyy

g4



,
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and

τxx = (2µ+ λ)(ξxuξ + ηxuη) + λ(ξyvξ + ηyvη)

τxy = µ(ξyuξ + ηyuη + ξxvξ + ηxvη)

τyy = λ(ξxuξ + ηxuη) + (2µ+ λ)(ξyvξ + ηyvη)

f4 = uτxx + vτyy +
µ

Pr(γ − 1)
(ξx∂ξa

2 + ηx∂ηa
2)

g4 = uτxy + vτyy +
µ

Pr(γ − 1)
(ξy∂ξa

2 + ηy∂ηa
2).

The non dimensional variables used in the formulation are

t =
t∗

L∗/c∞
, xi =

x∗i
L
, ρ =

ρ∗

ρ∞
, ui =

u∗i
c∞

, p =
p∗

ρ∞c2∞
, T =

T ∗

(γ − 1)T∞
, µ =

µ∗

µ∞
, λ =

λ∗

λ∞

where ‘*’ denotes the dimensional variables, L is an appropriate characteristic length scale of the problem

and the subscript ‘∞’ refers to the initial incoming freestream values of the variables.

To perform the linear stability analysis of the Navier-Stokes equations, we linearize (3.4) about a steady

solution, Q̄. The linearized equations with all the boundary terms included are,

∂Q′

∂t
= −

[
JÂ

∂

∂ξ
+ JB̂

∂

∂η
+ J

∂Â

∂ξ
+ J

∂B̂

∂η︸ ︷︷ ︸
Inviscid

− J

Re

[
∂Êv

′

∂ξ
+
∂F̂v

′

∂η

]

︸ ︷︷ ︸
Viscous

− σiP
−1E1TkΛ

+T−1
k (I − g′

i(Q))︸ ︷︷ ︸
SAT inviscid

− σv
Re

P−1E1(I − g′
v(Q))

︸ ︷︷ ︸
SAT viscous

+ Asκ
ns

︸ ︷︷ ︸
Sponge Zone

]
Q′ = L(Q̄)Q′,(3.5)

where Q′ is the small perturbation to Q̄. The inviscid flux Jacobian matrices are given by

Â or B̂ =
1

J




kt kx ky 0

−uθ + kxφ
2 kt + θ − (γ − 2)kxu kyu− (γ − 1)kxv (γ − 1)kx

−vθ + kyφ
2 kxv − (γ − 1)kyu kt + θ − (γ − 2)kyv (γ − 1)ky

θ[2φ2 − γ ρe
ρ ] kx[γ

ρe
ρ − φ2]− (γ − 1)uθ ky[γ

ρe
ρ − φ2]− (γ − 1)vθ γθ + kt




where θ = kxu+ kyv and φ2 = 0.5(γ − 1)(u2 + v2) with k = ξ for Â and k = η for B̂. The eigenvalues of Â

and B̂ are given by

Λk = [Uk, Uk, Uk + c(k2x + k2y)
1

2 , Uk − c(k2x + k2y)
1

2 ],
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where k = ξ or η for ξ = constant or η = constant boundaries, respectively, and Uk are the contravariant

velocities given by Uξ = U = ξt + ξxū+ ξy v̄ and Uη = V = ηt + ηxū+ ηy v̄. The linearization of the viscous

terms is given in Appendix B.

3.1.1 Boundary Conditions

This section gives a term-by-term description of all the boundary conditions used in the formulation as

shown in (3.5). The SAT rotation matrices, far-field boundary conditions (SAT and sponge zones), and

inviscid and viscous wall boundary treatment are described.

Rotation Matrices (SAT)

The rotation matrices for implementing the SAT boundary conditions in (3.5) are given by Pulliam &

Chaussee (1981) as,

Tk =




1 0 α α

u k̃yρ α(u + k̃xc) α(u − k̃xc)

v −k̃xρ α(v + k̃yc) α(v − k̃yc)

φ2

γ−1 ρ(k̃yu− k̃xv) α
[
φ2+c2

(γ−1) + cθ̃
]

α
[
φ2+c2

(γ−1) − cθ̃
]




and

T−1
k =




(
1− φ2

c2

)
(γ − 1) u

c2 (γ − 1) v
c2 −(γ − 1) 1

c2

− 1
ρ (k̃yu− k̃xv)

1
ρ k̃y − 1

ρ k̃x 0

β(φ2 − cθ̃) β[k̃xc− (γ − 1)u] β[k̃yc− (γ − 1)v] β(γ − 1)

β(φ2 + cθ̃) −β[k̃xc+ (γ − 1)u] −β[k̃yc+ (γ − 1)v] β(γ − 1)



,

where α = ρ/
√
2c, β = 1/

√
2c, θ̃ = k̃xu+ k̃yv and k̃x = kx/(k

2
x + k2y).

Far-Field Boundaries

The far-field boundary condition imposes zero perturbations for all the incoming characteristic variables.

Hence the penalty term is g′
i(Q) ≡ 0 in (3.5).
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Inviscid Wall

The inviscid wall boundary condition in the SAT treatment will have the following penalty term in two

dimensions,

gi(Q) =




ρ

ρ(u− (u · n̂)n̂)
p

γ−1 + 1
2ρ|(u− (u · n̂)n̂)|2



=




ρ

ρu(1− n2
x)− ρvnxny

−ρunxny + ρv(1 − n2
y)

ρe− 1
2
(ρunx+ρvny)

2

ρ



,

with the corresponding perturbation,

g′
i(Q) =




1 0 0 0

0 1− n2
x −nxny 0

0 −nxny 1− n2
y 0

1
2 (unx + vny)

2 −(unx + vny)nx −(unx + vny)ny 1



,

where nx and ny are the components of the unit wall normal vector.

Viscous Wall

The viscous wall boundary condition in the SAT sense involves the addition of a corresponding viscous

penalty term. For an isothermal wall with temperature Tw, the target vector is given by

gv(Q) =




ρ

0

ρTw

γ



,=




ρ

0

0

ρTw

γ



,

with the corresponding perturbation,

g′
v(Q) =




1 0 0 0

0 0 0 0

0 0 0 0

Tw

γ 0 0 0



.
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Sponge Zones

For the treatment of the far field boundaries, where the perturbations decay to infinitesimal values, sponge

zones (Colonius (2004)) are effective. In the linearized Navier-Stokes equations, this consists of adding a

source term to the equations

dQ′

dt
= L(Q̄)Q′ −Asκ

ns(Q′ −Q′
target),

where Q′
target is the target state for the sponge region. Since the target state is not dependent on the flow

solution, Q′
target ≡ 0.

3.2 Verification

To verify the implementation of the global eigenmode solver, we perform linear stability analyses for several

standard test cases and compare the results with the existing literature. The following section describes the

verification procedure. Inviscid and viscous test cases involving all boundary treatment terms are performed

to verify the code.

3.2.1 Test Case 1 - Compressible Inviscid Wall Bounded Mixing Layer

The test case considered here is the temporal inviscid stability analysis of a streamwise periodic bounded

compressible mixing layer with ∆u/c1 = 1 as shown in Fig. 3.1(a). This test case verifies the inviscid terms

in the equations and the inviscid SAT wall boundary treatment. To compare the results, the problem is also

solved using a one-dimensional shooting method and the eigenvalues and eigenmodes obtained from the two

methods are compared. A growth rate comparison from the eigenvalue solution against that predicted by

the direct numerical simulation is also used for a test of consistency.

Baseflow Profiles

A hyperbolic tangent velocity profile is chosen and the temperature is obtained from the Crocco-Busemann

relation (Ragab & Wu (1989)). The pressure is assumed to be constant across the mixing layer and the
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Case Wavenumber Eigenvalue (ωr + iωi)
α Local Analysis Global Analysis

1 3 1.0211 + 0.0764i 1.0234 + 0.0767i
2 4 1.3000 + 0.1007i 1.3061 + 0.1002i
3 8 2.1334 + 0.1838i 2.1085 + 0.1850i

Table 3.1: Comparison of eigenvalues from local and global analysis for wall bounded compressible shear
layer.

density is calculated from the ideal gas law. The baseflow profiles used in the present analysis are given by

ū(y) = M tanh
(2y
δ

)

T (y) = Tr

(
1− Ū(y)

1− Ur

)
+

(
Ū(y)− Ur

1− Ur

)
+ (γ − 1)M2(1− Ū(y))(Ū (y)− Ur)

ρ(y) =
γp

(γ − 1)T
,

where M = 0.5, Tr = T1/T2 = 0.7 and Ur = U1/U2 = −1.0, δ = 0.05 and the nondimensional variables are

given by

ρ =
ρ∗

ρ∗1
, u =

u∗

c∗1
, v =

v∗

c∗1
, T =

T ∗

(γ − 1)T ∗
1

, p =
p∗

ρ∗1c
∗
1
2 ,

where the ‘*’ denotes the dimensional variables.

Global 2D Analysis

The eigenmode analysis of the baseflow was performed using the global eigenvalue solver described and

the 1-D method in Appendix A. Table 3.1 shows the comparison of eigenvalues for 3 cases with different

streamwise wavenumbers (α). Fig. 3.1(b)-(e) shows the comparison of the eigenmodes. A good quantitative

comparison verifies the inviscid terms in the formulation and the inviscid wall boundary conditions.

Growth Rate - Direct Numerical Simulation

The growth rate test checks for the consistency of the results obtained from the global stability analysis

and the nonlinear Navier-Stokes solver. The obtained perturbations from the global eigenmode solver are

added to the steady baseflow and provided as an initial condition to perform a DNS. The growth rate of

the perturbations obtained from the DNS are then compared with that obtained from the linear stability

analysis (ωr = Re(ω), the real part of the eigenvalue). In global stability analysis, the perturbations added
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take the following form,

Q′(x, t) = Re{Q̂(x)eωt}

= Re{(Q̂r(x) + iQ̂i(x))e
(ωr+iωi)t}

= eωrt
(
Q̂r(x) cos(ωit)− Q̂i(x) sin(ωit)

)
.

which is approximately,

Q′(x, t) ≈ eωrtQ̂r,

for small times given by ωit≪ 1.

The initial perturbation corresponds to a given streamwise wavenumber (say α). Taking the Fourier

transform of the above equation and equating the Fourier amplitudes corresponding to α, we get

Q̃′(α, t) ≈ eωrt ˜̂
Qr(α)

ln(|Q̃′(α, t)|) ≈ ωrt+ ln(| ˜̂Qr(α)|).

The above equation represents a straight line on a semilog plot for the perturbation amplitudes |Q′(α, t)|.

The validated unstable eigenmode found from the eigenvalue analysis was added to the baseflow and the

growth rate of the eigenmode was obtained from the in-house Navier-Stokes solver. Fig. 3.2 shows the growth

rate comparison. A good comparison of the growth rate shows the consistency of the global eigenmode solver

and the DNS.

Test Case 1 - Summary

This test case verifies the inviscid terms in the linearized equations and the inviscid boundary conditions.

Good quantitative agreement of the eigenvalues can be observed from the comparison in Table 3.1 and those

of the eigenmodes in Fig 3.1. The growth rate also matches well with the DNS as shown in Fig 3.2.
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Figure 3.1: (a) Schematic of the wall bounded mixing layer; comparison of the absolute value of eigenmodes

in the y direction for case 1: (b) ρ̂ (c) ρ̂u (d) ρ̂v and (e) ρ̂E (1D (solid line) and 2D (symbols)).
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Figure 3.2: Growth rate comparison: global stability analysis (solid) and DNS: ρ̂ (�), ρ̂u (N), ρ̂v (−.−),
ρ̂e(  ).

3.2.2 Test Case 2 - Boundary Layer

This test case considers the global viscous instability of a streamwise periodic boundary layer. The baseflow

used a similarity solution of the compressible boundary layer equations. Test cases were done at two free

stream Mach numbers : 0.05 and 10.0. This test case verifies all the terms in the formulation with the

SAT wall boundary treatment and the SAT far-field boundary treatment. The comparison is done with

the eigenvalues and eigenmodes from Malik (1990). A growth rate comparison with DNS is also tested for

consistency.

Mach 0.05 Boundary Layer

The baseflow was obtained from the compressible similarity solution of the boundary layer equations at a

Reynolds number (based on displacement thickness) of Reδ∗ = 2000. Table 3.2 shows the comparison of

eigenvalues. The comparison of the eigenmodes is shown in Fig. 3.3, and Fig. 3.4 shows the growth from the

DNS.

Solver ωr + iωi

1D 2.0695× 10−4 − 3.2991× 10−3i
Global 2.0723× 10−4 − 3.2997× 10−3i

Table 3.2: Comparison of eigenvalues for the 1D temporal solver and global solver for the case of M = 0.05
boundary layer.
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Growth Rate - Direct Numerical Simulation

The validated Tollmien-Schlichting unstable eigenmode found from the eigenvalue analysis was added to the

baseflow and the growth rate of the eigenmode was obtained from the in-house Navier-Stokes solver. The

growth rate comparison at y = 0.2δ∗ is shown in Fig. 3.4.

Mach 10.0 Boundary Layer

The baseflow was obtained from the compressible similarity solution of the boundary layer equations at

a Reynolds number (based on displacement thickness) of Reδ∗ = 31670. Table 3.3 shows the comparison

of eigenvalues for the Mach 10.0 spatially periodic boundary layer. The corresponding comparison of the

eigenmodes is shown in Fig. 3.5. A growth rate comparison is not done since the baseflow is not a steady

solution of the compressible boundary layer equations.

Solver ωr + iωi

1D 0.1030− 36.7066i
Global 0.1160− 36.6241i

Table 3.3: Comparison of the eigenvalue for the global solver with the result from Malik (1990) for the case
of M = 10.0 boundary layer.

Test Case 2 - Summary

All the terms of the solver (inviscid, viscous and boundary terms) are verified by this test case. Good

quantitative agreement of the eigenvalues and eigenmodes can be observed from the comparisons. The

growth rate also matches well with the DNS as shown in Fig 3.4.

3.3 Flow Control in a Mach 0.65 Diffuser

Flow separation can lead to significant stagnation pressure loss at the diffuser exit (fan inlet) and can lead

to considerable deterioration of engine performance. The vortex shedding in the diffuser also generates

undesirable unsteady loads on the fan. In this section, we apply the control strategy developed in Chapter

2 to control vortex shedding in a Mach 0.65 diffuser.

3.3.1 Domain, Boundary Conditions and Flow Conditions

Fig. 3.6(a) shows the computational domain drawn to scale (δ, the boundary layer thickness of the incoming

boundary layer, is the chosen length scale). The grid size was (Nξ, Nη) = (1386, 200). The incoming flow is
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Figure 3.3: Comparison of eigenmodes for M = 0.05 boundary layer: 1D (solid lines) and global (symbols).
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Figure 3.4: Growth rate comparison at y = 0.2δ∗: (a) |ρ′|, (b) |ρu′|, (c) |ρv′| and (d) |ρE′|. The symbols
denote the simulation result and the solid line shows the global stability result with slope ωr = 0.000207.
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Figure 3.5: Comparison of the real and imaginary parts of the temperature eigenmode for the M = 10.0 flat
plate boundary layer: −− global; — Malik (1990).

a Mach 0.65 boundary layer with T∞ = 300 K and ρ∞ = 1.225 kg/m3 at a Reynolds number of c∞δ/ν =

250. The core properties at the outflow were calculated using the isentropic quasi-steady 1D analysis of the

core flow from the inlet to the outlet. Similarity solution of the compressible boundary layer equations was

used to generate the boundary layer profiles at the inflow and outflow, and the solution within the diffuser

was obtained by a linear interpolation between the inflow and the outflow. The initial condition was such

that mass is conserved within the domain, ie. ṁinflow ≈ ṁoutflow. Table 3.4 shows the outflow-to-inflow ratio

of the flow properties. Fig. 3.6(b) shows the boundary conditions used in the simulations. SAT boundary

conditions were enforced on all boundaries. The lower wall is viscous and the upper wall is inviscid. The

inflow and outflow boundaries were treated as SAT far-field boundaries. Sponge (absorbing) zones were used

at the inflow and outflow to prevent spurious reflections of outgoing waves into the computational domain.

Outflow/Inflow Ratio
A2/A1 1.436
T2/T1 1.062
p2/p1 1.235
ρ2/ρ1 1.162

Table 3.4: Ratio of outflow to inflow properties (initial condition) from quasi-steady 1D analysis.
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Figure 3.6: (a) Computational domain (drawn to scale, δ is the boundary layer thickness of the incoming
boundary layer). (b) Boundary conditions used in the simulation.
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3.3.2 Steady Baseflow for the Mach 0.65 Diffuser

The steady baseflow solution for the Mach 0.65 diffuser is computed using the Selective Frequency Damping

technique described in Section 2.1. Table 3.5 shows the values of the parameters used in the SFD analysis,

obtained from the eigenanalysis of an instantaneous snapshot of the unsteady flow. Fig. 3.7(a) shows the

Mach number contours for the equilibrium baseflow Qe for which the residual ||R̃(Qe)||∞ was reduced to

10−11 over time ∆tc∞/δ = 10 000. Fig. 3.7(b) shows the time history of the L∞ norm of the right hand

side of the Navier-Stokes equations for the SFD analysis. Mesh independence was established by verifying

that the relevant portion of the global eigenspectrum for the steady baseflow showed very little change upon

refinement (e.g., the change in the growth rate of the most unstable eigenmode was less than 0.02% upon

increasing the number of grid points by a factor of 2). Further quantitative comparisons of the growth rate of

the global modes, those computed directly from the simulation, and those from the linear stability analysis

also showed that the simulation was well resolved (not shown).

Parameter Value
χ (gain) 0.05

∆ (filter width) 20.0

Table 3.5: Parameters used for selective frequency damping.

3.3.3 Flow Control with Linear Feedback Forcing

This section describes the methodology for estimating the actuator type and location for flow control in high

subsonic diffusers utilizing the forward (Q̂) and adjoint global modes (Q̂†) of the Navier-Stokes equations.

We consider the case of a linear feedback forcing to affect flow control. The objective of the controller is to

control the growth rate of specific global modes of the baseflow to render them less unstable, thus reducing

the unsteady loads on the fan face. The verified eigenvalue solver developed can be used to compute the

forward and adjoint (discrete) modes of the compressible Navier-Stokes equations. The adjoint modes give

valuable information regarding the receptivity of the flow. The “wavemaker” theory uses the forward (Q̂) and

adjoint global modes (Q̂†) to obtain an estimate of the most effective location of the controller. We extend

the theory to estimate the most effective location and the shape of the controller for specific control-feedback

pairs.
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Figure 3.7: (a) Mach number contours at steady state and (b) history of DNS with SFD technique showing

the change in the RHS of the Navier-Stokes equations :
||RHS||L∞

||RHS||L∞,t=0
: —ρ, — —ρu, — · —ρv, — ·· —ρE.

3.3.4 Eigenspectrum, Eigenmodes and Wavemaker

The eigenanalysis of the steady baseflow was performed to find the unstable and least stable eigenvalues

and the forward and adjoint eigenmodes of the system using a shift-and-invert spectral transformation.

Different target eigenvalues for ωr in the range {0.02, 0.1} (along the real axis) were chosen to ensure

the independence of the most unstable portion of the eigenspectrum of the system. Fig. 3.8(a) shows the

eigenvalue spectrum with the target eigenvalue (ωtarget
r , ωtarget

i )=(0.02,−0.1). Fig. 3.8(b) shows the unstable

region of the eigenspectrum for three different target eigenvalues. It can be seen that the unstable portion of

the eigenspectrum does not change with the change in the target, showing the independence of the desired

region of the spectrum with respect to the target eigenvalue.

The eigenmodes of the adjoint system differ from the forward problem and therefore, corresponding to

every eigenvalue, we obtain a forward-adjoint pair of eigenmodes. Using the forward and adjoint eigenmodes,

the wavemaker can be computed for any given eigenvalue of the system. Giannetti & Luchini (2007) define
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a wavemaker region as the region in space where a modification of the structure of the problem produces

the largest drift in the eigenvalue of the system. The wavemaker is defined as the region where

ζ(x, y) ≡ ||Q̂(x, y)|| ||Q̂†(x, y)||∫

D

Q̂ · Q̂† dS
(3.6)

attains ‘large’ values, where Q̂ ≡ {ρ̂, ρ̂u, ρ̂v, ρ̂E} and Q̂† ≡ {ρ̂†, ρ̂u†, ρ̂v†, ρ̂E†}. The norm is defined by

||Q̂|| ≡
√
|ρ̂|2 + |ρ̂u|2 + |ρ̂v|2 + |ρ̂E|2. The results of the wavemaker analysis for the most unstable eigenvalue

for the diffuser are described in this section. Controller selection and placement for localized linear feedback

control requires the solution of the optimization problem (2.14), with C̃ bounded, applied to a specific

eigenvalue. To demonstrate the method we target the most unstable eigenvalue in Fig. 3.9(a) whose forward

and adjoint global modes are shown in Fig. 3.9(b) and (c), and wavemaker ζ in Fig. 3.9(d). Observe that the

wavemaker shown in Fig. 3.9(c) suggests that the separated flow may be efficiently affected by a controller

slightly downstream of the diffuser corner. However, it does not suggest which specific actuator(s)/sensor(s)

pair should be examined nor does it yield a spatially precise location for actuation that is specific to the

actuator(s)/sensor(s) pair.
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Figure 3.8: (a) Eigenvalue spectrum for the diffuser obtained with a target eigenvalue of (ωr, ωi) =
(0.02,−0.1); (b) unstable region of the eigenspectrum obtained using different target eigenvalues
� (0.02,−0.1), △ (0.05,−0.1) and © (0.1,−0.1).
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Figure 3.9: (a) The eigenspectrum for the Mach 0.65 equilibrium baseflow in the diffuser; (b) forward

eigenmode, Real(ρ̂u); (c) adjoint eigenmode, Real(ρ̂u†); (d) wavemaker as defined by (3.6) and (e) near-wall
zoom of the adjoint eigenmode.

3.3.5 Optimization

To demonstrate the optimization procedure, we consider the case of mass control with the forcing based

on different feedbacks − density (ρ), streamwise momentum (ρu), cross-stream momentum (ρv) and total

energy (ρE). The optimization is applied for control of the most unstable eigenmode. The objective of the

optimization procedure is to minimize Re(δω), thereby rendering the eigenmode less unstable. Figs. 3.10 (c),

(d), (e) and (f) show the optimization history of the trust-region-reflective method for the different cases.

The optimization procedure converged to the same final result for different initial values of the parameters.

Figs. 3.10(a) and (b) show the shape and location of the actuation region for linear feedback forcing for

different control-feedback pairs. This means that depending on the type of control and the feedback variable

being sensed, the most effective location of actuating the flow will differ. Fig. 3.11 shows the control

effectiveness (maximal shift in Re(ω)) based on the linear theory for different control-feedback pairs. It can

be seen that the control effectiveness is dependent on the specific control-feedback pair chosen. But these

quantities are predicted by the linear theory (omitting the effect of higher order terms) for unit amplitude

(α = 1) of control. For what range of control amplitudes the predictions are valid and how the higher order

terms affect the predictions of the linear theory are described in Section 3.3.10.

3.3.6 Global Stabilization

To study the effect of increased control gain on the system, consider ρ–ρ control-feedback, as specified via C̃

in (2.12). The global eigenanalysis of the closed loop system A+αC was performed with different values of

37



the gain α to obtain the range of values for which the system was globally stabilized (Fig. 3.12). Although

the control was developed targeting the most unstable eigenvalue there is “parasitic” movement of other

eigenvalues as well. In general, such a parasitic movement of eigenvalues need not be favorable. Since the

estimate for the eigenvalue shift, δω, given by (2.13) is linear in the coefficients cij (a result that follows from

assuming δA = αC is suitably small so that products of perturbed quantities can be neglected), the actual

eigenvalue shift as A is perturbed to A+ αC will begin to differ significantly from that obtained from the

first order structural sensitivity analysis of (2.13); namely, the spectrum of A+ αC is approximated by the

spectrum of A plus a correction δω. It can be seen that for low values of control gain, the eigenspectrum

tends to shift towards the left hand plane (LHP) and for this flow achieves complete stabilization; for further

increase in α, some of the eigenvalues return to the right hand plane (RHP). Global stability is achieved

for 0.105 < αstable < 0.108, whereas the linear estimate for the minimum control gain for stabilizing the

most unstable eigenvalue was α = 0.32. As a consequence of this reversal of the eigenspectrum shift, there

exists only a range of the control gain α for which global stabilization can be achieved even in just the linear

system.

It should be noted that there are numerous actuator-sensor combinations that include single as well as

multiple control(s)-feedback(s) that could be developed using the algorithm. For the present flow, other

feedback combinations using mass control were analyzed as well. The root-locus diagram for the cases ρ-

ρu, ρ-ρv and ρ-ρE are shown in Figs. 3.13 (a), (b) and (c) respectively. In the linear regime of structural

sensitivity, the controller with maximum flexibility is the one that utilizes the full potential of the control

matrix C. Such an actuator can be obtained by performing an unconstrained optimization by optimizing

over all coefficients cij of the control matrix C. For this case, we find that the estimated best actuator is,

to within a constant,

C̃unconstrained =




1 −1 −1 1

−1 1 1 −1

1 −1 −1 1

−1 1 −1 −1



. (3.7)

The root-locus diagram for this controller is shown in Fig. 3.13(d). It can be seen that none of the above

combinations could globally stabilize the system. The eigenspectrum shift, due to non-linearity, pushes some

of the eigenvalues back into the unstable regime. The ‘×’ mark in Fig. 3.13, and all subsequent root-locus

diagrams, indicates the location in the eigenspace at which the error between the real parts of the predicted

(from structural sensitivity) and the actual computed eigenvalues for a given control gain α, reaches 1%, ie.
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Simulation ID α Global Stability

1 0.05 Unstable
2 0.105 Stable
3 0.3 Unstable

Table 3.6: Direct numerical simulations to study the effect of control on vortex shedding.

[(ωr)predicted− (ωr)computed]/(ωr)predicted = 0.01, where (ωr)predicted = (ωr)uncontrolled+ δωstructural sensitivity.

3.3.7 Control of Vortex Shedding

To confirm applicability to the actual, nonlinear flow, three different simulations were conducted with the

same initial condition: the equilibrium baseflow perturbed with the most unstable eigenmode with the

perturbation amplitude in the non-linear regime (∼5% of maximum amplitude). The actuation used ρ − ρ

control-feedback. The control forcing term appears in the continuity equation as,

∂ρ

∂t
= R̃ρ(Q) + αe−(x−x0)

2/ℓ2x−(y−y0)
2/ℓ2y(ρ− ρe), (3.8)

where ρe is the steady baseflow density. The simulations performed and the observed system character

corresponding to the actuator are given in Table 3.6. We define the total perturbation kinetic energy

in the system as E(t) = 1
2

∫
V [u

′(t)2 + v′(t)2] dV . The control objective, E(t)/E(0), is used to quantify

the deviation of the system from the baseflow. Fig. 3.14 shows the eigenspectrum and the unsteadiness

quantification for the controlled flow for different values of the control gain. It can be seen that the control

gain within the global stabilization window (0.105 < α < 0.108) suppresses the vortex shedding downstream

of the diffuser completely, whereas actuation with a gain value outside the stabilization window amplifies

the initial perturbation energy of the system. The present Reynolds number was selected to illustrate this

fundamental change of behavior. It is noteworthy that other control-feedback methods can be developed

with the present algorithm; however, identifying all such combinations was not part of the present work.

3.3.8 More Challenging-to-control Configurations

The domain length and Reynolds number of the diffuser example were such that the control could completely

suppress instabilities and stabilize the flow as simulated in the corresponding DNS. Of course, such efficacy

is likely out of the question for higher Reynolds numbers and longer domains. Indeed the information

contained with the spectrum of A+αC, as a function of Lx and Re, could be used to estimate the degree to

which complete stabilization could be achieved. We choose to demonstrate the effect of these parameters by

39



performing flow control for the following two additional cases for comparison. In the first case the Reynolds

number is held fixed at Re = 250 but the domain length is increased 50% to Lx = 180δ. In the second case

the domain length remains at Lx = 120δ but the Reynolds number is increased to 350. We further show

that the ability to rationally select actuator/sensor pairs, and locate them, is robust to these changes.

Longer Domain

To study the effect of the domain length, a steady baseflow was computed for the extended domain with

Lx/δ = 180 at Re = 250, and the results were compared to those from the original domain with Lx/δ = 120.

Fig. 3.16(a) shows that the unstable and least stable branch of the eigenspectrum is preserved for the short

and long domains, but the long domain, on account of having a longer shear layer, supports more unstable

modes (Fig. 3.17(a)). The controllability analysis for A + αC was performed for different values of the

control gain α for the long domain using the same control-feedback ρ-ρ type with which global stabilization

was observed for the short domain. Although the flow could not be globally stabilized for the longer

domain, a significant reduction of the growth rate was observed for the unstable eigenvalues (≈ 50% for

the most unstable eigenvalue) (Fig. 3.17(b)). It is well recognized that the global modes are sensitive to

the domain size (Nichols & Lele, 2011), so we anticipate the spectrum to have changed in this case, and

streamwise decorrelation makes control over the full domain by localized actuation a fundamentally more

challenging problem. Still the most unstable eigenvalue targeted by the control is suppressed and the overall

flow rendered less amplifying by the informed control. We note that the actuator placement is essentially

unchanged, as shown in Fig. 3.16(b). Hence, the type of localized feedback control for a real, physical flow

of this configuration may still depend on the type of outlet/length of the domain encountered by the flow

downstream of separation.

Higher Reynolds Number

A steady baseflow was computed at Re = 350 for the short domain and the results were compared with the

case at Re = 250. Fig. 3.18(a) shows the comparison of the eigenspectrum for the two baseflows. The effect

of increasing the Reynolds number is qualitatively similar to that of the long domain at Re = 250, with

more unstable eigenvalues and higher growth rates. Fig. 3.18(b) shows the effect of increase of the control

gain α for the ρ–ρ control-feedback where it can be seen that the flow cannot be globally stabilized, but a

significant reduction in the growth rate is obtained for all the unstable eigenvalues. The control was also

performed using the actuator developed by unconstrained optimization as described in Section 3.3.6. The

root-locus diagram (Fig. 3.19) shows that the reversal of the eigenspectrum shift occurs within a short range
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of the control gain (0 ≤ α ≤ 0.02) and hence global stabilization could not be achieved in this case as well.

The conclusion is that the complete suppression of instabilities is likely out of the question for higher

Reynolds numbers and longer domains. Still, the present technique provided informed actuation that sup-

presses the instabilities even in these cases, though the flow is not, of course, fully stabilized.

3.3.9 Verification of Growth Rate using DNS

In this section, we verify the consistency of the global eigenvalue solver with the DNS. The steady baseflow

obtained from the SFD technique was perturbed with the most unstable eigenmode of the system, and the

growth rate (ωr) from the DNS was compared with that predicted by the linear stability analysis from the

eigenvalue solver. The amplitude of the initial perturbation was 10−7 so as to make sure that the initial

growth is within the linear regime. At t = 0, we have Q′(x, 0) = Q̂r(x). The initial condition for the

perturbed simulation is

Q(x, 0) = Qsteady(x) + Q̂r(x). (3.9)

The simulation was carried out until nonlinear effects became significant and vortex shedding was observed

downstream of the diffuser. Fig. 3.20 shows the comparison of the initial growth rate for all the conservative

variables obtained from the DNS with that predicted by the linear stability analysis. The good quantitative

comparison shows the consistency of the eigenvalue solver and the DNS. Fig. 3.21 shows the growth rate

obtained from the DNS when nonlinear effects become significant. It can be seen that the system exhibits

a linear regime until perturbations reach ∼ 10−2.
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Figure 3.10: Shape and location of the wavemaker for ρ control for different control-feedback pairs: (a) ρ−ρ
and ρ− ρu, (b) ρ− ρv and ρ− ρE. Optimization history for different control-feedback pairs: (c) ρ− ρ, (d)
ρ− ρu, (e) ρ− ρv and (f) ρ− ρE.

42



ρ ρu ρv ρE

Feedback

−0.015

−0.010

−0.005

0.000

δσ
r m

a
x
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Figure 3.12: The eigenspectrum shift as a function of the control gain α: show the locus of eigenvalues
that have unfavorable shift. The arrows point in the direction of increasing control gain from α = 0.0 to
0.108. The controlled eigenvalue is circled by #. The open symbols (2) show the uncontrolled eigenspectrum.
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Figure 3.13: The eigenspectrum shift as a function of the control gain α for mass control with different
feedback combinations: (a) ρ− ρu (b) ρ− ρv (c) ρ− ρE, (d) unconstrained optimization. show the locus
of eigenvalues that have unfavorable shift. The arrows point in the direction of increasing control gain. The
controlled eigenvalue is circled by #. The open symbols (2) show the uncontrolled eigenspectrum.
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Figure 3.18: Eigenspectrum for the short domain at two different Reynolds numbers: Re = 250 (2); Re = 350
(#). (b) Effect of the control gain (α) on the eigenspectrum with ρ−ρ control-feedback for the short domain
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Figure 3.20: Comparison of linear theory with DNS : — linear theory, � DNS, — ·· — envelope from linear
theory (ωr = 0.00322).

3.3.10 Effect of Second Order Terms

Since (2.13) is linear, multiplying δL by a constant factor (say α) can effect a shift of α×δω in the eigenvalue.

This would mean that linear feedback forcing could be used to shift an eigenvalue to any desired location

in the complex plane by adjusting α, which is physically meaningless. Such an arbitrary movement of
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Figure 3.21: Comparison of linear theory with DNS (nonlinear regime): — DNS, — ·· — envelope from
linear theory (ωr = 0.00322).

eigenvalues cannot be done since we obtained the eigenshift from

Q̂†
T
V (δL− δωI)Q̂ + Q̂†

T
V (δL− δωI)δQ̂︸ ︷︷ ︸

Second order term

= 0,

by discarding the second order term. As α becomes large, the nonlinear term becomes more significant

and the linear analysis would no longer hold good. The actual eigenvalue, which is computed using the

eigenvalue solver, tends to differ from the predicted eigenvalue. Here we analyze the error in the predicted

50



and computed eigenvalues to obtain an estimate of the maximum eigenshift that can be obtained for a given

eigenvalue. The analysis is done for the most unstable eigenmode for mass control and different control-

feedback pairs. To find the shifted eigenvalue from the eigensolver, a target eigenvalue of ωtarget = ω + αδω

is used as the guess, and the solver converges to the eigenvalue closest to the specified target. Figs. 3.22(a)

and (b) show the percentage error (E) in the real and imaginary parts of the most unstable eigenvalue

for different control-feedback pairs. The E − α plot shows a power law relationship with slope ∼ 2. The

error in the real part of the eigenvalue is larger compared to the imaginary part and also depends on the

control-feedback pair.
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Figure 3.22: Error in the predicted and computed eigenvalues with ρ control and different control-feedback
pairs for the most unstable eigenmode (— ρ− ρ, — — ρ− ρu,—·— ρ− ρv, —··— ρ− ρE) for (a) ωr = R(ω)
and (b) ωi = I(ω).

3.4 Optimal Transient Growth

For a globally stable system, it is possible to obtain perturbation growth for a finite period of time by a

particular superposition of the global modes. The basic idea behind optimal transient growth is to define a

measure of perturbation energy E(t) (Schmid & Henningson (2000), Nichols et al. (2009)) and to maximize

the ratio E(t)/E(t = 0). The initial condition that produces the optimal response at a given time t can

also be obtained using this procedure. The non-normality of the linear operator, which means the global

modes of the system are non-orthogonal, allows us to find a set of coefficients to obtain an optimal linear

superposition of the basis of the system, which is an optimal initial condition for obtaining transient growth

for a finite period of time. If the system is globally stable, the growth reaches a maximum and then decays
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with time.

3.4.1 Formulation

We define a measure of the perturbation energy of the system as

E(t) =
1

2

∫

V

(û(t)û∗(t) + v̂(t)v̂∗(t)) dV (3.10)

where ‘*’ denotes the complex conjugate. In matrix form, this can be written as (Ng is total number of grid

points, Nm is the number of the global modes in the chosen basis)

E =
1

2




û∗1(t)

v̂∗1(t)

û∗2(t)

v̂∗2(t)
...

û∗Ng
(t)

v̂∗Ng
(t)




T

1×2Ng




(∆x∆y)1

(∆x∆y)1

. . .

(∆x∆y)Ng

(∆x∆y)Ng




2Ng×2Ng




û1(t)

v̂1(t)

û2(t)

v̂2(t)

...

ûNg(t)

v̂Ng (t)




2Ng×1

(3.11)

Expanding the vectors in the above equation as a linear combination of the basis elementsM1,M2, . . . ,MN ,

with the corresponding coefficients k1, k2, . . . , kN , we obtain
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E =
1

2

[
k1e

ωM1t k2e
ωM2t . . . kNe

ωMN t

]∗

1×Nm




û∗M1,1 v̂∗M1,1 . . . û∗M1,Ng
v̂∗M1,Ng

û∗M2,1 v̂∗M2,1 . . . û∗M2,Ng
v̂∗M2,Ng

...
... . . .

...
...

û∗MN,1 v̂∗MN,1 . . . û∗MN,Ng
v̂∗MN,Ng

û∗MN,1 v̂∗MN,1 . . . û∗MN,Ng
v̂∗MN,Ng



Nm×2Ng

(3.12)

×




(∆x∆y)1

(∆x∆y)1

. . .

(∆x∆y)Ng

(∆x∆y)Ng




2Ng×2Ng

(3.13)

×




ûM1,1 ûM2,1 . . . ûMN,Ng ûMN,Ng

v̂M1,1 v̂M2,1 . . . v̂MN,Ng v̂MN,Ng

...
... . . .

...
...

ûM1,Ng ûM2,Ng . . . ûMN,Ng ûMN,Ng

v̂M1,Ng v̂M2,Ng . . . v̂MN,Ng v̂MN,Ng



2Ng×Nm




k1e
ωM1t

k2e
ωM2t

...

k3e
ωMN t




Nm×1

(3.14)

(3.15)

which can be written as

E = κH(QHWQ)κ (3.16)

A Cholesky decomposition of QHWQ gives F such that

FHF = QHWQ (3.17)

which gives

E = (Fκ)H(Fκ) (3.18)
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Define G(t) to be the maximum amplification at time t from any initial condition q0. Then

G(t) = max
||q(t)||2
||q0||2

=
||Fκ(t)||2
||Fκ0||2

(3.19)

=
||FetΣκ0||2
||Fκ0||2

(3.20)

=
||FetΣF−1Fκ0||2

||Fκ0||2
(3.21)

= ||FetΣF−1||2 (3.22)

This is the square of the largest singular eigenvalue of the matrix FetΣF−1(Nm ×Nm). The corresponding

eigenvector (Nm × 1) will give the contribution of each of the global modes to the optimal initial condition

to produce a given transient response at a given time t.

3.4.2 Optimal Initial Condition

The optimal transient growth is given by

G(t) =
||Fκ(t)||2
||Fκ0||2

=
||Fκ(t)||HFκ(t)
||Fκ(0)||HFκ(0) (3.23)

=
(FetΣκ(0))H(FetΣκ(0))

(Fκ(0))H(Fκ(0))
(3.24)

=
κ(0)H(etΣ)

H
FHFetΣκ(0)

(Fκ(0))H(Fκ(0))
(3.25)

Now, we need to find the initial condition which produces the optimal response at some chosen time, T . The

corresponding ω2
max(T ) = G(T ). ie.

G(T ) =
κ(0)H(eTΣ)

H
FHFeTΣκ(0)

(Fκ(0))H(Fκ(0))
(3.26)

From the definition of the singular eigenvalue problem, we have

(FeTΣF−1)H(FeTΣF−1)X = ω2
max(T )X (3.27)
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where X is the eigenvector corresponding to ω2
max(T ).

If X = Fκ(0), then

(FeTΣF−1)H(FeTΣF−1)Fκ(0) = ω2
max(T )Fκ(0) (3.28)

(3.29)

Multiplying by Fκ(0)H on both sides, we get

(Fκ(0))H(FeTΣF−1)H(FeTΣF−1)Fκ(0) = G(T )(Fκ(0))HFκ(0) (3.30)

κ(0)HFH(F−1)H(eTΣ)
H
FHFeTΣF−1Fκ(0) = G(T )(Fκ(0))HFκ(0) (3.31)

κ(0)H(eTΣ)
H
FHFeTΣκ(0) = G(T )(Fκ(0))HFκ(0) (3.32)

(3.33)

which gives

κ(0)H(eTΣ)
H
FHFeTΣκ(0)

(Fκ(0))H(Fκ(0))
= ω2

max(T ) = G(T ) (3.34)

(3.35)

Hence, the coefficients κ(0) = F−1X , whereX is the eigenvector corresponding to ω2
max(T ) gives [k1 k2 . . . kN ]

to reconstruct the initial condition which gives the response G(T ) at time t = T .

3.4.3 Optimal Transient Growth - Steady Baseflow at Re = 250

The optimal transient response is computed for the steady baseflow at Re = 250 for the uncontrolled and

controlled cases. The envelopes of the optimal transient response for the uncontrolled and controlled cases

are shown in Fig. 3.23(a). Since the chosen controller globally stabilizes the flow, the optimal transient

response decays after a finite period of time. Moreover, the optimal response of the controlled flow closely

follows that of the uncontrolled flow but does not amplify it further.

The initial condition to obtain the optimal response at t = 270, which corresponds to the peak optimal

response, is computed. Figs. 3.23(b) and (c) show the envelope of optimal response and the response

for the chosen initial condition. Fig. 3.23(d) shows the contribution of the global modes to the optimal

initial condition. The radii of the circles are proportional to the energy contribution of the corresponding

global mode to the optimal initial condition. Fig. 3.24 shows the evolution of the optimal initial condition
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corresponding to the optimal transient response at t = 270. It can be seen that the non-normal superposition

of the global modes (to obtain the optimal initial condition) grows into a convective instability which travels

downstream.
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Figure 3.23: (a) Envelopes of optimal transient response at Re = 250 for the baseline (—) and controlled
flow with α = 0.105 (— ·· —); (b),(c) envelope (—) and optimal response (— ·· —) corresponding to t = 100;
(d) eigenspectrum for the steady baseflow at Re = 250 with control (α = 0.105) showing the contribution of
different eigenmodes to the optimal initial condition to obtain optimal response at time t = 270 (the radii of
the circles are proportional to the contribution of the corresponding eigenmode to the kinetic energy norm
at t = 0).
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Figure 3.24: Evolution of the optimal initial condition to produce the optimal transient response at t = 270.

Contours of log10

[
1
2 (u

′2 + v′2)
]
are shown – top to bottom: t = 0, t = 90, t = 180, t = 270, t = 360.

57



Chapter 4

Noise Reduction of an Axisymmetric
Mach 1.5 Jet

The active control strategy developed in Chapter 2 is now applied to reducing the noise of an axisym-

metric Mach 1.5 jet. Section 4.1 describes the governing equations. Numerical methods are discussed in

Section 4.2. The flow solutions and their eigenanalysis are detailed in Sections 4.3 and 4.4, respectively. Sec-

tion 4.5 describes the projection of the flow dynamics onto the global modes, and optimal transient growth

is described in Section 4.6. The controller development, results and analysis of noise controlled flows are

given in Section 4.7.

4.1 Governing Equations

The compressible-fluid Navier–Stokes equations governing density, velocity and temperature, are solved

in cylindrical polar coordinates with z, r and θ representing the axial, radial and azimuthal directions,

respectively. The equations are non-dimensionalized with the nozzle radius R, the fluid density and temper-

ature with the free-stream values, ρ∞ and T∞ respectively and the velocities with the free-stream speed of

sound, c∞ following a common approach (Salgado & Sandham, 2007). The Reynolds number is defined as

Re = c∞R/ν. The governing equations are

∂ρ

∂t
+

(
Vr
∂ρ

∂r
+
Vθ
r

∂ρ

∂θ
+ Vz

∂ρ

∂z

)
+ ρ

(
∂Vr
∂r

+
Vr
r

+
1

r

∂Vθ
∂θ

+
∂Vz
∂z

)
= 0

ρ
∂Vr
∂t

+ ρ

(
Vr
∂Vr
∂r

+
Vθ
r

∂Vr
∂θ

− V 2
θ

r
+ Vz

∂Vr
∂z

)
+

1

γ

(
ρ
∂T

∂r
+ T

∂ρ

∂r

)
= Sr

ρ
∂Vθ
∂t

+ ρ

(
Vr
∂Vθ
∂r

+
Vθ
r

∂Vθ
∂θ

+
VrVθ
r

+ Vz
∂Vθ
∂z

)
+

1

γ

(
ρ

r

∂T

∂θ
+
T

r

∂ρ

∂θ

)
= Sθ

ρ
∂Vz
∂t

+ ρ

(
Vr
∂Vz
∂r

+
Vθ
r

∂Vz
∂θ

+ Vz
∂Vz
∂z

)
+

1

γ

(
ρ
∂T

∂z
+ T

∂ρ

∂z

)
= Sz

ρ
∂T

∂t
+ ρ

(
Vr
∂T

∂r
+
Vθ
r

∂T

∂θ
+ Vz

∂T

∂z

)
+ (γ − 1)ρT

(
∂Vr
∂r

+
Vr
r

+
1

r

∂Vθ
∂θ

+
∂Vz
∂z

)
= ST





(4.1)
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Figure 4.1: Computational domain and boundary conditions.

Sr, Sθ, Sz and ST include all viscous and heat transfer effects (see Appendix D). A standard power law

describes the temperature dependence of the fluid viscosity, µ, and thermal conductivity, κ as µ = κ =

T 2/3. The bulk viscosity is µB = λ + 2/3µ = 0.6µ, where λ is the second coefficient of viscosity and

the Prandtl number Pr = µCp/κ = 0.72, where Cp is the specific heat at constant pressure. For this

nondimensionalization, the equation of state is p = ρT and has been used in (4.1).

4.2 Numerical Methods

4.2.1 Nonlinear Flow Solver

The computational domain and the boundary conditions are shown in Fig. 4.1. The nozzle length and wall

thickness are Lnozzle/R = 6 and tnozzle/R = 0.05, respectively. The domain is discretized on a stretched,

orthogonal mesh with (Nz, Nr) = (4400, 640) points in the axial and radial directions. Derivatives are

computed using 4-2 summation-by-parts finite-difference operators (Strand, 1994; Mattsson et al., 2008),

and fourth-order Runge–Kutta is used for temporal integration. To capture the weak shocks corresponding

to slight deviations of perfect expansion due to the boundary layer in the nozzle, a shock-capturing scheme

is implemented that adds dissipation via the normal transport coefficients µ, λ, and κ (Kawai et al., 2010)

(see Appendix F). Sponge zones (Freund, 1997; Bodony, 2006) are used at the domain boundaries to

prevent spurious reflections into the domain. Navier–Stokes characteristic boundary conditions are used for

the isothermal nozzle walls and non-reflecting boundary conditions using the Simultaneous-Approximation-
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Term approach (Svärd et al., 2007; Svärd & Nordström, 2008; Bodony, 2010) at the end of the sponge zones.

The centerline singularity is treated by deriving conditions using symmetry and regularity conditions (Lewis

& Bellan, 1990); see also Appendix D.2.

Eigenvalue Solver

The governing equations are linearized about the baseflow Q̄, and we assume a modal decomposition of the

form

[ρ′, V ′
r , Vθ, V

′
z , T

′] = {ρ̂, V̂r , V̂θ, V̂z , T̂}(r, z)eimθ+ωt.

We obtain the discretized global eigenvalue problem as

{
ωI + Li

z

∂ξ

∂z

∂

∂ξ
+Li

r

∂η

∂r

∂

∂η
+

1

Reρ

[
Lv

z

∂ξ

∂z

∂

∂ξ
+Lv

r

∂η

∂r

∂

∂η
+Lv

(1)zzξ
2
z

∂2

∂ξ2

+ Lv
(2)zz

∂ξz
∂ξ

ξz
∂

∂ξ
+Lv

(1)rrη
2
r

∂2

∂η2
+Lv

(2)rr

∂ηr
∂η

ηr
∂

∂η
+Lv

zrξzηr
∂2

∂ξ∂η

+ Lbase

]
+ P−1E1TrΛ

+
r T−1

r ηr + P−1E1TzΛ
+
z T−1

z ξz

}
Q̂ = 0, (4.2)

where the Ls denote the discrete matrix operators and the superscripts ‘i’ and ‘v’ are used to differentiate

the inviscid and the viscous operators respectively. Lbase is the part of the global operator that does not

contain any derivative operator. The linearization of the equations is done in a modular manner for the

inviscid and viscous terms of each of the five equations separately and added to get the complete linearized

Navier-Stokes operator. The terms in each of the coefficient matrices (Ls) are given in Table E.1–E.5 for

the inviscid terms and in Table E.6–E.9 for the viscous terms. The verification of the eigenvalue solver for

inviscid and viscous cases is given in Appendix C.

4.3 Baseflow Solution

The jet considered has Re = 2,000, Mj = Uj/cj = 1.5, and Tj/T∞ = 0.6. The momentum thickness of

the nozzle exit boundary layer is θ/R = 0.01 and the nozzle-wall temperature is Tnozzle/T∞ = 1. Flow

simulations provide two different solutions—an equilibrium and time-average— for Q̄.

For the equilibrium solution, which satisfies R̃(Qe) = 0, we use a parallel shear layer as an initial condition

and Selective Frequency Damping (SFD) (Åkervik et al., 2006) to suppress the absolute instabilities so that

the equilibrium solution satisfies ||R̃(Qe)||∞ ≤ 10−11. Figs. 4.2(a) and (b) show its axial velocity and

temperature. The spreading rate of the equilibrium jet is slow, contains weak shock cells, and lacks a
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potential core.

The equilibrium baseflow solution was used as the initial condition for a time-resolved calculation and

the flow-field was averaged over a period of ∆tc∞/R ∼ 600 to obtain an alternate Q̄. Fig. 4.3(a) and 4.3(b)

show the contours of the average axial velocity and temperature. Fig. 4.3(c) shows the r = 0 axial velocity

for both flows. The time-averaged flow spreads faster than the equilibrium solution and has a weak, yet

distinct shock-cell structure.
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Figure 4.2: Equilibrium solution: (a) axial velocity and (b) temperature.

4.4 Global Modes

To construct the eigenvalue problems in (2.4) and (2.7), the baseflow is linearly interpolated onto a reduced

mesh of size (Nz, Nr) = (1100, 300). To focus effort on relevant Strouhal numbers (St = ωiD/2πUj), target

eigenvalues (ωrtarget, Sttarget) (marked ‘x’ in Fig. 4.4(a) and Fig. 4.5(a)) were used with ωrtarget = 0.10 and

Sttarget in the range 0.05− 0.65, with a spacing of ∆Sttarget = 0.05. For each, 30 eigenmodes were obtained

(based on the convergence criterion ||LQ̂− ωQ̂||/||ωQ̂|| ∼ 10−10).

4.4.1 Equilibrium Q̄

Fig. 4.4(a) shows the eigenspectrum for the equilibrium Q̄. As might be expected, the ωr > 0 values show that

the equilibrium solution is globally unstable over a wide range of Strouhal numbers (St ∼ 0.15−0.75), which

contrasts with the parameterized but stable baseflow used by Nichols & Lele (2011). Figs. 4.4(b)–(e) show

selected eigenmodes at different Strouhal numbers. Modes Be
1,2 at lower Strouhal numbers (St ∼ 0.2− 0.6)
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Figure 4.3: Time-averaged Q̄: (a) axial velocity, (b) temperature and (c) axial velocity along the centerline
for — steady and — time-averaged baseflows.
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are predominantly type B (Nichols & Lele, 2011), characterized by upstream-propagating structures. At

higher Strouhal numbers (St ∼ 0.7) the modes have a weak downstream-propagating component with a

correspondingly weak acoustic footprint. The adjoint global mode for the most unstable eigenvalue Be
3 is

shown in Fig. 4.4(f) with corresponding lipline variation in Fig 4.4(g). We see that the adjoint mode is

localized close to the nozzle, with a distinct peak value appearing very close to the nozzle lip, suggesting

localized high sensitivity.

4.4.2 Time-average Q̄

Fig. 4.5(a) shows the eigenspectrum of the time-average Q̄, which is globally stable. Unlike the equilibrium

baseflow, this flow supports both downstream-propagating (type A) and upstream-propagating (type B)

modes (Nichols & Lele, 2011). Figs. 4.5(b)-(e) show the type A modes for eigenvalues at different Strouhal

numbers (At
1 −At

4) in Fig. 4.5(a). These modes have a predominantly downstream-propagating wavepacket

structure with a strong acoustic footprint, which supports a connection to the far-field noise radiation.

Figs. 4.5(f) and (g) show type B modes. Unlike type A modes, these have a strong upstream-propagating

component. They have support localized closer to the jet axis. The spectrum also contains hydrodynamically

bound modes, identified as Ht
1,2 in Fig. 4.5(a), which are acoustically inefficient (Figs. 4.5(h) and (i)). A

spatial overlap of the forward-adjoint pair corresponding to a given eigenvalue defines a localized region in

space called the wavemaker, and the eigenspectrum is most sensitive to modifications of the baseflow within

this region (Chomaz, 2005). Following Giannetti & Luchini (2007), the wavemaker is

W(z, r) =
Q̂†

T
DδLQ̂

Q̂†
T
MQ̂

, (4.3)

where δL is the perturbation to the linearized operator L. For a case with ||δL|| = 1, the wavemaker region

for the forward-adjoint pairs corresponding to the eigenvalues At
1 through At

4 are shown in Figs. 4.6(a)-(d).

Peak values of the wavemaker close to the nozzle lip indicate high dynamical receptivity to localized changes

in the baseflow.

4.5 Projection of the Dynamics Onto the Global Modes

The content of the global modes in the nonlinear flow can be computed by projecting the instantaneous

perturbation flow-field onto the modes. The global modes form a basis for the linear flow perturbations, and

hence the perturbed flow at any time instant can be expressed as a linear combination of the global modes
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as

Q′ =
N∑

m=1

cmQ̂m, (4.4)

where Q̂m and Q′ are expressed as column vectors, and the projection coefficients cm are complex valued.

From (2.4) and (2.7), we have the following orthogonality condition,

Q̂m

T
MDQ̂†

n = 0 for ωm 6= ωn, (4.5)

where Q̂m and Q̂†
n correspond to the eigenvalues ωm and ωn. A vector inner product (dot product) of Q′

with Q̂†
n, yields

〈Q′MDQ̂†
n〉 =

〈( N∑

m=1

cmQ̂m

)
MDQ̂†

n

〉
. (4.6)

Using (4.5), we have

Q′TMDQ̂†
n = cnQ̂

T
nMDQ̂†

n,
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Figure 4.7: Projection of the flow perturbations onto the global modes as given by (4.7) for all the eigenvalues
in Fig. 4.5(a).

which gives the projection of the global mode Q̂n onto Q′ as

cn =
Q′TMDQ̂†

n

Q̂T
nMDQ̂†

n

, (4.7)

which quantifies the content of the mode Q̂n to the perturbed flow-field Q′. Fig. 4.7 shows the result of

the projection of the flow perturbations onto the global modes for the time-averaged baseflow for all the

eigenvalues shown in Fig. 4.5(a). It is observed that there are no modes which have a clear prominence over

others in the flow-field.

4.6 Optimal Transient Growth

As a consequence of the non-normality of the linearized operator, for a globally stable system, it is possible

to obtain perturbation growth for a finite period of time by a particular superposition of the basis for the

linear system, namely the global modes (Schmid & Henningson, 2000). Optimal transient growth represents

the maximum growth for the linear system in terms of the amplification of the defined disturbance energy

norm. Since the long-term motivation of this work is noise control, a pressure perturbation-based energy

semi-norm defined as

E(t) =
1

2

∫

V

p̂(t)p̂(t)∗ dV =
1

2

∫

V

p̂(t)p̂(t)∗ rdrdz, (4.8)

would be instructive as an alternative to the energy-based norm used by Nichols & Lele (2011). Optimal

transient growth is the envelope of the worst case scenario for all t and is given by

G(t) = max

∣∣∣∣Q(t)
∣∣∣∣2
E∣∣∣∣Q(0)
∣∣∣∣2
E

(4.9)
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where Q(0) and Q(t) are the initial condition and its response, respectively. A singular-value decomposition

problem is formulated to solve for G(t), and the optimal initial condition Qopt(0) to obtain the transient

response at any given time t can be computed (Nichols et al., 2009). Fig. 4.8(a) shows the optimal transient

response for the eigenspectrum of the time-average baseflow for the m = 0 and m = 1 modes. The contri-

bution of the modes to the optimal initial condition is shown in Figs. 4.8(b) and (c). It is observed that the

optimal transient response is predominantly due to the superposition of type A global modes in the range

St ∼ 0.45 − 0.65. The optimal transient growth is associated with a propagating aerodynamic wavepacket

which emits an acoustic wavepacket into the far-field (Figs. 4.8(d)–(i)), which is a potential mechanism for

jet noise production and propagation (Nichols & Lele (2011)), as well as a control objective.

4.6.1 Controller Development

The baseline flow is the uncontrolled time-average Q̄ shown in Figs. 4.3(a) and (b). Fig. 4.8(b) shows that

the contribution to the optimal initial condition is maximal in the range St ∼ 0.50 − 0.60. An eigenmode

was chosen in this range as the target for developing the controller (Fig. 4.9) with a view of reducing

transient growth. From Lighthill’s U8 law (Lighthill, 1952), we know that the noise intensity varies as a

high power of the jet velocity. Hence, the axial jet velocity Vz is a natural choice for the control variable

and a feedback based on the radial velocity Vr was chosen. Figs. 4.10(a) and (b) show the contours of the

forward and adjoint eigenmodes corresponding to the target eigenvalue. The adjoint eigenmode and the

wavemaker defined by Re(δω) (Fig. 4.10(c)) have a strong growth along the shear layer close to the nozzle

lip indicating high sensitivity and hence is the region most viable for flow control (Chomaz, 2005). In the

range St ∼ 0.50− 0.60, the acoustically efficient global modes do not have peak values close to the outflow.

Since the wavemaker region as shown in Fig. 4.6(d) is controlled mostly by the adjoint mode (Fig. 4.10(b))

which is confined very close to the nozzle, our control strategy is not dependent on the mode shapes far

downstream of the jet exit. Using the procedure described in Section 2.2.6, a co-located Vz (control) – Vr

(feedback) controller was developed, and Fig. 4.10(d) shows the control region.

4.7 Controlled Jet Simulations

To assess the performance of the control on the far-field sound of the baseline jet (Flow A), direct numerical

simulations were carried out with the controller developed in Section 4.6.1 with three different gains: Flow

B with α = 2.0, Flow C with α = 4.0 and Flow D with α = −2.0. Table 4.1 summarizes the flows and their

effect on far-field noise relative to the uncontrolled flow.
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Simulation Control Effect on
gain(α) far-field noise

Flow A 0.0 Uncontrolled flow
Flow B 2.0 Quieter
Flow C 4.0 Quieter
Flow D −2.0 Louder

Table 4.1: Direct numerical simulations to study the effect of control on far-field sound.
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Noise Control

The target surface to quantify the radiated noise is a cylindrical region Ω at r/R = 15 (Fig. 4.1) and the

objective function is

Inoise(t) =
∫

Ω

(p(x, t)− p̄(x))2 dΩ. (4.10)

Fig. 4.11 shows the contours of vorticity and pressure perturbation at tc∞/R = 870 for all the cases. The

pressure perturbation contours clearly suggest the radiated sound is much higher for Flow D. Fig. 4.12 shows

an instantaneous snapshot of vorticity for all the cases. For the quieter flows B and C, the vortex pairing is

less vigorous and is delayed further downstream by the control. Figs. 4.13(a), (b) and (c) show the objective

function Inoise(t) for all the flows. A specific trend of the far-field noise as a function of the control gain α

is observed, the flow becoming quieter with the increase in gain. The trend can be observed in Fig. 4.13(d)

as well, which shows the Overall Sound Pressure Level (OASPL) along the target surface Ω. Figs. 4.14(a)

and (b) show the z − t diagram for the pressure perturbation (p′ = p− p̄) along the lipline r/R = 1 for the

quieter flow C and the louder flow D. The louder flow has vigorous and frequent vortex pairing events which

are less frequent in the quieter flow.

Global Eigenanalysis of Controlled Flows

A global eigenanalysis was performed for the time-averaged flows for all the cases to identify changes in

the spectrum and mode shapes. From Figs. 4.15(b) and (c), a fundamental change can be observed in the

eigenspectrum for the quieter flows B and C. An unstable global mode is present for the quieter flows but

the louder flow D (Fig. 4.15(d)) and the uncontrolled flow (Fig. 4.15(a)) have very similar eigenstructure.

Figs. 4.16(c) and (d) show the eigenmode corresponding to the unstable eigenvalue for the quieter flows B

and C. These modes do not have significant support in the acoustic field, in comparison to the stable modes

which do (Figs. 4.16(a) and (b)).

Projection Onto Global Modes for the Controlled Flows

Using the method outlined in Section 4.5, the projection of the flow perturbations onto the global modes

for the uncontrolled and controlled flows were computed. Figs. 4.17(a) and (b) show the amplification for

the louder flows A and D. It is observed that none of the modes have a clear prominence over others in the

flow-field, whereas for the quieter flows B and C (Figs. 4.17(c) and (d)), it can be seen that the unstable

modes have a much higher amplification, reach a limit cycle and continue to be more prominent in the
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Figure 4.14: z − t diagram of pressure perturbation along the lipline r/R = 1 for (a) flow C and (b) flow D.

flow-field throughout the control time period. Hence the unstable modes, which do not have any significant

acoustic footprint, are more prominent in the flow-field than the acoustically efficient stable modes.

Mean Flow Alterations

Time-averaged flow quantities are computed for all the flows to analyze the changes due to control. Fig. 4.18

shows the axial variation of jet half-width, momentum thickness and centerline axial velocity. It can be seen

that all the flows have the same initial mean flow development until ∼ 15 jet radii, and changes are apparent

only further downstream. There is a specific trend of the mean flow quantities as a function of the control

gain. Changes in the half-width (Fig. 4.18(a)) become significant at the axial location where the vortex

shedding begins, sand the quieter flows have lower spreading rate downstream. The momentum thickness

(Fig. 4.18(b)) also shows a similar trend as the flow becomes quieter. Fig. 4.18(c) shows that the quieter

flows have a slower rate of decay of the centerline axial velocity.

Proper Orthogonal Decomposition

A Proper Orthogonal Decomposition (POD) of the flow-field is performed to quantify changes to the energetic

perturbations caused by the control (see Appendix G). The analysis is carried out using snapshots of the

flow-field that span the whole time interval in Fig. 4.13 for the flows A and B, using a pressure based inner
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Figure 4.17: Projection of the flow perturbations onto the global modes as given by (4.7) for all the flows
for the eigenvalues shown in Fig. 4.15: (a) α = −2.0, (b) no control, (c) α = 2.0 and (d) α = 4.0.
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product norm defined by

〈Qi,Qj〉P =

∫

V

p′i(z, r)p
′
j(z, r) r dz dr, (4.11)

where i and j refer to two instantaneous snapshots of the flow field Q. Fig. 4.19(a) shows the POD

eigenspectrum for all the flows. A semilog plot of the same is shown in Fig. 4.19(b). The reconstructed

pressure perturbation field was observed to converge using 23 modes. It can be seen that, in the chosen

norm, there is a continuous decrease in the eigenspectrum as the flow gets quieter. Fig. 4.13(a) shows that

the sound at the target surface is characterized by intermittent peaks separated by periods of quietness. We

use POD to anlayze the change in flow behavior by performing a time-localized POD for a time interval

isolating a loud event E in Flow A that was quiet in Flow B. A kinetic energy norm was used defined as

〈Qi,Qj〉KE =

∫

V

(V ′
riV

′
rj + V ′

ziV
′
zj ) r dz dr. (4.12)

Fig. 4.19(a) shows a comparison of the eigenspectrum for Flows A and B. The first two energetic modes

for the uncontrolled flow are shown in Figs. 4.20(c) and (d) and those of the quieter flow B are shown in

Figs. 4.20(e) and (f) respectively. Pairing of the most energetic modes can be observed for the quiet flow B.

The radial velocity field was reconstructed using the modes as

V ′
r =

∑

n

anψ
KE
n , (4.13)

where ψKE
n denotes the nth POD mode. Phase plots of the POD coefficients a1(t) and a2(t) of the first two

energetic modes for flows A and B are shown in Figs. 4.21(a) and (b) respectively. The plots show that the

quieter flow B is more regularized during this time interval compared to flow A, which has been observed in

a noise-controlled mixing layer (Wei & Freund, 2006).
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Chapter 5

Noise Reduction of a Turbulent Jet

This chapter is devoted to the noise reduction of a Mach 0.9 turbulent jet. The control strategy of Chapter 4

is utilized to develop the controller for a Mach 0.9 jet baseflow computed using large eddy simulation (LES).

Section 5.1 gives the details of the numerics and flow conditions. The eigenanalysis of the baseline flow is

given in Section 5.2 and the results and analysis of controlled simulations are given in Section 5.3.

5.1 Large Eddy Simulation

Fig. 5.1(a) shows the domain for the LES of a turbulent jet issuing from a cylindrical nozzle with cen-

terline Mach number Mj = Uj/cj = 0.9 at a Reynolds number of Re = ρjUjD/µj = 88000. The cen-

terline temperature ratio is Tj/T∞ = 0.86. The incoming boundary layer has a momentum thickness of

θ/D = 0.03 at the nozzle exit. The nozzle is isothermal with a wall temperature of Twall/T∞ = 1 and

the nozzle length and wall thickness are L/D = 3 and tnozzle/D = 0.025, respectively. An overset grid

approach is used for the simulations with 5.81 million grid points. The grid consists of a cartesian core grid

(Lx, Ly, Lz) = (0.25, 0.25, 30) of dimensions ((Nx, Ny, Nz) = (50, 50, 459) and an outer annular cylindrical

grid (rmin, rmax, Lz) = (0.25, 12.5, 30) of dimensions (Nr, Nθ, Nz) = (318, 32, 459). Derivatives are computed

using 4-2 summation-by-parts finite-difference operators (Strand (1994)), and fourth-order Runge-Kutta is

used for temporal integration. Data are interpolated between the overset grids using linear interpolation.

The LES uses a dynamic Smagorinsky model (Moin et al., 1991) with a 7-point explicit least squares test

filter (Fig. 5.1(b)). The flow solution is also filtered using a tridiagonal implicit filter (Fig. 5.1(b)) with

αf = 0.49. Navier-Stokes characteristic boundary conditions are used for the isothermal nozzle walls and

sponge zones (Freund (1997), Bodony (2006)) are used at the domain boundaries to prevent spurious reflec-

tions into the domain while non-reflecting boundary conditions with the Simultaneous-Approximation-Term

approach (Svärd et al. (2007)) are used at the end of the sponge zones. The target surface Ω for the

computation of the near-field sound is cylindrical with rtarget/D = 7.
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filter (—) and flow solution filter (−−).
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5.2 Eigenanalyis of the Baseline Flow

The baseflow for the eigenanalaysis is the time-and-azimuthal averaged flow averaged over ∆tc∞/D ∼ 300.

Figs. 5.2(a) and (b) show the contours of axial velocity and temperature for the time-and-azimuthal averaged

baseflow. Fig. 5.2(c) shows a comparison of the centerline axial velocity with the result of Bodony (2005),

who did an LES of the jet at the same conditions. It is understood that the m = 0 modes are an important

component of even high-Reynolds-number turbulent jets (Cavalieri et al., 2013), and previous studies of jet

noise control suggest that disruption of the coherence of acoustically efficient axisymmetric flow structures

is a possible mechanism (Kim et al., 2014). Hence we focus on the axisymmetric modes for noise control

in the present work. The eigenspectrum for the time-and-azimuthal averaged flow for a wide range of

Strouhal numbers (St ∼ 0.05− 1.70) is shown in Fig. 5.3(a). For the modes shown, at low Strouhal numbers

(St ∼ 0.05− 0.30) the acoustically-active modes do not exhibit a directive pattern (Fig. 5.3(b)) but, as the

Strouhal number increases (> St ∼ 0.40), the modes begin to exhibit super-directive (Figs. 5.3(c) and (d))

and multi-directive modes (St > 1.4) (Fig. 5.3(e)), as has been observed by Schmidt et al. (2016).

5.2.1 Optimal Transient Growth

The jet’s optimal transient growth is associated with a propagating aerodynamic wavepacket that emits an

acoustic wavepacket into the far-field, which is a potential mechanism for jet noise propagation (Nichols &

Lele (2011)), as well as a control objective. Since the motivation of this chapter is noise reduction, a pressure

perturbation based energy semi-norm defined as

E(t) =
1

2

∫

V

p̂(t)p̂(t)∗ dV =
1

2

∫

V

p̂(t)p̂(t)∗ rdrdz, (5.1)

is used as an alternative to the energy-based norm used by Nichols & Lele (2011). Fig. 5.3(f) shows the

optimal transient response for the eigenspectrum of the time-average baseflow for the m = 0 modes. The

contribution of the modes to the optimal initial condition is shown in Fig. 5.4(a). It is observed that

the optimal transient response is predominantly due to the superposition of multi-directive global modes

(Figs. 5.4(b) and (c)) in the range St ∼ 0.45−0.65. We target mode O1 which has the maximum contribution

to the optimal initial condition. The adjoint of mode O1 is shown in Fig. 5.4(d). Fig. 5.4(e) shows a close-up

view of the adjoint at the nozzle lip, and it is observed that the adjoint has a peak value at the lower nozzle

lip. The discrete-adjoint formulation used is not dual consistent, and hence, close to the nozzle-lip, the

adjoint is found to exhibit an oscillatory behavior. Similar behavior with the same formulation has been

observed by Chandler et al. (2012) in low-Mach number jets. Hicken & Zingg (2011) have shown that a dual
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consistent formulation gives physically relevant adjoint fields.

5.3 Noise Controlled Simulation

Using the control strategy in Section 2.2.6, we develop a Vz (control)-Vr (feedback) controller (Fig. 5.4(f)). To

assess the performance of the control on the radiated sound of the baseline jet (T1), a LES was performed with

a control gain of α = 2.0 (T2). To ensure consistency, a forcing term consistent with the applied momentum

forcing appears in the total energy equation. Hence the governing equations for the z-momentum and the

total energy equation with the forcing terms are

∂ρVz
∂t

= R̃ρVz + αρ(Vr − Vr)e
−(z−z0)

2/ℓ2z−(r−r0)
2/ℓ2r

︸ ︷︷ ︸
FρVz

, (5.2)

∂ρE

∂t
= R̃ρE + FρVzVz . (5.3)

Figs. 5.5(a) and (b) show the instantaneous contours of vorticity-dilatation at tc∞/D = 163 for the

baseline and T2. The dilatation contours are less intense at the target surface for T2, which is indicative

of its quieter nature. A near-nozzle view of the vorticity contours (Figs. 5.5(c) and (d)) show that, for the

quieter flow, there is an enhancement of vorticity close to the nozzle lip. To analyze the effect of the radiated

sound, we compute the noise objective function defined as

Inoise(t) =
∫

Ω

(p(x, t)− p̄(x))2 dΩ, (5.4)

where Ω is the cylindrical target surface at rtarget/D = 7 and the overall sound pressure level (OASPL)

defined as

OASPL (dB) = 10log10

(p2rms

p2ref

)
,

where pref = 20µPa. Fig. 5.6(a) shows the comparison of the noise objective function I(t) for the baseline

and controlled flows. For the quieter jet, the controller has been effective in reducing the noise over a control

horizon of ∼ ∆tc∞/D = 350. Fig. 5.6(b) shows the time-and-azimuthal averaged OASPL for the baseline

and controlled flows at the target surface Ω. The angle θ is measured from the downstream jet axis along

a line connecting the nozzle exit to the target surface. The quieter flow shows a consistent reduction of 3-4

dB for all angles > 400 with a maximum reduction of approximately 4 dB at 900.
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Figure 5.5: Vorticity-dilatation contours for (a) baseline T1 and the (b) controlled flow T2 at tc∞/D = 163;
near-nozzle view of vorticity contours for (c) baseline and (d) controlled flows at tc∞/D = 163.
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Figure 5.7: (a) Eigenspectrum comparison for the baseline (•) and controlled (×) time-and-azimuthal av-
eraged flows at low Strouhal numbers. (b) Unstable eigenmode (Real(p̂)) for the controlled flow showing
non-radiative structure.

5.3.1 Global Eigenanalysis of Controlled Flows

Global eigenanalysis was performed for the time-and-azimuthal averaged flows for all the cases to identify

changes in the spectrum and mode shapes. From Fig. 5.7(a), a fundamental change can be observed in the

eigenspectrum for the quieter flows T2. Similar to what was observed in the axisymmetric case (Section 4.7),

the stable modes have significant acoustic support in the far-field whereas the unstable global mode has a

non-radiating pattern (Fig. 5.7(b)) with no acoustic footprint.

5.3.2 Mean Flow Alterations

Time-and-azimuthal averaged flow quantities are computed for all the flows to analyze the changes due

to control. Fig. 5.8 shows the variation of the time-and-azimuthal averaged quantities for the turbulent
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Figure 5.8: Comparison of time-averaged quantities for the baseline and controlled flows (turbulent jet (left)
and axisymmetric jet(right)): (a) jet half-width (b) momentum thickness (c) centerline axial velocity for the
baseline (–) and T2 (–) flows.

baseline and controlled jets and the time-averaged quantities for the axisymmetric jet for comparison. The

axial variation of jet half-width (Fig. 5.8(a)), momentum thickness (Fig. 5.8(c)) and centerline axial velocity

(Fig. 5.8(e)) show the same trends as in the axisymmetric case (Fig. 5.8(b), (d) and (f)). The time-and

azimuthal averaged root mean square axial velocity for the baseline and controlled cases (Fig. 5.9(a) and

(b)) show that the quieter jets have significantly reduced turbulence intensities. Fig. 5.9(c) shows the lipline

variation of the mean square axial velocity for the baseline and controlled turbulent jets and has the same

trend as the axisymmetric case (Fig. 5.9(d)).
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Figure 5.9: Comparison of time-averaged quantities : root mean square value of axial velocity for (a) baseline
T1 and the (b) controlled flow T2; rms of axial velocity along the lipline for the (c) baseline T1 (–) and
controlled flow T2 (–), and for the (d) baseline and controlled flows in the axisymmetric case.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

A rational approach for co-located actuator(s)/sensor(s) selection and placement for linear feedback control

of compressible flows has been developed. The strategy is flexible, and different types of control and feedback

can be obtained. The control strategy was applied to three different flow control scenarios, the conclusions

of which are given in this section.

6.1.1 Flow Control in a Mach 0.65 Diffuser

The method was first applied to control a separated boundary layer within an asymmetric diffuser at Mach

0.65. The shape and location of the co-located actuator(s)/sensor(s) region was found to be dependent on

the specific control-feedback pair chosen for optimization. Complete global stabilization was achieved at

Re = 250 for shorter diffusers (L/δ = 120) for control gains within the stabilization window (0.105 < α <

0.108), but complete stabilization could not be achieved for a higher Reynolds number, Re = 350 or longer

domains (L/δ = 180). The globally stabilizing control was found to be effective in complete suppression of

vortex shedding for Re = 250. An error analysis of the predicted and computed eigenspectrum as a function

of the control gain gave quantitative estimates of the extent to which the linear theory is valid.

6.1.2 Noise Reduction of an Axisymmetric Mach 1.5 Jet

A framework was developed to compute the global modes of axisymmetric jet flows. Direct numerical sim-

ulations were performed to obtain the equilibrium and time-averaged baseflows for an axisymmetric, Mach

1.5 jet, and the forward and adjoint global modes were computed for both baseflows. The equilibrium base-

flow, characterized by an extended potential core region with weak shock cells, supported unstable global

modes whose acoustic radiation was predominantly in the upstream direction. The time-averaged baseflow

was absolutely stable and contained modes whose acoustic radiation was directed in both the upstream and

downstream directions. Further analysis of the time-averaged baseflow case showed a wavemaker localized
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near the nozzle exit, but with a spatial footprint that depended on the mode type. Projection of the nonlin-

ear dynamics onto the modes did not indicate any particular modal dominance. The framework identified

a co-located sensor and actuator for linear feedback control of supersonic jet noise. Direct numerical sim-

ulations of the controlled flows show a monotonic reduction of the radiated noise with increasing control

gain. A global eigenanalysis showed that the quieter flows were characterized by an unstable mode that

has little support in the acoustic field, whereas the louder flows had an eigenstructure very similar to the

uncontrolled flow. Projecting the flow-field perturbations onto the global modes showed that for the quieter

flows, acoustically inefficient unstable modes were highly amplified by the control and were more prominent

in the flow-field than the acoustically efficient stable modes. The vortex pairing in the quieter flows was

delayed further downstream and appears less vigorous than in the corresponding louder flows. The axial

mean flow variations remained the same for the uncontrolled baseline as well as the controlled flows for ∼15

jet radii downstream of the nozzle beyond which changes became significant. A monotonic trend is observed

in the downstream mean flow quantities (jet half-width, momentum thickness and centerline axial velocity)

as a function of the control gain. A phase plot of the POD coefficients for the flows showed that the quieter

flows were more regularized during the time interval spanning an uncontrolled loud event.

6.1.3 Noise Reduction of a Turbulent Mach 0.9 Jet

The active control strategy developed for the axisymmetric case was applied to reducing the noise of a

Mach 0.9 turbulent jet. The baseline and controlled flows were computed using large eddy simulations.

The global analysis of the time-and-azimuthal averaged baseline flow showed that at low Strouhal numbers

(St ∼ 0.05 − 0.35) the acoustically efficient global modes do not have a directive pattern, but with an

increase in Strouhal number, the modes begin to exhibit acoustically efficient super-directive (St ∼ 0.40)

and multi-directive (St ∼ 1.40) patterns. The transient growth was found to be dominated by multi-directive

global modes at St ∼ 0.65− 0.75. The control was effective in reducing the noise. At the target surface at

r/D = 7, a consistent reduction of 3-4 dB was obtained for all angles > 400, with a maximum reduction

of approximately 4 dB at 900. The global analysis of the time-and-azimuthal averaged flow for the quiet

jet revealed the existence of an unstable mode without any significant acoustic footprint at St ∼ 0.05.

The variation of mean quantities (jet half-width, momentum thickness and centerline axial velocity) at the

centerline, as a function of the control gain, for the loud and quiet jets, also showed trends similar to the

axisymmetric case. The quieter jet was found to have reduced turbulence intensities.
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6.2 Future Work

The developed active control strategy has been shown to be effective in different flow control scenarios over

a range of Mach numbers and Reynolds numbers. However, at present, the control procedure is purely

computational in nature and demands additional work to extend it to develop experimentally realizable

actuators. The major hurdles that we need to overcome are:

1. Sensing measurable quantities – To keep things simple, we currently restrict ourselves to utilizing

a single control and a single feedback variable. Quantities such as density (as was done in the case of

the Mach 0.65 diffuser) are not easily measurable. The control needs to be developed using physically

realizable control and feedback variables. The current formulation is flexible in using any combination

of control and feedback variables, but the efficacy of such actuators can be judged only after rigorous

testing.

2. Separate the control and actuation regions – Co-located actuator/sensors are not realizable and

we need to separate the control and actuator regions. We need to determine effective locations for

both feedback and control, and this could lead to a more complex optimization problem with a larger

parametric space.

3. Control at the surface – The present control strategy uses a forcing term in the right hand side of

the Navier-Stokes equations, which means that the control is effective over a volume in space, which is

difficult to realize in practice. We need to develop active control strategies for surface control techniques

such as blowing/suction by incorporating the control through the boundary conditions. This can be

done through the SAT based boundary condition approach which implements the boundary conditions

using source terms in the governing equations, similar to how the control forcing is implemented

currently.

4. Time-delay in feedback systems – There is always a delay between the time when a variable is

sensed and when it is fedback to the controller. This has not been considered in the present case and

might be critical in developing physically implementable feedback control systems.

Another aspect that deserves special attention is the discrete-adjoint method. The current formulation

leads to unphysical oscillations in the adjoint field, in particular, close to boundaries. Such oscillations

can adversely affect the actuator placement strategy. This can be overcome by using a dual-consistent

formulation which has been shown to have physically meaningful adjoint fields (Hicken & Zingg, 2011).
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Appendix A

Eigenvalue Solver for Inviscid Parallel
Flows in Cartesian Coordinates

This appendix describes the shooting method to obtain the eigenvalues and eigenmodes for parallel flows

in cartesian coordinates. The specific case considered is that of a compressible wall bounded shear layer in

Section 3.2.1.

The Euler equations for compressible flow are linearized about the mean flow, and the following form is

assumed for the perturbation of the primitive variables.

{ρ′, u′, v′, p′} = {ρ̂(y), û(y), v̂(y), p̂(y)}ei(αx−σt)

The resulting system of equations can be rearranged to give the following single ordinary differential equation

for the pressure perturbation eigenfunction (Tam & Burton, 1984),

d2p̂

dy2
+
(2α
ω̂

dŪ

dy
− 1

ρ̄

dρ̄

dy

)dp̂
dy

− (α2 − ρ̄ω̂2)p̂ = 0, (A.1)

with ω̂ = ω − αŪ and the boundary conditions

∂p̂

∂y
= 0 at y = ±1.

Knowing p̂, the other perturbation eigenmodes can be obtained from Sandham (1989)

û =

(
−
iαp̂

ρ̄
− v̂DŪ

)

i(αŪ − ω)

v̂ =
−Dp̂

iρ̄(αŪ − σ)

ρ̂ = − (ρ̄(iαû+Dv̂) + v̂Dρ̄)

i(αŪ − ω)
.

In regions 1 and 2, above and below the shear layer respectively, we have dŪ
dy = 0, dρ̄

dy = 0. The Rayleigh
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equation (A.1) reduces to

d2p̂

dy2
− (α2 − ρ̄ω̂2)p̂ = 0

which has the following exact solution for p̂ above and below the shear layer Greenough et al. (1989)

p̂ =





A cosh(λ(1 − y)) above the shear layer

B cosh(λ(1 + y)) below the shear layer ,

where λ =
{
α2 − ρ̄(ω − αŪ)2

}1/2

and ω̂ = ω − αŪ . The Rayleigh equation (A.1) is then solved using a

shooting method. An initial guess for the eigenvalue ω = ωr + iωi is the input. The analytical solution is

used below the shear layer and integration is performed using the fourth-order Runge-Kutta method from

y = −0.25 to y = +0.25 to find the solution within the shear layer. The difference in the slopes between

the solution obtained and the exact solution at y = +0.25 is used to correct the guessed eigenvalue in a

Newton-Raphson iteration procedure.
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Appendix B

Linearization of the Viscous Terms in
2D Generalized Coordinates

The term-by-term linearization of the viscous terms in the linearized compressible Navier-Stokes equations

are given in this appendix.

Êv =
(ξx
J

)
Ev +

(ξy
J

)
Fv

Linearizing the viscous term
∂

∂ξ
Êv,

∂

∂ξ
Ê′

v =
∂

∂ξ

(ξx
J

)
E′

v +
ξx
J

∂

∂ξ
E′

v +
∂

∂ξ

(ξy
J

)
F ′
v +

ξy
J

∂

∂ξ
F ′
v

E′
v = (Eξ

v + Eη
v )

′

= Eξ
v1

∂

∂ξ
Q′ + Eξ

v2Q
′ + Eη

v1

∂

∂η
Q′ + Eη

v2Q
′ + Eξ

vµQ
′ + Eη

vµQ
′

= Eξ
v1

∂

∂ξ
Q′ + Eη

v1

∂

∂η
Q′ + (Eξ

v2 + Eη
v2 + Eξ

vµ + Eη
vµ )︸ ︷︷ ︸

Ev2

Q′

∂E′
v

∂ξ
=

∂

∂ξ
Eξ

v1

∂

∂ξ
Q′ + Eξ

v1

∂2

∂ξ2
Q′ +

∂

∂ξ

(
Eη

v1

∂

∂η
Q′
)
+

∂

∂ξ
Ev2Q

′ + Ev2

∂

∂ξ
Q′

=

[
∂

∂ξ
Eξ

v1

∂

∂ξ
+ Ev2

∂

∂ξ
+ Eξ

v1

∂2

∂ξ2
+

∂

∂ξ

(
Eη

v1

∂

∂η

)
+

∂

∂ξ
Ev2

]
Q′

∂E′
v

∂η
=

∂

∂η

(
Eξ

v1

∂

∂ξ
Q′
)
+

∂

∂η
Eη

v1

∂

∂η
Q′ + Eη

v1

∂2

∂η2
Q′ +

∂

∂η
Ev2Q

′ + Ev2

∂

∂η
Q′

=

[
∂

∂η

(
Eξ

v1

∂

∂ξ

)
+ Ev2

∂

∂η
+

∂

∂η
Eη

v1

∂

∂η
+ Eη

v1

∂2

∂η2
+

∂

∂η
Ev2

]
Q′
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Similarly,

∂F̂ ′
v

∂η
=

∂

∂η

(ηx
J

)
E′

v +
ηx
J

∂

∂η
E′

v +
∂

∂η

(ηy
J

)
F ′
v +

ηy
J

∂

∂η
F ′
v

Eξ
v1 =




0 0 0 0

(2µ+ λ)ξxuρ + λξyvρ (2µ+ λ)ξxuρu λξyvρv 0

µ(ξyuρ + ξxvρ) µξyuρu µξxvρv 0

u× (2, 1) + v × (3, 1) u× (2, 2) + v × (3, 2) u× (2, 3) + v × (3, 3)

+ µ
Pr(γ−1)ξxa

2
ρ + µ

Pr(γ−1)ξxa
2
ρu + µ

Pr(γ−1)ξxa
2
ρv

µ
Pr(γ−1)ξxa

2
ρe




Eξ
v2 =




0 0 0 0

(2µ+ λ)ξxuρξ
+ λξyvρξ

(2µ+ λ)ξxuρuξ
λξyvρvξ 0

µ(ξyuρξ
+ ξxvρξ

) µξyuρuξ
µξxvρvξ 0

u× (2, 1) + v × (3, 1) u× (2, 2) + v × (3, 2) u× (2, 3) + v × (3, 3)

uρ((2µ+ λ)ξxuξ + λξyvξ) uρu((2µ+ λ)ξxuξ + λξyvξ)

µvρ(ξyuξ + ξxvξ) µvρv(ξyuξ + ξxvξ)

+ µ
Pr(γ−1)ξxa

2
ρξ

+ µ
Pr(γ−1)ξxa

2
ρuξ

+ µ
Pr(γ−1)ξxa

2
ρvξ

µ
Pr(γ−1)ξxa

2
ρeξ



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F ξ
v1 =




0 0 0 0

µ(ξyuρ + ξxvρ) µξyuρu µξxvρv 0

(λξxuρ + (2µ+ λ)ξyvρ λξxuρu (2µ+ λ)ξyvρv 0

u× (2, 1) + v × (3, 1) u× (2, 2) + v × (3, 2) u× (2, 3) + v × (3, 3)

+ µ
Pr(γ−1)ξya

2
ρ + µ

Pr(γ−1)ξya
2
ρu + µ

Pr(γ−1)ξya
2
ρv

µ
Pr(γ−1)ξya

2
ρe




F ξ
v2 =




0 0 0 0

µ(ξyuρξ
+ ξxvρξ

) µξyuρuξ
µξxvρvξ 0

(λξxuρξ
+ (2µ+ λ)ξyvρξ

λξxuρuξ
(2µ+ λ)ξyvρvξ 0

u× (2, 1) + v × (3, 1) u× (2, 2) + v × (3, 2) u× (2, 3) + v × (3, 3)

µuρ(ξyuξ + ξxvξ) µuρu(ξyuξ + ξxvξ)

vρ(λξxuξ + (2µ+ λ)ξyvξ) vρv(λξxuξ + (2µ+ λ)ξyvξ)

+ µ
Pr(γ−1)ξya

2
ρξ

+ µ
Pr(γ−1)ξya

2
ρuξ

+ µ
Pr(γ−1)ξya

2
ρvξ

µ
Pr(γ−1)ξya

2
ρeξ



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Ev =




0

µ(2915ξxuξ − 1
15ξyvξ)

µ(ξyuξ + ξxvξ)

uµ(2915ξxuξ − 1
15ξyvξ)+

µv(ξyuξ + ξxvξ)+

µ
Pr(γ−1)ξx∂ξa

2




︸ ︷︷ ︸
Eξ

v

+




0

µ(2915ηxuη − 1
15ηyvη)

µ(ηyuη + ηxvη)

uµ(2915ηxuη − 1
15ηyvη)+

µv(ηyuη + ηxvη)+

µ
Pr(γ−1)ηx∂ηa

2




︸ ︷︷ ︸
Eη

v

and

Fv =




0

µ(ξyuξ + ξxvξ)

µ(− 1
15 ξxuξ +

29
15ξyvξ)

µu(ξyuξ + ξxvξ)+

vµ(− 1
15ξxuξ +

29
15ξyvξ)+

µ
Pr(γ−1)ξy∂ξa

2




︸ ︷︷ ︸
F ξ

v

+




0

µ(ηyuη + ηxvη)

µ(− 1
15ηxuη +

29
15ηyvη)

µu(ηyuη + ηxvη)+

vµ(− 1
15ηxuη +

29
15ηyvη)+

µ
Pr(γ−1)ηy∂ηa

2




︸ ︷︷ ︸
Fη

v

We have

µ = [(γ − 1)T ]n =
(γp
ρ

)n
= (a2)n
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where n = 0.666. Linearizing gives,

µ′ = n(a2)n−1(a2)′ = n(a2)n−1

[
a2ρ a2ρu a2ρv a2ρe

]




ρ′

ρu′

ρv′

ρe′




Eξ
vµ or F ξ

vµ =




0 0 0 0

A× n(a2)n−1a2ρ A× n(a2)n−1a2ρu A× n(a2)n−1a2ρv A× n(a2)n−1a2ρe

B × n(a2)n−1a2ρ B × n(a2)n−1a2ρu B × n(a2)n−1a2ρv B × n(a2)n−1a2ρe

u× (2, 1) + v × (3, 1) u× (2, 2) + v × (3, 2) u× (2, 3) + v × (3, 3) u× (2, 4) + v × (3, 4)

C × n(a2)n−1a2ρ C × n(a2)n−1a2ρu C × n(a2)n−1a2ρv C × n(a2)n−1a2ρe




where for Eξ
vµ

A =
(29
15
ξxuξ −

1

15
ξyvξ

)

B = (ξyuξ + ξxvξ)

C =
1

Pr(γ − 1)
ξx∂ξa

2

and for F ξ
vµ

A = (ξyuξ + ξxvξ)

B =
(
− 1

15
ξxuξ +

29

15
ξyvξ

)

C =
1

Pr(γ − 1)
ξy∂ξa

2
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with

∂(0, u, v, a2)

∂(ρ, ρu, ρv, ρe)
=




0 0 0 0

−u
ρ

1
ρ 0 0

− v
ρ 0 1

ρ 0

γ(γ − 1)
(
− ρe

ρ2 + (u2+v2)
ρ

)
−γ(γ − 1)uρ −γ(γ − 1)vρ γ(γ − 1) 1ρ




Replacing ξ by η in the above matrices, we get Eη
v1 , E

η
v2 , F

η
v1 , F

η
v2 .

Hence the linearized viscous terms are given by

− J

Re

[
∂

∂ξ
Ê′

v +
∂

∂η
F̂ ′
v

]
= − J

Re

[
∂

∂ξ

(ξx
J

)
E′

v +
ξx
J

∂

∂ξ
E′

v +
∂

∂ξ

(ξy
J

)
F ′
v +

ξy
J

∂

∂ξ
F ′
v +

∂

∂η

(ηx
J

)
E′

v +
ηx
J

∂

∂η
E′

v +
∂

∂η

(ηy
J

)
F ′
v +

ηy
J

∂

∂η
F ′
v

]

=

{
− J

Re

[
∂

∂ξ

(ξx
J

)
+

∂

∂η

(ηx
J

)]}
E′

v +

{
− J

Re

(
ξx
J

)
∂

∂ξ
E′

v

}
+

{
− J

Re

(
ηx
J

)
∂

∂η
E′

v

}
+

{
− J

Re

[
∂

∂ξ

(ξy
J

)
+

∂

∂η

(ηy
J

)]}
F ′
v +

{
− J

Re

(
ξy
J

)
∂

∂ξ
F ′
v

}
+

{
− J

Re

(
ηy
J

)
∂

∂η
F ′
v

}

We know from the transformation invariants that the first two terms are zero. Hence, we have,

− J

Re

[
∂

∂ξ
Ê′

v +
∂

∂η
F̂ ′
v

]
=

{
− 1

Re
ξx
∂

∂ξ
E′

v

}
+

{
− 1

Re
ηx

∂

∂η
E′

v

}
+

{
− 1

Re
ξy
∂

∂ξ
F ′
v

}
+

{
− 1

Re
ηy

∂

∂η
F ′
v

}
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Appendix C

Verification of Global Eigenvlaue
Solver for Axisymmetric
Configurations

C.1 Inviscid Test Case: Axisymmetric Parallel Free Shear Layer

The inviscid terms of the global eigenmode solver is validated using the standard test case for the inviscid

instability of a parallel free shear layer. The baseflow uses a hyyperbolic tangent profile for the axial velocity

at constant pressure and the baseflow density profile obtained using Crooco Busemann relations (Panickar

& Raman (2009)). Figure C.1 show the baseflow profiles used for the verification.

V̄z =
1

2

[
1 + tanh

{
a

(
1

r
− r

)}]
(C.1)

ρ̄ =

[
1

2
(γ − 1)V̄z(1− V̄z)M

2
j + V̄z +

T∞
Tj

(1− V̄z)

]−1

(C.2)

where a is a free parameter. Using eigenmodes of the form [V ′
z , V

′
r , V

′
θ , p

′] ≡ [V̂z , V̂r, V̂θ, p̂]e
i(αx+nθ−ωt) in the

0 2 4 6 8 10
0

0.5

1

1.5

r

ρ

Vz

T

Figure C.1: Baseflow profiles.
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inviscid governing equations, we obtain the Rayleigh equation for the pressure perturbation as

d2p̂

dr2
+

[
1

r
− 1

ρ̄

dρ̄

dr
+

2α

ω − αV̄z

dV̄z
dr

]
dp̂

dr
+

[
ρ̄(ω − αV̄z)

2 − n2

r2
− α2

]
p̂ = 0. (C.3)

As r → 0, ρ̄ =
ρj

ρ∞
=

Tj

T∞
, ū =

Uj

c∞
.

d2p̂

dr2
+

1

r

dp̂

dr
+

[
ρj
ρ∞

(
ω − α

Uj

c∞

)2
− n2

r2
− α2

]
p̂ = 0

which has the solution

p̂(r = 0) = AJn

[(√√√√T∞
Tj

(
ω − α

Uj

c∞

)2

− α2

)
r

]

and as r → ∞, ρ̄ =
ρ∞

ρ∞
= 1, ū = 0.

d2p̂

dr2
+

1

r

dp̂

dr
+

[
ω2 − n2

r2
− α2

]
p̂ = 0

has the solution

p̂(r → ∞) = BH(1)
n

[(√
ω2 − α2

)
r
]
.

A one-dimensional code based on the shooting method was developed to solve for the pressure eigenfunction.

All the eigenfunctions can be derived from the pressure eigenfunction using the following relations

V̂r =
1

iρ(ω − αVz)

dp̂

dr

V̂θ =
np̂

ρ(ω − αVz)r

V̂z =
αp̂

ρ(ω − αVz)
+

V̂r
i(ω − αVz)

dVz
dr

ρ̂ =
p̂

ā2
+

V̂r
i(ω − αVz)

dρ

dr
= ρp̂+

V̂r
i(ω − αVz)

dρ

dr

T̂ =
γp̂− T ρ̂

ρ
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Azimuthal Mode Wavenumber Eigenvalue (ωr + iωi)
n α Shooting Global
0 1 0.1815− 0.8709i 0.1813− 0.8708i
1 1 0.2686− 0.7447i 0.2684− 0.7446i
2 1 0.2093− 0.6903i 0.2096− 0.6907i

Table C.1: Comparison of eigenvalues from shooting method and global solver.
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Figure C.2: n = 0 : Comparison of eigenmodes : Shooting method (Symbols), Global eigenmode solver
(Lines) (a) Real (b) Imaginary.

Three cases with different azimuthal mode numbers n = 0, 1, 2 were done to verify all possible axis condition

scenarios. Table C.1 shows the comparison of the eigenvalues for the shooting method and the global

eigenmode solver. Figs. C.2, C.3 and C.4 show the comparison of the real and imaginary parts of the

eigenmodes for the three cases. Good quantitative comparison is obtained.

C.2 Viscous Test Case: Steady Axisymmetric Jet

An axisymmetric baseflow at Re = 2000 was computed using the Selective Frequency Damping technique.

The eigenaanalysis was done to compute the global modes. One of stable modes were superposed on the

steady baseflow, and the time evolution of the mode was obtained from the direct numerical simulations.

Fig. C.5(a) shows the domain, the probe locations are shown in Fig. C.5(b), and the perturbation growth

at the probe locations are shown in Figs. C.5(c) and (d).
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Figure C.3: n = 1 : Comparison of eigenmodes : Shooting method (Symbols), Global eigenmode solver
(Lines) (a) Real (b) Imaginary.
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Figure C.4: n = 2 : Comparison of eigenmodes : Shooting method (Symbols), Global eigenmode solver
(Lines) (a) Real (b) Imaginary.
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Figure C.5: (a) Computational domain showing the sponge zones, (b) probe locations, and comparison of
linear stability analysis (lines) and DNS (symbols): (c) at probe 1 (d) at probe 2.
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Appendix D

Axisymmetric Jet: Terms in
Governing Equations and Boundary
Conditions

D.1 Viscous terms

The viscous terms on the right hand side of (4.1) are given by

Sr =
1

Re

[
µ

((
2 +

λ

µ

)
∂2Vr
∂r2

+

(
2 +

λ

µ

)
1

r

∂Vr
∂r

+

(
1 +

λ

µ

)
1

r

∂2Vr
∂r∂θ

+

(
1 +

λ

µ

)
∂2Vz
∂z∂r

+
1

r2
∂V 2

r

∂θ2

−
(
3 +

λ

µ

)
1

r2
∂Vθ
∂θ

+
∂2Vr
∂z2

−
(
2 +

λ

µ

)
Vr
r2

)

+
∂µ

∂r

((
2 +

λ

µ

)
∂Vr
∂r

+
λ

µ

Vr
r

+
λ

µ

1

r

∂Vθ
∂θ

+
λ

µ

∂Vz
∂z

)

+
∂µ

∂θ

(
1

r

∂Vθ
∂r

+
1

r2
∂Vr
∂θ

− Vθ
r2

)
+
∂µ

∂z

(
∂Vr
∂z

+
∂Vz
∂r

)]

Sθ =
1

Re

[
µ

(
∂2Vθ
∂r2

+

(
1 +

λ

µ

)
1

r

∂2Vθ
∂θ∂r

+

(
2 +

λ

µ

)
1

r2
∂2Vθ
∂θ2

+

(
3 +

λ

µ

)
1

r2
∂Vr
∂θ

+

(
1 +

λ

µ

)
1

r

∂2Vz
∂θ∂z

+
∂2Vθ
∂z2

+
1

r

∂Vθ
∂r

− Vθ
r2

)

+
∂µ

∂r

(
∂Vθ
∂r

+
1

r

∂Vr
∂θ

− Vθ
r

)

+
∂µ

∂θ

((
2 +

λ

µ

)
1

r2
∂Vθ
∂θ

+
(2µ+ λ)

µ

Vr
r2

+
λ

µ

1

r

∂Vr
∂r

+
λ

µ

1

r

∂Vz
∂z

)

+
∂µ

∂z

(
∂Vθ
∂z

+
1

r

∂Vz
∂θ

)]

110



Sz =
1

Re

[
µ

(
∂2Vz
∂r2

+
1

r2
∂2

∂θ2
+

(
2 +

λ

µ

)
∂2Vz
∂z2

+

(
1 +

λ

µ

)
∂2Vr
∂r∂z

+
1

r

∂Vz
∂r

+

(
1 +

λ

µ

)
1

r

∂Vr
∂z

+

(
1 +

λ

µ

)
1

r

∂2Vθ
∂θ∂z

)

+
∂µ

∂r

(
∂Vz
∂r

+
∂Vr
∂z

)
+
∂µ

∂θ

(
1

r2
∂Vz
∂θ

+
1

r

∂Vθ
∂z

)

+
∂µ

∂z

((
2 +

λ

µ

)
∂Vz
∂z

+
λ

µ

∂Vr
∂r

+
λ

µ

Vr
r

+
λ

µ

1

r

∂Vθ
∂θ

)]

ST =
γ

RePr

[
κ

(
∂2T

∂r2
+

1

r

∂T

∂r
+

1

r2
∂2T

∂θ2
+
∂2T

∂z2

)
+
∂κ

∂r

∂T

∂r
+

1

r2
∂κ

∂θ

∂T

∂θ
+
∂κ

∂z

∂T

∂z

]

+
γ(γ − 1)

Re
µ

[
∂Vr
∂r

(
(2µ+ λ)

∂Vr
∂r

+ λ
Vr
r

+ λ
1

r

∂Vθ
∂θ

+ λ
∂Vz
∂z

)

+

(
∂Vr
∂θ

+
∂Vθ
∂r

− Vθ
r

)(
∂Vθ
∂r

+
1

r

∂Vr
∂θ

− Vr
r

)

+

(
1

r

∂Vθ
∂θ

+
Vr
r

)(
(2µ+ λ)

1

r

∂Vθ
∂θ

+ (2µ+ λ)
Vr
r

+ λ
∂Vr
∂r

+ λ
∂Vz
∂z

)

+

(
∂Vθ
∂z

+
1

r

∂Vz
∂θ

)(
∂Vθ
∂z

+
1

r

∂Vz
∂θ

)

+
∂Vz
∂z

(
(2µ+ λ)

∂Vz
∂z

+ λ
∂Vr
∂r

+ λ
Vr
r

+ λ
1

r

∂Vθ
∂θ

)
+

(
∂Vr
∂z

+
∂Vz
∂r

)(
∂Vz
∂r

+
∂Vr
∂z

)]

D.2 Additional Boundary Condition Details

D.2.1 Centerline treatment

The governing equations in cylindrical coordinates have a singularity at the centerline (r = 0) and should be

treated appropriately. To obtain the modified governing equations at the centerline, the Fourier expansion

of the flow variables is used and physical constraints on the Fourier coefficients are derived imposing the

properties of symmetry and regularity in physical space (Lewis & Bellan, 1990). Since the flow under

consideration is axisymmetric, we obtain a set of conditions at the centerline which the flow variables should

satisfy. Depending on how the variables transform under coordinate transformation, they are classified as

scalar-like or vector-like. The variables ρ, Vz and T are scalar-like and Vr and Vθ are vector-like. This section

outlines the centerline treatment of both these classes of variables.
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For a scalar-like quantity f(r, θ), consider the Fourier expansion

f(r, θ) =
∞∑

m=−∞
fm(r)eimθ .

The symmetry condition f(r, θ) = f(−r, θ + π) imposes a condition on the Fourier coefficients given by

fm(r) = (−1)mfm(−r), (D.1)

and the regularity condition gives the least restrictive form of fm(r) as

fm(r) ∼ r|m|. (D.2)

Combining the symmetry and regularity conditions, we obtain the centerline conditions for a scalar as

∂f0

∂r
= 0 m = 0

fm = 0 m 6= 0. (D.3)

Now, for the vector-like quantities, Vr and Vθ, consider the Fourier expansions

Vr =
∞∑

m=−∞
Vrme

imθ,

Vθ =
∞∑

m=−∞
Vθme

imθ. (D.4)

The symmetry and regularity conditions for the cartesian velocities Vx and Vy give the conditions as

Vr0 = Vθ0 = 0 m = 0,

∂Vrm

∂r
=
∂Vθm

∂r
= 0 |m| = 1

Vrm = Vθm = 0 |m| ≥ 2 (D.5)

Using (D.3) and (D.5), we get the centerline conditions for axisymmetric flow as (Salgado & Sandham,

2007)

∂ρ

∂r
= Vr = Vθ =

∂Vz
∂r

=
∂T

∂r
= 0.
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D.2.2 Far-field Simultaneous Approximation Term (SAT) treatment

The SAT treatment is based on a weak enforcement of the boundary conditions with the boundary source

terms in (4.1) that are active only at the boundaries. Following the notation in Svärd et al. (2007), the

governing equations with the SAT boundary terms are given by

∂Q

∂t
= R(Q) + P−1E1TrΛ

+
r T−1

r ηr(Q−Qtarget) + P−1E1TzΛ
+
z T−1

z ξz(Q−Qtarget), (D.6)

where R(Q) is the Navier-Stokes right hand side and ξz ≡ ∂ξ
∂z and ηr ≡ ∂η

∂r are the grid metrics in the

ξ and η directions, respectively. The rotation matrices and eigenvalue matrices in the axial and radial

directions for the SAT treatment are given in (D.7)-(D.10). The eigenvalue matrix, Λ+
z,r ensures that the

boundary conditions are applied only on the incoming characteristics. For example, in the z-direction,

Λ+
z = (Λz + |Λz|)/2 on z = 0 and Λ+

z = (Λz − |Λz|)/2 on z = zmax. The diagonal and rotation matrices

are,

Λz =




Vz

Vz

Vz

(Vz −
√
T )

(Vz +
√
T )




(D.7)

Tz =




− ρ
T 0 0 ρ

(γ−1)T
ρ

(γ−1)T

0 0 1 0 0

0 1 0 0 0

0 0 0 − 1
(γ−1)

√
T

1
(γ−1)

√
T

1 0 0 1 1




and T−1
z =




− (γ−1)T
γρ 0 0 0 1

γ

0 0 1 0 0

0 1 0 0 0

(γ−1)T
2γρ 0 0 − (γ−1)

√
T

2
(γ−1)
2γ

(γ−1)T
2γρ 0 0 (γ−1)

√
T

2
(γ−1)
2γ




(D.8)
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Λr =




Vr

Vr

Vr

(Vr −
√
T )

(Vr +
√
T )




(D.9)

Tr =




− ρ
T 0 0 ρ

(γ−1)T
ρ

(γ−1)T

0 0 0 − 1
(γ−1)

√
T

1
(γ−1)

√
T

0 0 1 0 0

0 1 0 0 0

1 0 0 1 1




and T−1
r =




− (γ−1)T
γρ 0 0 0 1

γ

0 0 0 1 0

0 0 1 0 0

(γ−1)T
2γρ − (γ−1)

√
T

2 0 0 (γ−1)
2γ

(γ−1)T
2γρ

(γ−1)
√
T

2 0 0 (γ−1)
2γ




(D.10)

.

D.2.3 Nozzle Wall Treatment

Since the SAT approach does a weak enforcement of the boundary conditions, the no-slip and isothermal wall

conditions are not strictly satisfied at the nozzle walls. This may lead to spurious oscillations in the global

eigenmodes. Hence, a characteristic based treatment is used to strictly enforce the boundary conditions for

the no-slip (Vr = Vθ = Vz = 0), isothermal (T = 1) nozzle walls. Hence, on the nozzle walls, only the

continuity equation, with the modified characteristic terms, is solved. For the nozzle wall with the wall

normal in the +z direction, the equations reduce to

∂ρ

∂t
+
(
Vr
∂ρ

∂r
+
Vθ
r

∂ρ

∂θ

)
+ ρ
(∂Vr
∂r

+
Vr
r

+
1

r

∂Vθ
∂θ

)
+
(
TzΛzT

−1
z

∂Q

∂z

)
ρ,wall(+z)

= 0, (D.11)

where the z derivative terms in the continuity equation have been replaced with the characteristic terms in

that direction. The relation between the incoming and outgoing wave amplitudes to impose Vz = 0 on the
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wall is

ΛzT
−1
z

∂Q

∂z

∣∣∣∣∣
incoming

= −ΛzT
−1
z

∂Q

∂z

∣∣∣∣∣
outgoing

. (D.12)

This gives

(
TzΛzT

−1
z

∂Q

∂z

)
ρ,wall(+z)

= ρ
∂Vz
∂z

−
√
T

γ

∂ρ

∂z
− ρ

γ
√
T

∂T

∂z
. (D.13)

Similarly, for the wall normal in the r direction, we have

∂ρ

∂t
+
(Vθ
r

∂ρ

∂θ
+ Vz

∂ρ

∂z

)
+ ρ
(1
r

∂Vθ
∂θ

+
∂Vz
∂z

)
+
(
TrΛrT

−1
r

∂Q

∂r

)
ρ,wall(+,−r)

= 0. (D.14)

For the wall normal in the +r direction, we get

(
TrΛrT

−1
r

∂Q

∂r

)
ρ,wall(+r)

= ρ
∂Vr
∂r

−
√
T

γ

∂ρ

∂r
− ρ

γ
√
T

∂T

∂r
, (D.15)

and for the wall normal in the −r direction, we get

(
TrΛrT

−1
r

∂Q

∂r

)
ρ,wall(−r)

= ρ
∂Vr
∂r

+

√
T

γ

∂ρ

∂r
+

ρ

γ
√
T

∂T

∂r
. (D.16)
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Appendix E

Linearization of the Equations in
Axisymmetric Coordinates

The tables for the construction of the matrices for the inviscid terms of the linearized operator are given in

this section.

ρ′ V ′
r V ′

θ V ′
z T ′

∂

∂r
Vr ρ 0 0 0

∂

∂z
Vz 0 0 ρ 0

Base in
Vθ

r
+
∂Vr

∂r
+
Vr

r
+
∂Vz

∂z

∂ρ

∂r
+
ρ

r
in
ρ

r

∂ρ

∂z
0

Table E.1: Inviscid terms for the continuity equation.

The tables for the construction of the matrices for the viscous terms of the linearized operator are given

in this section. r-momentum equation

ρ′ V ′
r V ′

θ V ′
z T ′

∂

∂r
T
γρ Vr 0 0 1

γ

∂

∂z
0 Vz 0 0 0

Base − T

γρ2
∂ρ

∂r
in
Vθ

r
+
∂Vr

∂r
−2

Vθ

r

∂Vr

∂z

1

γρ

∂ρ

∂r

Table E.2: Inviscid terms for the r-momentum equation.
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ρ′ V ′
r V ′

θ V ′
z T ′

∂

∂r
0 0 Vr 0 0

∂

∂z
0 0 Vz 0 0

Base in
T

γρr

∂Vθ

∂r
+
Vθ

r
in
Vθ

r
+
Vr

r

∂Vθ

∂z

in

γr

Table E.3: Inviscid terms for the θ momentum equation.

ρ′ V ′
r V ′

θ V ′
z T ′

∂

∂r
0 0 0 Vr 0

∂

∂z
T
γρ 0 0 Vz

1
γ

Base − T

γρ2
∂ρ

∂z

∂Vz

∂r
0 in

Vθ

r
+
∂Vz

∂z

1

γρ

∂ρ

∂z

Table E.4: Inviscid terms for the z momentum equation.

ρ′ V ′
r V ′

θ V ′
z T ′

∂

∂r
0 (γ − 1)T 0 0 Vr

∂

∂z
0 0 0 (γ − 1)T Vz

Base 0
∂T

∂r
+ (γ − 1)

T

r
in(γ − 1)

T

r

∂T

∂z
in
Vθ

r
+ (γ − 1)

(
∂Vr

∂r
+
Vr

r
+
∂Vz

∂z

)

Table E.5: Inviscid terms for the energy equation.
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Term1 =

(
2 +

λ

µ

)
∂2Vr
∂r2

+

(
2 +

λ

µ

)
1

r

∂Vr
∂r

+

(
1 +

λ

µ

)
1

r

∂2Vr
∂r∂θ

+

(
1 +

λ

µ

)
∂2Vz
∂z∂r

+
1

r2
∂V 2

r

∂θ2

−
(
3 +

λ

µ

)
1

r2
∂Vθ
∂θ

+
∂2Vr
∂z2

−
(
2 +

λ

µ

)
Vr
r2

Term2 =

(
2 +

λ

µ

)
∂Vr
∂r

+
λ

µ

Vr
r

+
λ

µ

1

r

∂Vθ
∂θ

+
λ

µ

∂Vz
∂z

Term3 =
1

r

∂Vθ
∂r

+
1

r2
∂Vr
∂θ

− Vθ
r2

Term4 =
∂Vr
∂z

+
∂Vz
∂r
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ρ′ V ′
r V ′

θ V ′
z T ′

∂

∂r
0 (2µ+ λ)

1

r
+
∂µ

∂r

(
2 +

λ

µ

)
(µ+ λ)

in

r

∂µ

∂z
pT p−1 × Term2

∂

∂z
0

∂µ

∂z
0

λ

µ

∂µ

∂r
pT p−1 × Term4

∂2

∂r2
0 (2µ+ λ) 0 0 0

∂2

∂z2
0 µ 0 0 0

∂2

∂r∂z
0 0 0 (µ+ λ) 0

Base −1

ρ

[
µTerm1 +

∂µ

∂r
Term2 µ

[
− n2

r2
−
(
2 +

λ

µ

)
1

r2

]
−(3µ+ λ)

1

r2
in 0 pT p−1 × Term1 +

∂

∂r
pT p−1 × Term2

+
∂µ

∂z
Term4

]
+
∂µ

∂r

[
λ

µ

1

r

]
+
∂µ

∂r

[
λ

µ

1

r
in

]
+
∂

∂z
pT p−1 × Term4

Table E.6: Viscous terms for the r-momentum equation.

1
1
9



θ-momentum equation

Term1 =
∂2Vθ
∂r2

+

(
1 +

λ

µ

)
1

r

∂2Vθ
∂θ∂r

+

(
2 +

λ

µ

)
1

r2
∂2Vθ
∂θ2

+

(
3 +

λ

µ

)
1

r2
∂Vr
∂θ

+

(
1 +

λ

µ

)
1

r

∂2Vz
∂θ∂z

+
∂2Vθ
∂z2

+
1

r

∂Vθ
∂r

− Vθ
r2

Term2 =
∂Vθ
∂r

+
1

r

∂Vr
∂θ

− Vθ
r

Term3 =

(
2 +

λ

µ

)
1

r2
∂Vθ
∂θ

+
(2µ+ λ)

µ

Vr
r2

+
λ

µ

1

r

∂Vr
∂r

+
λ

µ

1

r

∂Vz
∂z

Term4 =
∂Vθ
∂z

+
1

r

∂Vz
∂θ
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ρ′ V ′
r V ′

θ V ′
z T ′

∂

∂r
0 (µ+ λ)

in

r
µ
1

r
+
∂µ

∂r
0 pT p−1 × Term2

∂

∂z
0 0

∂µ

∂z
(µ+ λ)

in

r
pT p−1 × Term4

∂2

∂r2
0 0 µ 0 0

∂2

∂z2
0 0 µ 0 0

∂2

∂r∂z
0 0 0 0 0

Base −1

ρ

[
µTerm1 +

∂µ

∂r
Term2 (3µ+ λ)

1

r2
in+

in

r

∂µ

∂r
µ

[
−
(
2 +

λ

µ

)
n2

r2
− 1

r2

]
− 1

r

∂µ

∂r

in

r

∂µ

∂z
pT p−1 × Term1 +

∂

∂r
pT p−1 × Term2

+
∂µ

∂z
Term4

]
+
∂

∂z
pT p−1 × Term4

Table E.7: Viscous terms for the θ momentum equation.

1
2
1



z-momentum equation

Term1 =
∂2Vz
∂r2

+
1

r2
∂2

∂θ2
+

(
2 +

λ

µ

)
∂2Vz
∂z2

+

(
1 +

λ

µ

)
∂2Vr
∂r∂z

+
1

r

∂Vz
∂r

+

(
1 +

λ

µ

)
1

r

∂Vr
∂z

+

(
1 +

λ

µ

)
1

r

∂2Vθ
∂θ∂z

Term2 =
∂Vz
∂r

+
∂Vr
∂z

Term3 =
1

r2
∂Vz
∂θ

+
1

r

∂Vθ
∂z

Term4 =

(
2 +

λ

µ

)
∂Vz
∂z

+
λ

µ

∂Vr
∂r

+
λ

µ

Vr
r

+
λ

µ

1

r

∂Vθ
∂θ
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ρ′ V ′
r V ′

θ V ′
z T ′

∂

∂r
0

λ

µ

∂µ

∂z
0

µ

r
+
∂µ

∂r
pT p−1 × Term2

∂

∂z
0 (µ+ λ)

1

r
+
∂µ

∂r
(µ+ λ)

in

r
+
∂µ

∂θ

1

r

(
2 +

λ

µ

)
∂µ

∂z
pT p−1 × Term4

∂2

∂r2
0 0 0 µ 0

∂2

∂z2
0 0 0

(
2 +

λ

µ

)
µ 0

∂2

∂r∂z
0 (µ+ λ) 0 0 0

Base −1

ρ

[
µTerm1 +

∂µ

∂r
Term2

λ

µ

1

r

∂µ

∂z

λ

µ

in

r

∂µ

∂z
−n

2

r2
µ pT p−1 × Term1 +

∂

∂r
pT p−1 × Term2

+
∂µ

∂z
Term4

]
+
∂

∂z
pT p−1 × Term4

Table E.8: Viscous terms for the z momentum equation.

1
2
3



Energy equation

Term1 =
∂2T

∂r2
+

1

r

∂T

∂r
+

1

r2
∂2T

∂θ2
+
∂2T

∂z2

Term2 = (2µ+ λ)
∂Vr
∂r

+ λ
Vr
r

+ λ
1

r

∂Vθ
∂θ

+ λ
∂Vz
∂z

Term3 =
∂Vr
∂θ

+
∂Vθ
∂r

− Vθ
r

Term4 =
∂Vθ
∂r

+
1

r

∂Vr
∂θ

− Vr
r

Term5 =
1

r

∂Vθ
∂θ

+
Vr
r

Term6 = (2µ+ λ)
1

r

∂Vθ
∂θ

+ (2µ+ λ)
Vr
r

+ λ
∂Vr
∂r

+ λ
∂Vz
∂z

Term7 =
∂Vθ
∂z

+
1

r

∂Vz
∂θ

Term8 =
∂Vθ
∂z

+
1

r

∂Vz
∂θ

Term9 = (2µ+ λ)
∂Vz
∂z

+ λ
∂Vr
∂r

+ λ
Vr
r

+ λ
1

r

∂Vθ
∂θ

Term10 =
∂Vr
∂z

+
∂Vz
∂r

Term11 =
∂Vz
∂r

+
∂Vr
∂z
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ρ′ V ′
r V ′

θ V ′
z T ′

∂

∂r
0 F2µ

[(
2 +

λ

µ

)
∂Vr

∂r
+Term2 F2µ[Term3 + Term4] F2µ[Term10 + Term11] F1

[
∂κ

∂r
+ pT p−1

∂T

∂r
+
κ

r

]

+
λ

µ
Term5 +

λ

µ

∂Vz

∂z

]

∂

∂z
0 F2µ[Term10 + Term11] F2µ[Term7 + Term8] F2µ

[
λ

µ

∂Vr

∂r
+
λ

µ
Term5 F1

[
∂κ

∂z
+ pT p−1

∂T

∂z

]

+

(
2 +

λ

µ

)
∂Vz

∂z
+Term9

]

∂2

∂r2
0 0 0 0 F1κ

∂2

∂z2
0 0 0 0 F1κ

∂2

∂r∂z
0 0 0 0 0

Base −F1

ρ

[
. . .

]
F2µ

[
λ

µ

1

r
+Term3

(
in

r
− 1

r

)
F2µ

(
λ

µ

in

r
− 1

r
Term4 F2µ

[
in

r
Term7 +

in

r
Term8

]
F1

[
pT p−1 × Term1− n2

r2
κ

−F2µ

ρ

[
. . .

]
inTerm4 +

(
2 +

λ

µ

)
1

r
Term5 −1

r
Term4 +

(
2 +

λ

µ

)
in

r
Term5

∂pT p−1

∂r

∂T

∂r
+
∂pT p−1

∂z

∂T

∂z

Term6
1

r
+
λ

µ

1

r

∂Vz

∂z
Term6

1

r
+
λ

µ

1

r

∂Vz

∂z
+F2

[
. . .

]
× pT p−1

Table E.9: Viscous terms for the energy momentum equation. F1 =
γ

Pr
and F2 = γ(γ − 1).

1
2
5



Appendix F

Shock Capturing Scheme for
Axisymmetric Configurations

Supersonic jets have a shock cell pattern in the core flow. To appropriately capture the shock cell formation, a

shock capturing scheme is implemented. The artificial transport coefficients are computed using the method

described in Kawai and Lele (Kawai et al., 2010). The idea behind shock capturing schemes is to enhance the

dissipation to smoothen out the high gradient shock regions. A metric based on the grid and the strain-rate

tensor identifies the shocks and is used to compute the localized artificial transport coefficients µ∗, κ∗, β∗,

which are updated as

µ′ = µ+ µ∗

β′ = β + β∗

κ′ = κ+ κ∗.

where

µ∗ = Cµρ

∣∣∣∣∣

(
∂ξ

∂z

)4
∂4S

∂ξ4
∆z6 +

(
∂η

∂r

)4
∂4S

∂η4
∆r6

∣∣∣∣∣×Re

β∗ = Cβρfsw

∣∣∣∣∣

(
∂ξ

∂z

)4
∂4S

∂ξ4
∆z6 +

(
∂η

∂r

)4
∂4S

∂η4
∆r6

∣∣∣∣∣×Re

κ∗ = Cκ

ρ

γc

∣∣∣∣∣

(
∂ξ

∂z

)4
∂4T

∂ξ4
∆z6 +

(
∂η

∂r

)4
∂4T

∂η4
∆r6

∣∣∣∣∣×RePr

fsw = H(−∇ · u)×
(∇ · u)2

(∇ · u)2 + (∇× u)2 + ǫ
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where H is the Heaviside function, S is the magnitude of the strain-rate tensor and (·) denotes a Gaussian

filtering operation. The coefficients are Cµ = 0.002, Cβ = 1.75, Cκ = 0.01.

S =




S11 S12 S13

S21 S22 S23

S31 S32 S33




S11 =
∂Vr
∂r

− 1

3
∇ · u

S13 = S31 =
1

2
(
∂Vr
∂z

+
∂Vz
∂r

)

S33 =
∂Vz
∂z

− 1

3
∇ · u

S12 = S21 = S23 = S32 = S33 = 0

and the magnitude of the strain-rate tensor is defined by

S = ||S|| =
3∑

i,j=1

S2
ij

A nine-point truncated-Gaussian filter is implemented for the filtering operation. The filter is of the form

Central : f̄0 =

4∑

i=−4

Cifi

Boundary : f̄k =

11∑

i=1

Bkifi

127



C−4,4 = 107/103680, C−3,3 = 149/12960, C−2,2 = 1997/25920, C−1,1 = 3091/12960,

C0 = 3565/10368.

B21 = 0.085777408970000, B22 = 0.722371828476000, B23 = 0.356848072173000,

B24 = −0.223119093072000, B25 = 0.057347064865000, B26 = 0.000747264596000,

B27 = 0.000027453993000.

B31 = −0.032649010764000, B32 = 0.143339502575000, B33 = 0.726678822020000,

B34 = 0.294622121167000, B35 = −0.186711738069000, B36 = 0.062038376258000,

B37 = −0.007318073189000.

B41 = 0.000054596010000, B42 = −0.042124772446000, B43 = 0.173103107841000,

B44 = 0.700384128648000, B45 = 0.276543612935000, B46 = −0.131223506571000,

B47 = 0.023424966418000, B48 = −0.013937561779000 B49 = 0.024565095706000

B410 = −0.013098287852000, B411 = 0.002308621090000.

128



Appendix G

Proper Orthogonal Decomposition

Suppose that we have an ensemble {uk} of real scalar fields, each being a function of u = u(z, r) defined on

the domain 0 ≤ x ≤ 1. We want to find a basis {φ(z, r)}∞j=1 ǫ L
2 that is optimal for the data set in the sense

that finite dimensional representations of the form

uN (z, r) =

N∑

j=1

ajφj(z, r) (G.1)

describe typical members of the ensemble better than representations of the same dimension in any other

basis Holmes et al. (1998). The mathematical statement of optimality is that we should choose φ to maximize

the averaged projection of u onto φ suitably normalized.

max
φǫL2([0,1])

〈|(u, φ)|2〉
||φ||2 (G.2)

where

(u, φ) =

∫

Ωx

u(z, r)φ(z, r)rdrdz

and | · | denotes the modulus and || · || is the L2-norm :

||f || = (f, f)
1

2

G.1 The Formulation

The corresponding cost functional for the problem is

J [φ] = 〈|(u, φ2)|〉 − λ(||φ||2 − 1) (G.3)
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and a necessary condition for the extrema is that the functional derivative vanish for all variations φ+ δψ ∈

L2([0, 1]), δ ∈ R:

d

dδ
J [φ+ δφ]|δ=0 = 0 (G.4)

d

dδ
J [φ+ δφ]|δ=0 =

d

dδ
[〈(u, φ+ δψ)(φ+ δψ, u)〉 − λ(φ + δψ, φ+ δψ)]|δ=0

=
[
〈 d
dδ

(u, φ+ δψ)(φ+ δψ, u) + (u, φ+ δψ)
d

dδ
(φ+ δψ, u)〉

]
|δ=0

− λ
[( d
dδ

(φ+ δψ), (φ + δψ)
)
+
(
(φ+ δψ),

d

dδ
(φ + δψ)

)]
|δ=0

=
[
〈(u, ψ)(φ+ δψ, u) + (u, φ+ δψ)(ψ, u)〉

]
|δ=0

− λ
[
(ψ, φ+ δψ) + (φ+ δψ), ψ)

]
|δ=0

=
[
〈(u, ψ)(φ, u) + (u, φ)(ψ, u)〉

]
− λ
[
(ψ, φ) + (φ, ψ)

]

= 2
[
〈(u, ψ)(φ, u)〉 − λ(φ, ψ)

]
= 0 (G.5)

The above quantity can be written as

〈
1∫

0

u(z, r)ψ(z, r)rdrdz

1∫

0

φ(z
′

, r
′

)u(z
′

, r
′

)rdrdz
′ 〉 − λ

1∫

0

φ(z, r)ψ(z, r)rdrdz =

1∫

0

[ 1∫

0

〈u(z, r)u(z′

, r
′

)〉φ(z′

, r
′

)rdrdz
′ − λφ(z, r)

]
ψ(z, r)rdrdz = 0 (G.6)

Since ψ is an arbitrary variation, the above condition reduces to

1∫

0

〈u(z, r)u(z′

, r
′

)〉φ(z′

, r
′

)rdrdz
′

= λφ(z, r) (G.7)

Thus the optimal basis is given by the eigenfunctions of the {φj} of the integral equation (7) whose kernel is

the averaged autocorrelation function R(z, r, z
′

, r
′

) ≡ 〈u(z, r)u(z′

, r
′

)〉. They are called empirical eigenfuc-

tions. The Hilbert-Schmidt theory shows that the eigenfunctions form a complete orthogognal set and the

reconstruction of the field is given by

u ≈ uN =

N∑

k=1

akφ
(k)(z, r)

Multiplying both sides by φ(k)(z, r), integrating over the domain and using the fact that the φ(k)s are

130



mutually orthogonal, we obtain

ak = (φ(k), u)

The coefficients are uncorrelated and their mean square values are the eigenvalues themselves

〈a(n)a(m)〉 = δnmλ
(n)

Hence the eigenvalues are all non-negative. The turbulent kinetic energy is the sum of the n eigenvalues.

E =

∫
〈uiui〉rdrdz =

∞∑

n=1

λ(n)

The above equation gives us the idea that the eigenmode corresponding to the largest eigenvalue will con-

tribute the maximum to the total energy and that the contributions of the eigenmodes decrease with the

corresponding decrease in the eigenvalue.

G.2 The Method of Snapshots

The method of snapshots (Sirovich (1991), Smith et al. (2005)) formulates the computation of POD modes

as an NT × NT eigenvalue problem, where NT is the total number of snapshots in the ensemble. The

formulation is described for scalar functions u(k). Equation (7) can be written as

1

NT

NT∑

k=0

u(k)(z, r)

∫

Ωx

u(k)(z, r)u(z
′

, r
′

)φ(z
′

, r
′

)rdrdz
′

= λφ(z, r) (G.8)

Define

cj =

∫

Ωx

u(j)(z
′

, r
′

)φ(z
′

, r
′

)rdrdz
′

Then equation (8) can be written as

1

NT

NT∑

k=1

cju(j)(z, r) = λφ(z, r) (G.9)
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ie. the eigenfunctions are expressed as linear combinations of the observations or snapshots. Multiplying

both sides by u(i) and integrating yields

1

NT

NT∑

j=1

cj

∫

Ωx

u(i)(z, r)u(j)(z, r)rdrdz = λ

∫

Ωx

u(i)(z, r)φ(z, r)rdrdz (G.10)

Defining

aij =

∫

Ωx

u(i)(z, r)u(j)(z, r)rdrdz

equation (10) can be written in matrix form as




a11 . . . a1NT

...
...

aNT 1 . . . aNTNT







c1
...

cNT



= λ




c1
...

cNT




(G.11)

The eigenvectors of the above NT × NT matrix eigenvalue problem are denoted by cn = [cn1 . . . c
n
NT

]T and

the eigenvalues by λn. From (9), it can be seen that the nth eigenfunction of the original problem can be

reconstructed from the coefficients cnj via

φ(n)(z, r) =
1

λ(n)NT

NT∑

j=1

cnj u(j)(z, r) (G.12)

or in matrix form,

φ(n)(z, r) =
1

λ(n)NT
[cn1 . . . c

n
NT

]




u(1)(z, r)

...

uNT (z, r)




(G.13)

Fig. G.1 shows the reconstruction of the solution using 10, 25, 50 and 220 (all) modes for the pressure

perturbation at a given radial location for the uncontrolled axisymmetric jet.
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Figure G.1: Reconstruction of far-field pressure using POD modes (a) 10 modes (b) 25 modes (c) 50 modes
(d) 220 modes (all).
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