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ABSTRACT 

 Nitrogen (N) is an essential mineral nutrient required for maize (Zea mays L.) development. 

Increased maize yields will be necessary as the world demand for food increases. However, with 

the growing concern for food security, maize yield increases must be obtained using more 

sustainable agricultural practices with less N fertilizer inputs. Improved nitrogen use efficiency 

(NUE) can maximize maize yield with minimal inputs of N fertilizer, but requires coordinated 

progress in several areas of the crop’s production (e.g. genetic improvement, genetic 

characterization, and crop management). The objectives of this PhD research were i) evaluate the 

genetic variation of N-use traits and their interaction with the environment, ii) identify the genomic 

prediction accuracy of different N-use traits and their application in maize NUE breeding 

programs, iii) understand the relative merits of important agronomic factors (e.g. N stress 

tolerance, yield response to N fertilizer, crowding stress tolerance, and yield response to narrower 

row spacing) to maize yield, and iv) evaluate the importance of hybrid characterization for 

agronomic traits to obtain maximum maize yield potential. The research objectives were addressed 

using a large set of maize hybrids derived from expired plant variety protection- certified (named 

ex-PVP) and commercial germplasms and evaluating them in state-wide field experiments for 

different agronomic traits. In addition, all ex-PVP inbred lines were genotyped with 26,769 single-

nucleotide polymorphism. 

 Field experiments evaluated the NUE performance of 522 maize hybrids derived from the 

genotyped ex-PVP inbreds. Genomic prediction accuracy for yield ranged from 0.17 to 0.53 and 

0.17 to 0.72 under low and high N conditions (0 and 252 kg N ha-1), respectively. The two major 

agronomic factors influencing a hybrid’s NUE performance are the tolerance to N stress (yield 

under unfertilized N conditions) and the yield response to additional N fertilizer (yield change 

between unfertilized and N fertilized plots). However, yield under N stress conditions and yield 

response to N fertilizer are negatively correlated traits. As a result, less than 10% of all hybrids 

evaluated in this study combined above average performance for N stress tolerance and yield 

response to N fertilizer. Harvest index under low N was the secondary trait that was highly 

correlated (+0.63, P ≤ 0.001) to yield under low N and provided the highest genomic prediction 

accuracy (ranged from 0.26 to 0.78) under low N conditions. Similarly, the yield response to N 

fertilizer (e.g. NUE) was highly correlated (+0.74, P ≤ 0.001) to yield under high N and provided 

the highest genomic prediction accuracy (ranged from 0.05 to 0.51) under high N conditions. These 
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traits could be integrated into maize breeding programs targeting for improved hybrid performance 

under N stress and high N conditions, respectively. 

 Maize yield stability and performance were influenced by N fertilizer and plant density 

conditions. Hybrids with above average yield performance under low N environments exhibited 

high yield stability under high N environments. On the other hand, hybrids with an above average 

yield response to N fertilizer and increased plant density exhibited greater yield in high N 

environments. Commercial hybrids showed a large variation in their yield response to different 

crop management conditions. In addition the level of N stress tolerance and the yield response to 

N fertilizer, the yield response to narrower row spacing was another important agronomic factor 

influencing maize yield. Maize genotypes grown under high N conditions, high plant density, and 

narrow row spacing (312 kg N ha-1, 108,000 plant ha-1, at 50 cm row spacing) combined high 

broad-sense heritability and yield performance. Therefore, breeding programs evaluating maize 

genotypes under intensive agronomic management conditions can obtain greater genetic gain. 

Future maize yield increases will rely on genotypes that combine improved yield response to N 

fertilizer and tolerance to high plant densities at narrower row spacing conditions. Accordingly, 

the characterization of maize hybrid’s responses to different agronomic factors gives farmers the 

knowledge to better match their hybrids with the recommended management to obtain the hybrid’s 

maximum yield potential. 
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CHAPTER 1 

GENETIC VARIATION OF NITROGEN USE TRAITS USING EXPIRED PLANT 

VARIETY PROTECTION GERMPLASM 

 

ABSTRACT 

 Nitrogen use efficiency (NUE) in maize (Zea mays L.) is an important trait to maximize 

yield with minimal input of N fertilizer. Expired Plant Variety Protection (ex-PVP) Act- certified 

germplasm may be an important genetic resource for public breeding sectors. The objectives of 

this research were to evaluate the genetic variation of N-use traits and to characterize maize ex-

PVP inbreds adapted to the U.S. Corn Belt for NUE performance. Eighty-nine ex-PVP and two 

public inbreds (37 stiff stalk synthetic, SSS and 54 non-stiff stalk synthetic, NSSS) were genotyped 

using 26,769 single-nucleotide polymorphisms, then 263 single-cross maize hybrids derived from 

these inbreds were grown in eight environments from 2011 to 2015 at two N fertilizer rates (0 and 

252 kg N ha-1) and three replications. Genetic utilization and the yield response to N fertilizer were 

stable across environments and were highly correlated with yield under low and high N conditions, 

respectively. Cluster analysis identified inbreds with desirable NUE performance. However, only 

one inbred (PHK56) was ranked in the top 10% for yield under both N-stress and optimal N 

conditions. Simultaneous genetic improvement for N-stress tolerance and the yield response to N 

fertilizer may be challenging since these traits are negatively correlated. Broad-sense heritability 

across 12 different N-use traits ranged from 0.11 to 0.77, but was not associated with breeding 

value accuracy. Breeding for improved NUE performance will require an integration of accurate 

field phenotypic evaluation and novel marker-assisted breeding techniques.    

 

INTRODUCTION 

World-wide, producers use approximately 84 million tons of nitrogen (N) fertilizer per year 

(FAOSTAT, 2002). Of that amount, more than 5 million tons are used for maize (Zea mays L.) 

production in the U.S. (USDA-NASS, 2013). Nitrogen is the macronutrient required in the greatest 

amount by the maize crop with uptake values measured at 280 kg N ha-1 for a crop producing 14.4 

Mg ha-1 of grain (Bender et al. 2013). Although supplemental N fertilizer is often necessary to 

increase maize grain yield, N fertilizer consumption has remained constant in the U.S. for the last 
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20 years (FAOSTAT, 2002). The maize yield increases observed, despite the constant N fertilizer 

consumption in the U.S. during the last two decades, were a result of both genetic improvement 

and better agronomic practices (Duvick, 2005). In contrast, N fertilizer consumption in other 

agricultural regions, such as Brazil and China have greatly increased (+282 and +207%, 

respectively) during the last 20 years (FAOSTAT, 2002). The world population growth will require 

increased grain production and therefore more N fertilizer efficiency will be necessary to meet the 

world’s demand (Cassman et al., 2002). Innovative agricultural technologies such as new N 

fertilizer sources, precision agriculture, and crop genetic improvement will be important to 

increase nitrogen use efficiency in maize production (Raun and Johnson, 1999).    

Nitrogen use efficiency (NUE) is defined as the ratio of grain yield to N fertilizer supplied. 

Moll et al. (1982) defined NUE as the product of nitrogen uptake efficiency (NUpE, the ratio of 

the additional plant N content due to fertilizer N to the amount of fertilizer-applied N) and nitrogen 

utilization efficiency (NUtE, the ratio of yield increase to the difference in plant N content 

compared to those of an unfertilized crop). In addition, NUE is a complex phenotypic trait 

influenced by several plant physiological mechanisms (Moose and Below, 2009). Since most 

maize breeding programs developed their germplasm under high soil N conditions (Bertin and 

Gallais, 2001), genetic selection for improved NUE is often ignored (Kamprath et al, 1982). The 

genetic improvement of NUE in maize up to now was mainly achieved through indirect selection 

for increased hybrid yield performance (Moose and Below, 2009). Nonetheless, large genotypic 

differences in maize NUE have been reported (Bertin and Gallais 2001; Uribelarrea et al., 2007; 

Haegele et al., 2013).  

Over the past few decades, maize hybrids in North America have increased yield 

performance under both low and high N availability conditions (Tollenaar et al., 1997), but the 

genetic gain of maize performance when grown under low N was almost twice the genetic gain 

found when hybrids were grown with high N fertility (Haegele et al., 2013). Genetic variation of 

NUE in maize has been attributed to hybrids expressing NUpE and NUtE at different levels 

(Presterl et al., 2002; Haegele et al., 2013). These N-responsive traits will contribute differently to 

NUE depending on the germplasm (Gallais and Coque 2005), the soil N status (Moll et al., 1982; 

Kamprath et al., 1982), and the progeny seed quality composition (Uribelarrea et al., 2007). Using 

the Illinois Protein Strain collection, Uribelarrea et al. (2007) reported that strain-hybrids with high 

seed protein concentration exhibited greater NUpE and lesser NUtE than strain-hybrids with low 
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seed protein concentration. Phenotypic evaluation of NUpE and NUtE in a breeding population 

may be an important method to characterize and identify maize genotypes with desirable NUE 

performance (Lafitte and Edmeades 1995; Uribelarrea et al., 2007). Genetic improvement of NUE 

in U.S. germplasm using conventional or molecular breeding will require simultaneous 

enhancement of both NUpE and NUtE. As a result, more research is needed to evaluate the genetic 

characteristics underlying NUE in the U.S. Corn Belt germplasm.  

Since the U.S. Plant Variety Protection (PVP) Act was passed in 1970, which protects seed- 

bearing varieties for 20 years, plant breeders have been generating new genetic combinations using 

only the most elite material available, thereby decreasing the genetic diversity of commercial 

breeding programs in the U.S. (Mikel and Dudley, 2006). Expired PVP Act- certified germplasm, 

named ex-PVP, are publically available and may represent an important genetic resource for both 

public and private breeding programs. Nelson et al. (2008) suggested that current U.S. germplasm 

has reduced allelic diversity and that most of the current germplasm originated from only seven 

progenitor lines B73, Mo17, PH207, PHG39, LH123Ht, LH82, and PH595. However, elite ex-

PVP inbreds may be genetically diverse and an important genetic resource for maize breeding 

programs (Hauck et al., 2014). Although ex-PVP germplasm may not be integrated directly into a 

commercial breeding program, these genotypes can be used to originate new genetic combinations 

with desirable traits (Bari and Carena, 2016). Up to now, only a few agronomic and quantitative 

breeding research studies have been done using a representative number of maize ex-PVP parental 

lines and hybrid combinations. 

The objectives of this research were to characterize ex-PVP maize hybrids for N-use traits, 

evaluate the genetic variation and the phenotypic correlation of different N-responsive traits across 

different maize heterotic groups, and identify parental lines and hybrid combinations with 

desirable NUE performance. General combining ability (additive gene effects) and specific 

combining ability (dominance and epistatic gene effects) were evaluated for different N-use traits 

on elite ex-PVP germplasm adapted to the U.S. Corn Belt. The identification of ex-PVP maize 

genotypes with high NUE performance could be incorporated into pre-breeding efforts for maize 

breeding population improvement and integrated into marker-assisted strategies for accelerating 

NUE improvement in maize breeding programs. 
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MATERIALS AND METHODS 

Germplasm and genomic data  

 A collection of 89 ex-PVP and two public maize inbreds B73 and Mo17 were selected for 

this study (Table 1.1). All germplasm seed was obtained from the North Central Regional Plant 

Introduction Station (http://www.ars-grin.gov/npgs, verified 24 Aug. 2016). Twelve ex-PVP 

inbreds were selected that contain the majority of allelic diversity encountered in current U.S. 

maize germplasm (Hauck et al. 2014). In addition, a random set of inbreds adapted to the U.S. 

Corn Belt with more recently expired PVP certificates from a selection of seed companies were 

included. Findings from these most recently- released ex-PVP lines may reveal the genetic 

diversity shifts observed during the past 20 yr in germplasm usage by different breeding programs 

(Smith et al., 2004). Overall, the ex-PVP collection used for this study contains genotypes released 

from 1972 to 2011 developed by six different seed companies. 

 Leaf samples from all inbreds (14-day old seedlings) were collected for DNA extraction 

by Cole Hendrix in 2012. Inbreds were genotyped using the genotype by sequencing method 

(Elshire et al., 2011) and two enzyme combinations were used to reduce genomic complexity: 

PstI-HF,Bfal and PstI-HF, HinP1I. Sequenced data were obtained from Illumina HiSeq2000 

(W.M. Keck Center for Comparative and Functional Genomics, Urbana, IL) and single-

nucleotide-polymorphism (SNP) data were called using the GBS pipeline in TASSEL 3.0 

(Bradbury et al., 2007). Minor allele frequency cutoff was set to 10%, and SNPs with more than 

50% missing data were removed. A total of 26,769 SNPs were used for the analyses. 

Discriminant analysis of principal components (DAPC) was performed for all inbred lines 

using the Adegenet package (Jombart et al., 2010) in R Studio (R Development Core Team, 2015). 

Since pedigrees from ex-PVP’s are often vague (Nelson et al., 2008), DAPC is well suited to define 

genetic clusters in these situations (Jombart et al., 2010). Genotyping revealed that the ex-PVP 

germplasm used in this study was composed of 36 stiff-stalk synthetic (SSS) lines and 53 non-SSS 

(NSSS) lines, in which 19 lines were from the Iodent sub-heterotic group, and 34 lines were from 

the Lancaster sub-heterotic group (Figure 1.1). Knowledge of genetic relatedness between parental 

inbreds is fundamental for hybrid heterosis, due to dominance and epistatic effects (Bernardo, 

2008). Therefore, all single cross maize hybrids evaluated in this study were generated between 

SSS and NSSS parental lines. 
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Hybrid seed were created in an incomplete factorial design between SSS and NSSS inbred 

lines in nursery trials from 2011 to 2014 at the University of Illinois, Department of Crop Sciences 

Research and Education Center in Champaign, IL. A total of 263 single cross maize hybrids 

derived from a random combination between SSS and NSSS parental lines were evaluated. On 

average, each SSS line was combined in 20 (range 3-57) and each NSSS line was combined in 13 

(range 3-38) different hybrid combinations. A heatmap view of the incomplete factorial hybrid 

combination evaluated is shown in Figure 1.2.  

Research sites and crop management  

 Maize hybrids were grown in eight field environments from 2011 through 2015. Data from 

2012 of the original experiment was excluded from the analysis due to severe drought stress. 

Research sites were planted in one environment at DeKalb, IL (41°47′ N, 88°50′ W; 19 May 2014), 

five environments at Champaign, IL (40°3′ N, 88°14′ W; 17 May 2011, 20 May 2013, 22 April 

2014, 24 April 2015, and 19 May 2015), and two environments at Harrisburg, IL (37°43′ N, 88°27′ 

W; 29 May 2013, and 23 May 2014). Field trials from 2011 and 2013 were conducted by Cole 

Hendrix. Soil types at the research sites were typically Flanagan silt loam at DeKalb, IL, Drummer 

silty clay loam at Champaign, IL, and Patton silty clay loam at Harrisburg, IL. The previous crop 

planted in each environment was soybean [Glycine max (L.) Merr.]. The experiment was planted 

using a precision plot planter (SeedPro 360, ALMACO, Nevada, IA) and plots were 5.6 m in length 

with 0.76 m row spacing and two rows in width. The target plant density was 79,000 plants ha-1. 

All seeds were treated with Maxim® XL fungicide (Fludioxonil and Mefenoxam at 0.07 mg active 

ingredient kernel-1; Syngenta Crop Protection, Greensburo, NC) and Cruiser® 5FS insecticide 

(Thiamethoxam at 0.80 mg active ingredient kernel-1; Syngenta Crop Protection, Greensburo, NC) 

to prevent early season disease and insect damage, respectively. In addition, Force 3G® insecticide 

[Tefluthrin 2,3,5,6-tetrafluoro-4-methylphenyl)methyl-(1α,3α)-(Z)-(±)-3-(2-chloro-3,3,3-

trifluoro-1-propenyl)-2,2-dimethylcyclopropanecarboxylate; Syngenta Crop Protection, 

Greensburo, NC] was applied at planting in-furrow (0.15 kg active ingredient ha-1) to control soil 

pests. Pre-emergence herbicide Lumax® EZ (mixture of S-Metolachlor, Atrazine, and Mesotrione; 

Syngenta Crop Protection, Greensburo, NC) was applied at a rate of 7 L ha-1 to control early season 

weeds.   
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At maturity, plots were harvested with a two-row plot combine (SPC40, ALMACO, 

Nevada, IA). Grain yield is reported as Mg ha-1 at 15.5% grain moisture. Grain protein 

concentrations were estimated using a representative grain subsample from each plot collected 

during harvest by using near infrared transmittance (NIT) spectroscopy (Infratec 1241, FOSS, 

Eden Prairie, MN).  

Experimental treatments and design 

The 263 single-cross maize hybrids were grown in a randomized complete block design 

with three replications and two N fertilizer rates (0 and 252 kg N ha-1; designated low and high N, 

or -N and +N, respectively) in a split-plot arrangement. The main-plot was hybrid and the split-

plot was N fertilizer rate. On average, 83 hybrids were tested in each environment. Nitrogen stress 

tolerance was measured by yield of the check plot (0 kg N ha-1), while 252 kg N ha-1 was chosen 

to obtain the maximum yield response to N from all hybrids regardless of their yield potential. 

Nitrogen fertilizer was hand applied in a diffuse band as urea (46-0-0) during the V2 to V3 growth 

stages (Ritchie et al., 1997). Nitrogen application dates were 17 June 2014 at DeKalb, IL, 02 June 

2011, 04 June 2013, 04 June 2014, 18 May 2015, and 10 June 2015 at Champaign, IL, and 25 June 

2013, and 13 June 2014 at Harrisburg, IL.  

Phenotype measurements 

 Aboveground plant biomass from each plot was sampled at the R6 growth stage 

(physiological maturity), when the maximum biomass accumulation for maize is achieved (Ritchie 

et al., 1997).  Six representative plants (visual assessment) from each plot were sampled and 

separated into stover (leaf, stem, and husks) and ear (grain and cob). The sampling criteria 

established consisted of selecting two adjacent plants near one end of the plot (1.2 m along the 

length of the first row), two adjacent plants at the center of the plot (approximately 2.7 m from the 

origin), and two adjacent plants at the other end of the plot (approximately 4.1 m along the length 

of the second row). Whole stover fresh weight was determined before shredding in a brush chipper 

(Vermeer BC600XL; Vermeer Midwest, Goodfield, IL). A representative subsample of the fresh 

shredded material was weighed and dried in a forced-draft oven (75°C) for approximately five 

days. Total stover dry weight was calculated using the fresh stover weight and the moisture level 

of the shredded material. Individual plant dry total biomass (g plant-1) was the sum of the dry 

stover, cob, and grain weights (adjusted to 0% moisture). Dried stover samples were ground in a 
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Wiley mill (Thomas Scientific, Swedesboro, NJ) to pass a 20-mesh screen, and N concentration 

(g kg-1) was analyzed using a combustion technique (EA1112 N-Protein analyzer; CE Elantech, 

Inc., Lakewood, NJ). Grain N concentration was estimated by multiplying protein concentration 

by a factor of 6.25, and abbreviated as Protein-N or Protein+N, from plants grown at 0 or 252 N ha-

1, respectively). Stover N content (g N plant-1) was calculated by multiplying stover dry weight (g 

plant-1) by stover N concentration. Similarly, grain N content (g N plant-1) was calculated by 

multiplying grain dry weight (g plant-1) by grain N concentration. Individual plant N content (g N 

plant-1) was calculated as the sum of stover and grain N contents. Shelled grain weights from the 

ears sampled at R6 were combined with the remaining plot grain weight for yield determination. 

 In combination with grain yield and plant N content, NUE, N-uptake efficiency (NUpE), 

N-utilization efficiency (NUtE), and N-harvest index (NHI) were calculated according to Eq. [1–

5]:     

NUE = (Yield+N – Yield-N)/NR = (kg yield kgN-1),  [1] 

NUpE = (PN+N – PN-N)/NR = (kgplantN kgN-1),   [2] 

NUtE = (Yield+N – Yield-N)/(PN+N – PN-N) = (kg kgplantN
-1),  [3] 

NHI+N = kggrainN +N / PN+N = (kggrainN
 kgplantN

–1), [4] 

NHI-N = kggrainN / PN-N = (kggrainN
 kgplantN

–1),  [5] 

in which Yield+N corresponds to grain yield (kg ha-1) at 252 kg N ha-1, Yield-N corresponds to grain 

yield at 0 kg N ha-1, NR is the N fertilizer rate (kgN, 252 kg N ha-1), PN represents the total plant 

N content (kg plant N ha–1) at 252 kg N ha-1 (PN+N) and 0 kg N ha-1 (PN-N), and PG is the individual 

plant grain mass (kg plant-1) at 252 kg N ha-1 (PG+N) and 0 kg N ha-1 (PG-N). In addition, genetic 

utilization (GU) (kg yield kgplantN
–1), which measures the physiological efficiency of plants to 

produce grain utilizing the plant N accumulated when grown without N fertilizer was calculated 

according to Eq. [6]:  

GU = PG-N / PN-N  [6] 

Statistical analysis 

Since there is a weak correlation between the performances of inbred parents and their 

hybrid progeny’s performance for NUE (Bertrán et al., 2003), the effects of general combining 

ability (GCA) and specific combining ability (SCA) of inbreds were evaluated using a random 
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combination of ex-PVP hybrids. Moreover, the genetic variance and covariances between hybrids 

were calculated separately for each heterotic group (Stuber and Cockerham, 1966). Best linear 

unbiased predictions (BLUPs) were calculated for each phenotypic trait using the restricted 

maximum likelihood method to account for unbalanced data. In addition, year-location 

combinations were considered environments. General and specific combining abilities were 

obtained in PROC MIXED SAS version 9.4 (SAS Institute, 2013). A linear model for an 

incomplete factorial design according to Eq. [7] was used:   

Yijklm = μ + Ei + Bj(i) + Sk + Nl + SNkl + ESik + ENil + ESNikl + εijklm   [7] 

where Yijklm is the mth observation of the klth hybrid in the jth block in the ith environment; µ is 

the grand mean, Ei is the random effect of ith environment (i=1 to 8); Bj(i) is the random effect of 

jth block nested within the ith environment (j=1 to 3); Sk is the GCA effect of kth SSS inbred (k=1 

to 36); Nl is the random GCA effect of lth NSSS inbred (l=1 to 53); SNkl is the SCA effect of klth 

hybrid (kl=1 to 522).; ESik is the random environment by SSS interaction; ENil is the random 

environment by NSSS interaction; ESNikl is the random environment by hybrid interaction; and 

εijklm is the random error term. Genotypic variance was calculated by multiplying the sum of the 

genetic variance components (SSS, NSSS, and hybrid) by two. Phenotypic variance was calculated 

as the sum of all variance components, except the variance component for block effect (Holland 

et al., 2003). Broad-sense heritability was calculated as the ratio of genotypic and phenotypic 

variance. The estimated breeding value of each hybrid was calculated according to Eq. [8]: 

EBVkl = μ + GCAk + GCAl + SCAkl  [8] 

where EBVkl is the estimated breeding value of klth hybrid; µ is the grand mean; GCAk is the GCA 

effect of kth inbred; GCAl is the GCA effect of lth inbred; and ; SCAkl is the SCA effect of klth 

hybrid. Estimated breeding value (EBV) measures the average effect of an individual’s genotypic 

value on the mean performance of its progeny (Falconer and Mackay, 1996) and it is a widely used 

measurement in maize breeding programs for the selection of superior genotypes. 

Pearson’s correlation coefficients were calculated in SAS version 9.4 (SAS Institute, 2013) 

between the GCA’s of different N-use traits. Hierarchical cluster analysis was conducted on each 

heterotic group across different N-use traits using the Euclidean method in R Studio (R 

Development Core Team, 2015). The estimated breeding value (EBV) accuracy of the phenotypic 

traits was calculated according to Eq. [9], (Gilmour et al., 2004):   
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𝐸𝐵𝑉Accuracy = √1 −
𝑆𝐸

(1+𝐹)𝜎𝐴
2  

 [9] 

where SE is the standard error of the inbred GCA, F is the inbreeding coefficient of the individual 

(assumed to be zero), and 𝜎𝐴
2 is the additive variance component of the heterotic group (SSS or 

NSSS).  

 

RESULTS AND DISCUSSION 

Phenotypic variation of N-use traits 

Yield under low N conditions (Yield-N) accounted for 54% of the yield produced by the 

hybrids under high N conditions (Yield+N) (Table 1.2). In addition, N fertilizer increased the mean 

harvest index (HI), the nitrogen harvest index (NHI), and the grain protein concentration. Average 

NUE, NUpE, NUtE, and GU values of 16.7 kg kgNfert.
-1, 0.43 kgplantN kgNfert

-1, 41.8 kg kgplantN
-1, 

and 59.0 kg kgplantN
-1, respectively are similar to other reports using U.S. Corn Belt germplasm 

(Uribelarrea et al., 2007; Haegele et al., 2013). Moreover, the additive effect distribution (range in 

GCA) of the two maize heterotic groups were similar for most N-use traits. In contrast, the NSSS 

group exhibited a greater additive effect range for NUE than the SSS group. The large additive 

effect variation observed among different N-use traits indicates that an opportunity exists for 

selecting maize genotypes with improved NUE.         

The relative importance of the genotypic and phenotypic variation to broad-sense 

heritability was dependent on the N-use trait and the N fertilizer rate (Table 1.2). Yield at high N 

exhibited greater genetic variance (within heterotic groups and hybrids), and environmental 

variance, and lower residual variance than Yield-N. Greater genetic variance under high N 

compared to low N has also been documented previously (Brun and Dudley, 1989; Trachsel et al., 

2016). Conversely, genetic and environmental variance for harvest index at low N (HI-N) was 

greater than harvest index at high N (HI+N). Additionally, the genotype by environment interaction 

was greater under high N for yield and grain protein concentration, but greater at low N for HI and 

NHI.  

Broad-sense heritability (H2) ranged from 0.11 to 0.77 across phenotypic traits (Table 1.2), 

indicating a difference in additive and dominant effects among N-use traits (Table 1.2). Relatively 

large residual variances for Yield-N, HI-N, NHI at low N (NHI-N), NUpE, and NUtE resulted in low 
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H2 of these traits. However, heritability was higher for GU than NUpE or NUtE. The large 

genotypic variance of GU found is consistent with previous studies (Haegele et al., 2013). 

Pearson’s pairwise correlations between the GCA effects of different N-use traits are 

presented in Table 1.3. Yield at high N is generally positively correlated with Yield-N, but the 

correlation tends to be lower under greater N stress (Banzinger et al., 1997; Presterl et al., 2003). 

Similarly, in this study, the correlation between Yield+N and Yield-N was +0.31. Hybrid correlation 

coefficients between Yield+N and NUE, NUpE, and NUtE were +0.74, +0.64, and +0.44, 

respectively, in agreement with reports that these traits are frequently positively correlated (Abe 

et al., 2012; Haegele et al., 2013). On the other hand, Yield-N was positively correlated with HI-N, 

HI+N, NHI+N, and GU.  

While significant genetic gains in maize yield have been documented over the past 60 

years, grain protein concentration has consistently decreased during the same period (Duvick and 

Cassman, 1999). When averaged over hybrids and environments, grain protein concentration was 

negatively correlated to yield within each N fertilizer rate (Table 1.3). In addition, NUpE was 

positively correlated with grain protein concentration at low N (r = 0.22, P ≤ 0.05) and NUtE was 

negatively correlated with grain protein concentration at high N (Protein+N), (r = -0.47, P ≤ 0.001). 

This finding reinforces the concept of the inverse relationship of starch and protein in maize grain, 

with greater N utilization underlying a greater proportion of starch than protein accumulation in 

the grain. Under high N fertility conditions, NHI was positively correlated to Protein+N. Using the 

Illinois Protein-Strains germplasm, Uribelarrea et al. (2007) demonstrated that while all the strain-

hybrids (low or high grain protein concentration) exhibited the same overall NUE, hybrids with 

high grain protein concentration exhibited high NUpE and NHI, and hybrids with low grain protein 

concentration exhibited high NUtE. Therefore, maize hybrids with high NUpE may exhibit greater 

root development and N uptake, while hybrids with high NUtE will show more ability to utilize N 

for starch production.    

Genetic improvements have increased maize yield under low and high N conditions, yet 

plant N uptake levels have only increased under high N (Haegele et al., 2013). As such, the 

genotypic correlations between N-use traits indicate that traits related to N fertilizer response 

(NUE, NUpE, and NUtE) are associated with yield performance under high N conditions, and 

traits related to the efficiency of nutrient or biomass partitioning to the grain (HI-N, HI+N, NHI+N, 
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and GU) are associated with yield performance under N stress conditions. Although Yield-N and 

Yield+N are positively correlated, developing maize genotypes with high yield performance under 

high and low N conditions may be challenging, since the desirable traits for each of these N 

conditions are negatively correlated (HI, NHI, and GU vs. NUE, NUpE, and NUtE).  

Genotype × environment interaction of N-use traits     

In addition to the genotypic correlation between traits, another major challenge for 

breeding programs is to model the effect of the genotype × environment interaction (G × E) on 

desirable phenotypic traits (van Eeuwijk et al., 2016). While the genetic correlation of some N-use 

traits may be correlated to yield at low or high N conditions, their relationship might differ 

depending on other environmental conditions influencing yield. A way to compare the effect of an 

environment on yield is by measuring the average yield of multiple hybrids in each environment 

receiving similar crop management, termed the ‘environmental index’. Several studies have 

investigated the genetic variability of N-use traits across different N soil conditions (Moll et al., 

1982; Brun and Dudley, 1989; Smiciklas and Below, 1990; Haegele et al., 2013), but few studies 

have investigated the effect of G × E on N-use traits. Therefore, regression analysis between an 

inbreds’ EBV at each environment (GCA + GCA×E + E) and the environmental index (E) was 

performed using the phenotypic traits that correlated to yield at low and high N conditions, 

respectively (Figure 1.3). Under low N conditions, GU was stable across environmental indices, 

and HI-N (0.04 kg kg-1/ Mg ha-1), HI+N (0.02 kg kg-1/ Mg ha-1), and NHI+N (0.02 kg kg-1/ Mg ha-1) 

increased as the environmental index increased (Figure 1.3A). Under high N conditions, NUE was 

stable across environmental indices, while NUtE decreased (-3.60 kg kgplantN
-1 / Mg ha-1) and NUpE 

increased (+0.03 kgplantN kgNfert
-1 / Mg ha-1) as the environmental index increased (Figure 1.3B). 

The relationship between the G × E effect on N-use traits and the environmental index indicates 

the degree of trait dominance effects across different environmental yield conditions. A stable 

additive effect of NUE and GU across environmental indices is desirable for breeding selection in 

a wide range of environments.   

Identification of maize genotypes with improved NUE 

Hybrid NUE performance is determined by the plant’s ability to take up nitrogen from the 

soil (NUpE), the physiological capacity to generate and partition N to the grain (HI and NHI), and 

the sink strength to set kernels and accumulate starch under high or low N conditions (NUtE and 
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GU, respectively). Consequently, the aim of NUE breeding should be to integrate multiple 

desirable N-use traits into the same maize genotype. Hierarchical cluster analysis using the GCA 

effect of different phenotypic traits have categorized SSS (Group 1) and NSSS lines (Group 2) 

based on their NUE performance (Figure 1.4). Clusters within heterotic groups consisted of inbreds 

exhibiting correlated N-use traits (Table 1.4).  

In the SSS cluster, groups 1A and 1B exhibited very unique characteristics with the lowest 

Yield-N and the lowest Yield+N, respectively (Table 1.4). Group 1A also exhibited high grain 

protein concentration (under low and high N conditions), NUE, and NUpE, but the lowest GU 

within cluster group 1. In contrast, groups 1B and 1C exhibited high Yield-N, but group 1B had the 

highest GU. Lastly, group 1D exhibited high Yield+N, NUE, and NUtE, while group 1E had 

average performance for most N-use traits. In the NSSS cluster, groups 2A, 2B, and 2C exhibited 

higher HI and GU than groups 2D and 2E, but groups 2A and 2B had the lowest grain protein 

concentrations. Group 2A exhibited high Yield-N and Yield+N and the highest GU from group 2. In 

contrast, group 2D presented high Yield+N and the lowest GU.  

Across heterotic groups, only seven inbreds (78551S, B73, LH128, ICI740, PHK56, 

W8304, and W8555) ranked in the top 25% GCA for Yield-N and Yield+N, and only one inbred 

(PHK56) ranked in the top 10% for high yield performance under both N conditions (data not 

shown). Inbred PHK56 was one of the most referenced lines in the U.S. Patent database and was 

derived from PHG35 (from recombination of PHG47 and Oh07-Midland) from the Oh43 

background (Mikel and Dudley, 2006). In addition, inbreds that are genetically related also 

exhibited similar NUE performance. As such, inbreds Mo17 and LH51 (97% identical by descent 

from Mo17), which are important progenitors of the Lancaster germplasm (Mikel and Dudley, 

2006), were categorized in the same cluster (group 2E). Likewise, inbred PH207 is the main 

founder of the Iodent heterotic group and is an ancestor of several Pioneer Hi-Bred inbreds such 

as PHG29 and PHG50 (Mikel and Dudley, 2006). These inbreds exhibited high tolerance to N 

deficiency and high GU (Group 2C).     

One breeding strategy for NUE improvement could be to utilize new inbred or hybrid 

combinations from the cluster groups with desirable N-use traits.  Interestingly, group 2A was the 

only group exhibiting the combination of high Yield-N and Yield+N. Group 2A represents 

approximately 5% of all NSSS lines tested in this study and could be used as a potential genetic 
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resource for the development of maize genotypes with improved performance under high N or N-

stress conditions. Inbred combinations between groups 1C × 2A and 1D × 2D, in theory would 

produce single cross hybrids with high NUE performance under low and high N conditions, 

respectively.   

The identification of maize genotypes with high N-deficiency tolerance and/or high yield 

performance under optimal soil N conditions is important for better hybrid placement and 

agronomic management positioning for optimum yields. Among the 263 hybrids evaluated, only 

22 produced yields ranked in the top 25% for both Yield-N and Yield+N, and only 5 hybrids obtained 

yields ranked in the top 10% for both N conditions. Moreover, hybrid ICI740×PHK56 

(combination between groups 1C × 2A) exhibited high yield performance under low and high N 

conditions (Figure 1.5). This hybrid exhibited the highest average EBV for Yield-N (6.2 Mg ha-1) 

and the 9th highest EBV for Yield+N (10.3 Mg ha-1). Hybrid LH145×83IBI3 (groups 1B × 2C) 

exhibited high tolerance to N deficiency (Yield-N = 5.2 Mg ha-1), but low EBV for Yield+N (8.2 Mg 

ha-1). This hybrid combined above average EBV for HI and GU, and below average EBV for NUE 

and NUtE. In contrast, hybrid F118×LH214 (groups 1A × 2D) presented the highest average EBVs 

for Yield+N (11.1 Mg ha-1), NUE, and NUpE, but low EBV for Yield-N (4.4 Mg ha-1) and GU. 

Estimated breeding value accuracy is an important method to compare the prediction 

reliability of desirable traits. Estimated breeding value accuracy ranged from 0.12 to 0.92 and, with 

the exception of NHI-N, EBV accuracies were similar among heterotic groups (Figure 1.6). While 

the majority of the inbreds exhibited high EBV accuracy, some genotypes did not. Skewness of 

EBV accuracy may be related to unbalanced data and genotypes with low stability across 

environments.  

Although, precise estimates of H2 and EBV accuracy are a function of genetic and residual 

variance, there was no relationship between EBV accuracy averaged across heterotic groups and 

H2 (Figure 1.7). While the H2 for NUtE and NHI-N was both 0.11, their EBV accuracies were 0.61 

and 0.28, respectively. Broad-sense heritability for Yield-N was almost 50% less than H2 for 

Yield+N. However, these traits presented similar EBV accuracy (approximately 0.82). 

Discrepancies between H2 and EBV accuracy can be associated with the genetic architecture of 

complex traits. Though large residual variance reduced H2 of some phenotypic traits (e.g. Yield-N, 

NUpE, and NUtE), large additive variances increased their EBV accuracies. 
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CONCLUSIONS 

Although 89 inbred lines were evaluated, there were certainly more ex-PVP lines available 

at the National Plant Germplasm System. Nonetheless, this subset was able to display large genetic 

variation among ex-PVP lines for most N-use traits. The large range of broad-sense heritabilities 

found for phenotypic traits highlights the importance of accurate phenotypic selection under field 

conditions. In addition, differences in the stability of N-use traits across environments will have 

important implications for phenotypic selection. Genetic utilization and NUE were stable across 

environments and were highly correlated with yield under low and high N conditions, respectively. 

Hybrids with high N-deficiency tolerance or high yield response to N fertilizer were associated 

with different phenotypic traits. Consequently, less than 2% of the hybrids evaluated exhibited 

high yield performance under both low and high N conditions. Nitrogen use efficiency is the end 

result of highly polygenic and complex traits. Future genetic improvement of NUE will require 

effective integration between accurate field phenotyping and marker-assisted breeding strategies, 

such as genome-wide prediction and metabolic profiling studies.  
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TABLES AND FIGURES 
 

Table 1.1. Maize line name, year of release, heterotic group, and proprietary company 

name of Ex-Plant Variety Protection (PVP) inbreds used as parents in this study.   

Line † Year Released Heterotic Group‡ Company 

PH207 2002 Iodent Pioneer Hi-Bred International, Inc. 

LH82 2003 Iodent Holden's Foundation Seeds, Inc. 

IB014 2004 Iodent DeKalb-Pfizer Genetics 

PHG29 2004 Iodent Pioneer Hi-Bred International, Inc. 

PHG72 2005 Iodent Pioneer Hi-Bred International, Inc. 

PHP02 2007 Iodent Pioneer Hi-Bred International, Inc. 

PHH93 2007 Iodent Pioneer Hi-Bred International, Inc. 

IBB15 2008 Iodent DeKalb-Pfizer Genetics 

IBC2 2008 Iodent DeKalb-Pfizer Genetics 

J8606 2008 Iodent Novartis Seeds, Inc. 

PHN82 2008 Iodent Pioneer Hi-Bred International, Inc. 

PHP76 2009 Iodent Pioneer Hi-Bred International, Inc. 

83IBI3 2010 Iodent DeKalb-Pfizer Genetics 

LH164 2010 Iodent Holden's Foundation Seeds, Inc. 

904 2010 Iodent Novartis Seeds, Inc. 

911 2010 Iodent Novartis Seeds, Inc. 

912 2010 Iodent Novartis Seeds, Inc. 

PHM81 2010 Iodent Pioneer Hi-Bred International, Inc. 

PHKE6 2011 Iodent Pioneer Hi-Bred International, Inc. 

Mo17 1973 Lancaster Public 

LH51 2001 Lancaster Holden's Foundation Seeds, Inc. 

MDF-13D 2002 Lancaster DeKalb-Pfizer Genetics 

LH123 2003 Lancaster Holden's Foundation Seeds, Inc. 

MBNA 2004 Lancaster DeKalb-Pfizer Genetics 

LH54 2005 Lancaster Holden's Foundation Seeds, Inc. 

LH52 2005 Lancaster Holden's Foundation Seeds, Inc. 

LH60 2005 Lancaster Holden's Foundation Seeds, Inc. 

PHG47 2005 Lancaster Pioneer Hi-Bred International, Inc. 

PHG84 2005 Lancaster Pioneer Hi-Bred International, Inc. 

PHJ40 2005 Lancaster Pioneer Hi-Bred International, Inc. 

PHZ51 2005 Lancaster Pioneer Hi-Bred International, Inc. 

78371A 2006 Lancaster DeKalb-Pfizer Genetics 

MBPM 2006 Lancaster DeKalb-Pfizer Genetics 

LH59 2006 Lancaster Holden's Foundation Seeds, Inc. 

LH65 2006 Lancaster Holden's Foundation Seeds, Inc. 

740 2006 Lancaster Novartis Seeds, Inc. 

S8324 2006 Lancaster Novartis Seeds, Inc. 

2MA22 2007 Lancaster DeKalb-Pfizer Genetics 

78551S 2008 Lancaster DeKalb-Pfizer Genetics 

E8501 2008 Lancaster Novartis Seeds, Inc. 

PHJ31 2008 Lancaster Pioneer Hi-Bred International, Inc. 

PHN73 2008 Lancaster Pioneer Hi-Bred International, Inc. 

LH128 2009 Lancaster Holden's Foundation Seeds, Inc. 

LH181 2009 Lancaster Holden's Foundation Seeds, Inc. 
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Table 1.1 (Continued) 

Line † Year Released  Heterotic Group‡ Company 

PHK56 2009  Lancaster Pioneer Hi-Bred International, Inc. 

MBSJ 2010  Lancaster DeKalb-Pfizer Genetics 

LH216 2010  Lancaster Holden's Foundation Seeds, Inc. 

LH213 2010  Lancaster Holden's Foundation Seeds, Inc. 

BCC03 2010  Lancaster Novartis Seeds, Inc. 

PHJ89 2010  Lancaster Pioneer Hi-Bred International, Inc. 

Lp215D 2010  Lancaster Wilson Hybrids, Inc. 

ICI581 2011  Lancaster Advanta Technology Limited 

LH214 2011  Lancaster Holden's Foundation Seeds, Inc. 

B73 1973  Stiff-stalk synthetic  Public 

LH1 1994  Stiff-stalk synthetic  Holden's Foundation Seeds, Inc. 

FAPW 2002  Stiff-stalk synthetic  DeKalb-Pfizer Genetics 

LH145 2002  Stiff-stalk synthetic  Holden's Foundation Seeds, Inc. 

PHG39 2002  Stiff-stalk synthetic  Pioneer Hi-Bred International, Inc. 

PHG35 2002  Stiff-stalk synthetic  Pioneer Hi-Bred International, Inc. 

4676A 2004  Stiff-stalk synthetic  DeKalb-Pfizer Genetics 

78002A 2004  Stiff-stalk synthetic  DeKalb-Pfizer Genetics 

764 2005  Stiff-stalk synthetic  Novartis Seeds, Inc. 

778 2005  Stiff-stalk synthetic  Novartis Seeds, Inc. 

794 2005  Stiff-stalk synthetic  Novartis Seeds, Inc. 

FBHJ 2006  Stiff-stalk synthetic  DeKalb-Pfizer Genetics 

PB80 2006  Stiff-stalk synthetic  DeKalb-Pfizer Genetics 

LH149 2006  Stiff-stalk synthetic  Holden's Foundation Seeds, Inc. 

807 2006  Stiff-stalk synthetic  Novartis Seeds, Inc. 

790 2006  Stiff-stalk synthetic  Novartis Seeds, Inc. 

793 2006  Stiff-stalk synthetic  Novartis Seeds, Inc. 

H8431 2006  Stiff-stalk synthetic  Novartis Seeds, Inc. 

S8326 2006  Stiff-stalk synthetic  Novartis Seeds, Inc. 

PHT55 2006  Stiff-stalk synthetic  Pioneer Hi-Bred International, Inc. 

W8304 2007  Stiff-stalk synthetic  Novartis Seeds, Inc. 

2FACC 2008  Stiff-stalk synthetic  DeKalb-Pfizer Genetics 

W8555 2008  Stiff-stalk synthetic  Novartis Seeds, Inc. 

LH220Ht 2009  Stiff-stalk synthetic  Holden's Foundation Seeds, Inc. 

LH208 2009  Stiff-stalk synthetic  Holden's Foundation Seeds, Inc. 

PHV07 2009  Stiff-stalk synthetic  Pioneer Hi-Bred International, Inc. 

ICI441 2010  Stiff-stalk synthetic  Advanta Technology Limited 

FBLA 2010  Stiff-stalk synthetic  DeKalb-Pfizer Genetics 

NL001 2010  Stiff-stalk synthetic  DeKalb-Pfizer Genetics 

F118 2010  Stiff-stalk synthetic  DeKalb-Pfizer Genetics 

LH191 2010  Stiff-stalk synthetic  Holden's Foundation Seeds, Inc. 

LH197 2010  Stiff-stalk synthetic  Holden's Foundation Seeds, Inc. 

PHGG7 2010  Stiff-stalk synthetic  Pioneer Hi-Bred International, Inc. 

ICI193 2011  Stiff-stalk synthetic  Advanta Technology Limited 

ICI740 2011  Stiff-stalk synthetic  Advanta Technology Limited 

LH209 2011  Stiff-stalk synthetic  Holden's Foundation Seeds, Inc. 
†Public lines were developed by Iowa State University (B73) and University of Missouri (Mo17). 
‡Heterotic groups were defined using discriminant analysis of principal components (Jombart et al., 2010) 

and 26,768 single nucleotide polymorphism markers.    
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Figure 1.1. Scatterplots of the discriminant analysis of principal components of 89 ex-Plant 

Variety Protection (ex-PVP) maize inbred lines. Scatterplot displays the first two components 

using 26,768 single nucleotide polymorphism markers. Heterotic groups are represented by 

different colors: Iodent (black), Lancaster (yellow), and Stiff-stalk synthetic (blue), and each dot 

represents an individual inbred line.    
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Figure 1.2. Heatmap showing maize hybrid combinations between 36 stiff-stalk synthetic and 53 

non-stiff-stalk synthetic lines developed with the corresponding number of environments tested 

over three locations in Illinois from 2011 to 2015.  
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Table 1.2. Mean estimates and range for yield at low N (Yield-N, Mg ha-1), yield at high N (Yield+N, Mg ha-1), harvest index at low N (HI-

N, kg kg-1), harvest index at high N (HI+N, kg kg-1), N harvest index at low N (NHI-N, kggrainN kgplantN
-1), N harvest index at high N (NHI+N, 

kggrainN kgplantN
-1), grain protein concentration at low N (Protein-N, g kg-1), grain protein concentration at high N (Protein+N, g kg-1), N-use 

efficiency (NUE, kg kgNfert.
-1), N-uptake efficiency (NUpE, kgplantN kgNfert

-1), N-utilization efficiency (NUtE, kg kgplantN
-1), and genetic 

utilization (GU, kg kgplantN
-1). Variance components for general and specific combining ability effects (GCA and SCA) were calculated 

using 36 stiff-stalk synthetic (SSS) and 53 non-SSS (NSSS) ex-PVP parental inbred lines across different N-use traits. Broad-sense 

heritability (H2) for each trait was estimated in eight environments under low and high N conditions (0 and 252 kg N ha-1, respectively).   

  GCASSS
† 

 GCANSSS  SCA     

Trait Mean ± SE 

Range 

Min./Max. σ2
SSS  

Range 

Min./Max. σ2
NSSS  

Range 

Min./Max. σ2
SCA σ2

E σ2
SCA×E σ2

R H2 

Yield-N
 

4.9 ± 0.19 -0.7 / 0.7 0.13  -0.8 / 0.5 0.12  - 0.00 0.70 0.01 1.31 0.31 

Yield+N 9.1 ± 0.28 -0.9 / +0.9 0.25  -1.2 / 0.9 0.32  -0.2 / +0.3 0.06 2.12 0.36 1.07 0.61 

HI-N
 

0.36 ± 0.01 -0.05 / +0.09 6×10-4  -0.10 / +0.06 1×10-3  -0.01 / +0.01 1×10-4 2×10-3 3×10-4 4×10-3 0.63 

HI+N 0.47 ± 0.01 -0.02 / +0.03 2×10-4  -0.06 / +0.03 4×10-4  -0.01 / +0.01 5 ×10-5 6×10-4 1×10-5 1×10-3 0.73 

NHI-N 0.56 ± 0.01 -0.01 / +0.01 2×10-4  -0.01 / +0.01 1×10-5  -0.03 / +0.02 4×10-4 9×10-3 2×10-3 8×10-3 0.11 

NHI+N 0.68 ± 0.01 -0.04 / +0.02 3×10-4  -0.05 / +0.03 5×10-4  -0.02 / +0.01 1×10-4 3×10-4 1×10-4 3×10-3 0.44 

Protein-N 62 ± 1.3 -6.1 / +5.9 0.8  -5.2 / +5.4 0.8  -3.2 / +2.3 0.4 1.7 1.3 2.1 0.74 

Protein+N 85 ± 1.3 -3.8 / +4.9 0.7  -6.0 / +4.6 1.3  -2.5 / +2.5 0.2 5.5 0.5 3.0 0.77 

              

NUE 16.7 ± 1.14 -3.6 / +3.9 3.81  -5.7 / +5.2 5.50  -0.95 / +1.20 0.80 10.13 4.97 18.56 0.60 

NUpE 0.43 ± 0.03 -0.03 / +0.05 6×10-4  -0.08 / +0.09 1×10-3  -0.01 / +0.42 2×10-4 2×10-3 1×10-3 0.01 0.27 

NUtE 41.8 ± 1.79 -3.4 / +2.9 5.5  -2.7 / +4.2 5.2  -0.58 / +0.60 1.3 59.3 7.8 201.7 0.11 

GU 59.0 ± 2.2 -7.8 / +8.9 17.8  -9.9 / +7.4 16.0  -3.2 / +2.9 5.5 29.1 7.8 88.7 0.58 
† σ2

SSS, σ2
NSSS, σ2

SCA, σ2
E, σ2

SCA×E, σ2
R, represent variance components for stiff-stalk lines, non-stiff-stalk lines, hybrid, environment, hybrid × 

environment interaction, and residual effects, respectively (Eq.[7]); SE, standard error of the mean; Min./Max., Minimum and maximum observed 

values compared to the respective means. 
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Table 1.3. Pearsons’s pairwise correlations between the GCA effects of the N-use traits of yield at low N (Yield-N), yield at high N 

(Yield+N), harvest index at low N (HI-N), harvest index at high N (HI+N), N harvest index at low N (NHI-N), N harvest index at high 

N (NHI+N), grain protein concentration at low N (Protein-N), grain protein concentration at high N (Protein+N), N-use efficiency 

(NUE), N-uptake efficiency (NUpE), N-utilization efficiency (NUtE), and genetic utilization (GU) for 263 single-cross maize 

hybrids grown from 2011 to 2015 under low and high N conditions (0 and 252 kg N ha-1, respectively).  

  Yield-N Yield+N HI-N HI+N NHI-N NHI+N Protein-N Protein+N NUE NUpE NUtE 

Yield+N 0.31** - - - - - - - - - - 

HI-N 0.63*** -0.33** - - - - - - - - - 

HI+N 0.49*** NS 0.77*** - - - - - - - - 

NHI-N NS NS NS NS - - - - - - - 

NHI+N 0.51*** NS 0.65*** 0.78*** NS - - - - - - 

Protein-N -0.38*** -0.22* NS NS NS NS - - - - - 

Protein+N NS -0.39*** NS NS NS 0.37*** 0.73*** - - - - 

NUE -0.33** 0.74*** -0.73*** -0.42*** NS -0.35*** NS -0.26* - - - 

NUpE NS 0.64*** -0.59*** -0.43*** NS -0.27* 0.22* NS 0.77*** - - 

NUtE -0.29* 0.44*** -0.46*** NS NS -0.21* NS -0.47*** 0.66*** NS - 

GU 0.67*** NS 0.82*** 0.59*** NS 0.50*** -0.51*** NS -0.59*** -0.48*** -0.32** 

*Signifcant at P ≤ 0.05. 

**Signifcant at P ≤ 0.01. 

***Signifcant at P ≤ 0.001. 
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Figure 1.3. Influence of N supply and environment on selected N-use traits. A) Changes in 

harvest index at low and high N (HI-N and HI+N), N-harvest index at high N (NHI+N), and genetic 

utilization (GU) due to the environmental index for maize hybrids grown at low N (0 kg N ha-1); 

and B) Changes in N-use efficiency (NUE), N-uptake efficiency (NUpE), and N-utilization 

efficiency (NUtE) due to the environmental index for maize hybrids grown with high N (252 kg 

N ha-1). Values shown for each phenotypic trait are averaged over all hybrids grown in each of 

the eight environments from 2011 to 2015. * Indicates significant slopes at P ≤ 0.001.  

 

 

A 
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Figure 1.4. Hierarchical cluster analysis using different N-use traits of 36 stiff-stalk synthetic 

(SSS, Group 1) and 53 non-SSS (NSSS, Group 2) inbred lines. Clusters A, B, C, D, and E represent 

groups of inbreds with different N-use trait performances. Clusters were generated using the 

inbreds’ GCA from 12 N-use traits. Inbred GCAs were calculated from 263 maize hybrids grown 

from 2011 to 2015 under low and high N conditions (0 and 252 kg N ha-1, respectively).  
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Table 1.4. Variation in hybrid yield when grown at low and high N (Yield-N and Yield+N), harvest index at low and high N (HI-N and 

HI+N), N-harvest index at low and high N (NHI-N and NHI+N), grain protein concentration at low and high N (Protein-N and Protein+N), 

N-use efficiency (NUE), N-uptake efficiency (NUpE), N-utilization efficiency (NUtE), and genetic utilization (GU) based on parental 

inbred cluster groups for the stiff-stalk synthetic lines (SSS, Groups 1A-1E) and non-stiff-stalk synthetic lines (NSSS, Groups 2A-2E). 

A total of 263 maize hybrids were grown from 2011 to 2015 under low and high N conditions (0 and 252 kg N ha-1, respectively). 

†N, number of ex-PVP inbreds categorized within each cluster group. 
‡LSD, Least significant difference was estimated from different cluster group within each phenotypic trait.  
§ NS, not significant (at P ≥ 0.05). 

Group N NUE NUpE NUtE GU

Low N High N Low N High N Low N High N Low N High N

kg kgNfert.
-1

kgplantN kgNfert
-1

kg kgplantN
-1

kg kgplantN
-1

SSS

1A 6 4.57 9.15 0.33 0.47 0.57 0.67 86.4 68.3 18.29 0.44 42.90 53.26

1B 6 5.05 8.82 0.39 0.48 0.57 0.69 85.0 64.1 15.37 0.42 41.10 64.41

1C 7 5.24 9.13 0.38 0.48 0.57 0.69 85.9 66.1 15.45 0.42 40.51 60.55

1D 6 4.93 9.29 0.37 0.49 0.57 0.69 82.2 64.8 17.90 0.42 43.42 60.44

1E 11 4.88 9.05 0.36 0.48 0.57 0.68 86.1 67.1 16.87 0.43 41.47 57.56

0.29 0.50 0.01 0.01 0.01 0.02 2.6 2.3 1.39 0.02 1.30 1.40

NSSS

2A 3 5.31 9.32 0.42 0.50 0.57 0.70 83.5 64.0 16.21 0.40 42.70 64.92

2B 16 5.02 9.17 0.37 0.48 0.57 0.69 83.3 65.0 16.71 0.42 42.22 60.18

2C 14 5.08 8.74 0.40 0.49 0.57 0.70 88.1 67.2 14.85 0.42 40.22 61.26

2D 4 4.31 9.52 0.29 0.45 0.57 0.66 86.3 69.1 21.11 0.48 43.75 51.91

2E 16 4.78 9.18 0.34 0.47 0.57 0.67 84.5 66.1 17.47 0.44 42.06 56.65

0.21 0.52 0.02 0.02 0.00 0.02 3.2 2.3 1.38 0.03 1.05 1.47LSD P ≤ 0.05

Yield HI NHI Protein

LSD P ≤ 0.05

Mg ha
-1

g g
-1

ggrainN gplantN
-1 g kg

-1
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Figure 1.5. Changes in the ranking of yield performances of select hybrids across environmental 

indices when grown with A) low N (0 kg N ha-1), and B) high N (252 kg N ha-1). Data values are 

the average yields within an environment for ICI740×PHK56 (exhibiting high tolerance to N-

deficiency and high positive response to N fertilizer), LH145×83IBI3 (exhibiting high tolerance 

to N-deficiency and low positive response to N fertilizer), and F118×LH214 (exhibiting low 

tolerance to N-deficiency and high positive response to N fertilizer).  

 

 

B 
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Figure 1.6. Box-plot of breeding value accuracies for yield at low and high N (Yield-N and 

Yield+N), grain protein concentration at low and high N (Protein-N and Protein+N), harvest index at 

low and high N (HI-N and HI+N), N-harvest index at low and high N (NHI-N and NHI+N), N-use 

efficiency (NUE), N-uptake efficiency (NUpE), N-utilization efficiency (NUtE), and genetic 

utilization (GU) in stiff-stalk synthetic (SSS) and non-stiff-stalk synthetic (NSSS) maize lines. 

Breeding value accuracy was estimated according to Eq. [9]. Values are based on the performance 

of 263 hybrids developed from these lines and grown in eight environments from 2011 to 2015 

under low and high N conditions (0 and 252 kg N ha-1, respectively). 
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Figure 1.7. Relationship between broad-sense heritability and estimated breeding value accuracy 

in maize lines for different N-use traits. Breeding value accuracies were averaged across heterotic 

groups. Abbreviations include yield at low and high N (Yield-N and Yield+N), grain protein 

concentration at low and high N (Protein-N and Protein+N), harvest index at low and high N (HI-N 

and HI+N), N-harvest index at low and high N (NHI-N and NHI+N), N-use efficiency (NUE), N-

uptake efficiency (NUpE), N-utilization efficiency (NUtE), and genetic utilization (GU) in stiff-

stalk synthetic (SSS) and non-stiff-stalk synthetic (NSSS) maize lines. Breeding value accuracy 

was estimated according to Eq. [9]. Values are based on the performance of 263 hybrids developed 

from these lines and grown in eight environments from 2011 to 2015 under low and high N 

conditions (0 and 252 kg N ha-1, respectively).  
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CHAPTER 2 

GENOMIC SELECTION USING MAIZE EX-PLANT VARIETY PROTECTION 

GERMPLASM FOR THE PREDICTION OF N-USE TRAITS 

 

ABSTRACT 

Maize (Zea mays L) yield increases associated with better usage of nitrogen (N) fertilizer 

will require innovative breeding efforts. Genomic selection (GS) for N-use traits may speed up the 

breeding cycle of research programs targeting for improved N-use efficiency (NUE) in maize. The 

objective of this study was to evaluate GS accuracy of 12 N-use traits in response to different 

training composition (TC) scenarios and training population (TP) sizes. A total of 552 maize 

hybrids were planted under low (0 kg N ha-1) and high N fertilizer (252 kg N ha-1) conditions 

across 10 environments. Training composition scenarios included: T0 (hybrids in which none of 

the parents were included in the random subset of inbreds), T1 (hybrids in which one of their 

parents were included in the random subset of inbreds), and T2 (hybrids in which both of their 

parents were included in the random subset of inbreds). Training population sizes ranged from 10 

to 40 or 30 to 90 hybrids, depending to the N-use trait. Across different TC, TP sizes, and N-use 

traits, GS accuracy ranged from -0.12 to 0.78 and was greatest with larger TP sizes when both 

parents of untested hybrids appeared in the training and validation sets (T2 hybrids). Moreover, 

GS accuracy in response to different TC and TP sizes was dependent on the N-use trait. Successful 

breeding for N-stress tolerance or improved yield response to N fertilizer level will require 

selection of specific N-use traits.    

 

INTRODUCTION 

The improvement of nitrogen use efficiency (NUE) in maize can provide environmental 

and economic advantages to agriculture, but requires advancements in multiple areas of the crop’s 

production (e.g. fertilizer products, crop management, precision agriculture, and crop genetic 

improvement). Breeding for maize NUE improvement entails several challenges, such as the 

genetic complexity of the trait, the strong interaction with the environment, and the high cost for 

field phenotyping. However, conventional breeding approaches have reported significant genetic 

improvement in increasing N stress tolerance in maize hybrids (Bänziger and Lafitte, 1997; 

Bänziger et al., 1999).  
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Although maize breeding has indirectly improved NUE due to direct selection for greater 

yield (Moose and Below, 2009), the genetic improvement of NUE has also received substantial 

attention by maize breeders. Moreover, successful maize NUE breeding will require improved 

statistical designs, appropriate breeding schemes, and the integration of selection for secondary 

traits (Bänziger et al. 2000). Nitrogen use efficiency can be defined as the product of nitrogen 

uptake efficiency (NUpE, the ratio of the additional plant N content due to fertilizer N to the 

amount of fertilizer-applied N) and nitrogen utilization efficiency (NUtE, the ratio of yield increase 

to the difference in plant N content compared to those of an unfertilized crop) (Moll et al., 1982). 

Likewise, NUpE and NUtE are often considered as important secondary traits for the genetic 

characterization of maize NUE (Uribelarrea et al., 2007; Haegele et al. 2013). Other secondary 

traits relevant for NUE improvement include: harvest index, grain protein concentration, and 

genetic utilization (Haegele et al. 2013). Genetic utilization (GU) is defined as the plant 

physiological efficiency under N stress conditions to utilize N for grain production. In addition to 

the use of phenotypic traits, another method of indirect selection for improved NUE is by using 

molecular markers. 

Marker-assisted breeding is becoming more commonly used in breeding programs as the 

cost of acquiring genotypic data becomes cheaper than phenotypic data (Bernardo, 2008). Linkage 

mapping studies were the first marker-assisted breeding efforts for improved NUE (Bertin and 

Gallais, 2001; Liu et al., 2002; Agrama, 2005). However, these linkage mapping studies provided 

inconsistent results. The identification of maize genes consistently associated with improved NUE 

is a complex task, since gene expression is dependent on the soil N level (Chen et al., 2015), the 

source of N fertilizer (Patterson et al., 2010), and the plant’s growth stage (Amiour et al., 2012). 

In addition to linkage mapping, several proteome studies designed to better understand the genetics 

of NUE have shown no relationship between transcriptome or metabolomics results (Simons et 

al., 2014). Recent research efforts using constitutive gene promoters have been used in plants to 

improve NUE (Xu et al., 2012), but transgenic genotypes with improved NUE performance are 

yet to be available in the commercial seed market. Gene identification (linkage mapping) and 

biotechnological methods rely on phenotypic traits with large marker effects. However, marker-

assisted breeding approaches with the ability to estimate small-effect genes (commonly associated 

in complex polygenic traits) may be another strategy for developing genotypes with superior NUE 

performance.      
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Genomic selection (GS) uses genome-wide markers to predict the genotype’s breeding 

value (Meuwissen et al. 2001). Therefore, GS could potentially be used for NUE improvement 

where many loci with small effects may together contribute to the phenotypic expression of a 

genotype. Genomic estimated breeding values (GEBV) can then be predicted by using the genomic 

relationship or the marker effects from individuals that were both phenotyped and genotyped (i.e., 

a training population). The efficiency of the genomic prediction can be measured by the prediction 

accuracy, which is an important component in the response to selection and genetic gain of a 

breeding program (Falconer and Mackay, 1996). In addition, further improvement using 

appropriate statistical analysis is necessary to obtain accurate prediction of phenotypes (Lipka et 

al., 2015). The main questions that plant breeders have in developing GS models pertain to the 

optimal composition of the training sets and the training population size. These decisions are 

typically based on the trait of interest and the budget available to the breeding program.  

Previous studies on genomic selection for different quantitative maize traits have 

demonstrated relatively high prediction accuracies for improving drought tolerance (Ziyomo and 

Bernardo, 2013), carotenoid grain content (Owens et al., 2014), and northern corn leaf blight 

resistance (Technow et al., 2013). These results suggest that GS may be a promising breeding 

technique for the genetic improvement of complex polygenic traits in maize. Nonetheless, there is 

no information available about the accuracy of GS for maize yield performance under different N 

fertilizer rates or for different N-use traits. This experiment used ex-Plant Variety Protection (ex-

PVP) germplasm adapted to the U.S. Corn Belt to investigate the following objectives: i) evaluate 

GS accuracy of different N-use traits, ii) predict yield performance under different N fertilizer 

rates, and iii) investigate the application of GS in NUE maize breeding programs. In addition, the 

impact of training composition and population sizes on GS accuracy was evaluated. The N-use 

trait identified with the highest prediction accuracy could be integrated into marker-assisted 

breeding strategies to accelerate NUE improvement in maize. 

 

MATERIALS AND METHODS   

Germplasm collection and genomic data 

A diversity panel of 89 ex-PVP and two public (B73 and Mo17) lines adapted to the U.S. 

Corn Belt were tested in this study (Table 1.1). The original seed source was acquired from the 

North Central Regional Plant Introduction Station (http://www.ars-grin.gov/npgs, verified 24 Aug. 
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2016). A collection of 12 important progenitor lines previously characterized by Hauck et al., 

(2014) were included in the diversity panel. Additionally, a random collection of inbreds 

originating from six different seed companies and released from 1972 and 2011 were also part of 

the diversity panel. While diversity panels can capture the historical genetic recombination 

performed by previous breeding programs (Lipka et al., 2015), the more recently released ex-PVP 

lines may contain the genetic diversity shifts observed during the past 20 yr (Smith et al., 2004).  

For all inbreds, DNA was isolated from 14-day old seedlings. Inbreds were genotyped 

using the genotype by sequencing method (Elshire et al., 2011) and two enzyme combinations 

were used to reduce genomic complexity: PstI-HF,Bfal and PstI-HF, HinP1I. Sequenced data were 

obtained from Illumina HiSeq2000 (W.M. Keck Center for Comparative and Functional 

Genomics, Urbana, IL) and single-nucleotide-polymorphism (SNP) data were called using the 

GBS pipeline in TASSEL 3.0 (Bradbury et al., 2007). Minor allele frequency cutoff was set to 

10%, and SNPs with more than 50% missing data were removed. A total of 26,769 SNPs were 

used for the analyses. 

Principal component analysis using the full set of SNP markers was performed on all 

inbreds categorized to distinct different heterotic groups (Figure 2.1). Moreover, the genomic 

relationship matrix (K matrix) between all inbreds was calculated according to VanRaden (2008), 

(Figure 2.2). Different heterotic groups consisted of 36 stiff-stalk synthetic (SSS) lines originating 

from the B73 cluster, versus 53 non-SSS (NSSS) lines, in which 19 lines were from the Iodent 

sub-heterotic group (PH207 cluster), and 34 lines were from the Lancaster sub-heterotic group 

(Mo17 cluster).   

Agronomic practices, ex-PVP hybrids, and experimental design 

Field experiments were conducted in eleven environments from 2011 to 2016. 

Experimental data from 2012 was removed from the analysis due to drought stress. Plots were 

planted using a precision plot planter (SeedPro 360, ALMACO, Nevada, IA) for one environment 

at DeKalb, IL (41°47′ N, 88°50′ W; 19 May 2014), six environments at Champaign, IL (40°3′ N, 

88°14′ W; 17 May 2011, 20 May 2013, 22 April 2014, 24 April 2015, 19 May 2015, and 18 April 

2016), and three environments at Harrisburg, IL (37°43′ N, 88°27′ W; 29 May 2013, 23 May 2014, 

and 26 April 2016). Plots were 5.6 m in length with 0.76 m row spacing, and two rows in width. 

The previous crop planted in each environment was soybean [Glycine max (L.) Merr.]. Final 
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population was adjusted to 79,000 plants ha-1. Pre-emergence weed control consisted of the 

herbicide Lumax® EZ (mixture of S-Metolachlor, Atrazine, and Mesotrione; Syngenta Crop 

Protection, Greensburo, NC) applied at a rate of 7 L ha-1 to control early season weeds. Before 

planting, seeds were treated with Maxim® XL fungicide (Fludioxonil and Mefenoxam at rate of 

0.07 mg active ingredient kernel-1; Syngenta Crop Protection, Greensburo, NC) and Cruiser® 5FS 

insecticide (Thiamethoxam at 0.80 mg active ingredient kernel-1; Syngenta Crop Protection, 

Greensburo, NC) for disease and insect damage protection, respectively. Additionally, Force 3G® 

insecticide [Tefluthrin 2,3,5,6-tetrafluoro-4-methylphenyl)methyl-(1α,3α)-(Z)-(±)-3-(2-chloro-

3,3,3-trifluoro-1-propenyl)-2,2-dimethylcyclopropanecarboxylate; Syngenta Crop Protection, 

Greensburo, NC] was applied at planting in-furrow (at a rate of 0.15 kg active ingredient ha-1) to 

prevent western corn rootworm (Diabrotica virgifera virgifera) larvae infestation.  

Single-cross hybrid seeds were created between SSS and NSSS lines in nursery trials from 

2011 to 2015 at the University of Illinois, Department of Crop Sciences Research and Education 

Center in Champaign, IL. Between 2011 and 2015, 259 hybrids were randomly tested (ex-PVP 

inbred combinations within and across seed companies) in a randomized complete block design 

with three replications. In 2016, 263 new hybrid combinations, in addition to 50 tested hybrids, 

were planted in an augmented design with four commercial hybrid checks randomly assigned in 

nine blocks. Although experimental error of genotypes cannot be estimated in augmented designs, 

this experimental design provides the opportunity to replicate more genotypes. New hybrids tested 

in 2016 were created based on the genomic prediction results using the phenotypic data obtained 

from the 2011 to 2014 experiments. A schematic representation of the incomplete hybrid 

combination factorial is shown in Figure 2.3. Across all 10 environments, a total of 522 single-

cross maize hybrids were planted. On average, each SSS line was combined in 16 (range 6-57) 

and each NSSS line was combined in 9 (range 2-38) different hybrid combinations. 

All research sites were planted at two N fertilizer rates (0 and 252 kg N ha-1; designated 

low and high N, or -N and +N, respectively) in a split-plot arrangement. The main-plot was hybrid 

and the split-plot was N fertilizer rate. Nitrogen fertilizer was hand applied in a diffuse band as 

urea (46-0-0) during the V2 to V3 growth stages (Ritchie et al., 1997) on 17 June 2014 at DeKalb, 

IL, 02 June 2011, 04 June 2013, 04 June 2014, 18 May 2015, 10 June 2015, and 24 May 2016 at 

Champaign, IL, and 25 June 2013, 13 June 2014, and 01 June 2016 at Harrisburg, IL. At maturity, 

plots were harvested with a two-row plot combine (SPC40, ALMACO, Nevada, IA). Grain yield 
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is reported as Mg ha-1 at 15.5% grain moisture. Grain protein concentration was estimated using a 

representative grain subsample from each plot collected during harvest using near infrared 

transmittance (NIT) spectroscopy (Infratec 1241, FOSS, Eden Prairie, MN). 

Phenotypic data analysis and genomic prediction model 

Nitrogen use traits were measured according to Haegele et al. (2013). Briefly, six whole 

plants from each experimental plot were harvested at the R6 growth stage (Ritchie et al., 1997) to 

measure biomass, grain weight, and plant N concentration. The twelve N-use traits measured in 

this study are described in Table 2.1. Adjusted means for hybrids tested in 2016 were calculated 

using best linear unbiased estimators (BLUEs) with hybrid as fixed effect and rows, columns, and 

environments used as random effects. General combining ability (GCA) and specific combining 

ability (SCA) were calculated using the phenotypic data obtained between 2011 and 2015 and the 

hybrid BLUEs from 2016. Best linear unbiased predictors (BLUPs) were calculated using the 

restricted maximum likelihood method according to the model described by Reif et al. (2013). The 

estimated breeding value of each hybrid was calculated according to Eq. [1]: 

EBVkl = μ + GCAk + GCAl + SCAkl   [1] 

where EBVkl is the estimated breeding value of klth hybrid; µ is the grand mean; GCAk is the 

general combining ability effect of kth SSS inbred (k=1 to 57); GCAl is the general combining 

ability effect of lth NSSS inbred (l=1 to 38), and SCAkl is the specific combining ability effect of 

klth hybrid (kl=1 to 522). All variance components were determined using the lmer4 package in R 

Studio (R Development Core Team, 2015). Phenotypic variance was calculated as the sum of all 

variance components, except the variance component for block effect and environment (Holland 

et al., 2003). Therefore, broad-sense heritability was calculated according to Eq. [2]: 

H2 = 2 × (σ2
GCAk × σ

2
GCAl × σ2

SCA) / (σ2
GCAk + σ

2
GCAl + σ2

SCA + σ2
GCA × E + σ2

SCA × E + σ2
R) [2] 

where H2 is the broad-sense heritability, and σ2
GCAk, σ

2
GCAl, σ

2
SCA are the variance components for 

the SSS GCA, NSSS GCA, and SCA, respectively. Similarly, σ2
GCA × E, σ2

SCA × E, σ2
R are variance 

components for GCA × E interaction, SCA × E interaction, and residual, respectively. 

Genomic best linear unbiased prediction (G-BLUP) of untested hybrids (yu) was calculated 

according to Eq.[3]: 

yu = CUT CTT
-1 yT   [3] 
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where CUT is the covariance matrix among untested and tested hybrids, CTT
-1 is the inverse of the 

variance-covariance matrix of the tested hybrids, and yT is the EBV of a set of tested hybrids. The 

hybrid’s EBV will vary according to the phenotypic information and the additive effect between 

the individuals (Lynch and Walsh, 1998). Therefore, the genomic relationship coefficients 

between SSS and NSSS inbreds (Figure 2.2) were assigned to CUT and CTT
-1 according to Bernardo 

(1996).  

Cross validation  

The estimation of prediction accuracy was performed in R Studio (R Development Core 

Team, 2015) using the cross validation approach described by Technow et al. (2014). For 

investigating the effect of training composition (TC) in the prediction accuracy, a random subset 

of 16 SSS and 30 NSSS lines were selected in each iteration. The 522 hybrids were categorized 

into T0 (hybrids in which none of the parents were included in the random subset of inbreds), T1 

(hybrids in which one of their parents were included in the random subset of inbreds), and T2 

(hybrids in which both of their parents were included in the random subset of inbreds). For 

investigating the effect of training population (TP) size in the prediction accuracy, a random subset 

of either 10, 20, 30, or 40 T2 hybrids (for the traits of HI, NHI, NUE, NUpE, NUtE, and GU) or 

30, 50, 70, or 90 T2 hybrids (for the traits of yield and grain protein concentration) were used to 

predict the T0, T1, or the remaining T2 hybrids. Prediction accuracy was calculated as the Pearson 

correlation between a hybrid’s EBV and predicted values (GEBV). Moreover, the cross-validation 

process was repeated 1,000 times. On average, predictions of T0, T1, and T2 consisted 65, 129, 

and 63 hybrids, respectively across iterations.    

 

RESULTS 

Genetic relationship and population structure between ex-PVP lines 

Principal component analysis using SNP markers of all inbreds revealed distinct clusters 

among heterotic groups (Figure 2.1). Mean relationship coefficients between SSS, NSSS, and SSS 

by NSSS lines were 0.59, 0.31, and 0.31 with standard deviations of 0.31, 0.23, and 0.15, 

respectively (Figure 2.4). Inbreds from the SSS group were more genetically related than inbreds 

from NSSS group. This variation in genetic relatedness between heterotic groups is due to the fact 
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that most SSS inbreds are B73 descendants and the inbreds of the NSSS group originated from 

two separate sub-heterotic groups (Iodent and Lancaster).  

Phenotypic variation and correlation 

Variance components and broad-sense heritability (H2) varied across N-use phenotypic 

traits for the 522 hybrids when grown with differing N supplies in 10 environments (Figure 2.5). 

Broad-sense heritability ranged from 0.11 to 0.77. Genetic variance and H2 were greater for traits 

when hybrids were grown under high N compared to low N conditions. Across all phenotypic 

traits, residual and GCA variances accounted for the majority of the total phenotypic variance, 

regardless of the N treatment. In contrast, SCA and genetic by environment interaction variances 

had a small contribution to the total phenotypic variance.  

A biplot depiction of the principal component analysis revealed different variations and 

correlations among phenotypic traits due to fertilization level for the field-grown hybrids (Figure 

2.6).  Overall, N-use traits associated with plant N partitioning and redistribution to the grain (i.e., 

GU, HI, and NHI+N) were highly correlated to yield under low N, while traits associated with the 

yield response to N fertilizer (i.e., NUE, NUtE, and NUpE) were correlated to yield under high 

soil N conditions. Within each N fertilizer treatment, grain protein concentration was negatively 

correlated to yield. In addition, NHI-N accounted for a small phenotypic variation, likely due to a 

large residual variance (Figure 2.5).  

Genomic prediction accuracy    

Across all N-use traits and TP schemes, G-BLUP accuracy ranged from -0.12 to 0.78 

(Tables 2.2 and 2.3). Prediction accuracy increased 13% when the TC changed from T0 to T1 and 

increased 10% when the TC changed from T1 to T2 hybrids when averaged across N-use traits 

and TP sizes (Figure 2.7). Increasing TP size was more effective when more genetic information 

(TC) was available in the TP. Consequently, increased TP size (from 30 to 90 or 10 to 40 hybrids) 

improved GS accuracy by 5, 19, and 31% using T0, T1, and T2 hybrids in the TC, respectively.  

Changes in prediction accuracy as a result of variation in TC and TP sizes were dependent 

on the N use trait. For example, HI-N and GU, compared to other traits, exhibited a greater increase 

in prediction accuracy due to increased TP size compared to increased inclusion of parents in the 

TC. In contrast, Protein-N exhibited a greater increase in prediction accuracy by changing the TC 
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rather than by increasing the training size. The differences found in the prediction accuracy 

response to the increased training population size and training composition among N-use traits will 

have direct implications for NUE breeding programs. 

 

DISCUSSION  

Prediction accuracy response to different training composition 

Hybrid performance prediction is mostly driven by the coancestry coefficient between 

individuals (Bernardo, 1996). In addition, genomic prediction for maize performance has also 

noted the importance of training composition on prediction accuracy (Riedelsheimer et al., 2013; 

Technow et al., 2013; Technow et al., 2014). Similar to these studies, more genotypes that are 

shared between the training and validation sets provided higher prediction accuracy (Figure 2.7). 

The related genetic constitution between training and validation sets allows for similar linkage 

phases between markers and QTL among these groups (Technow et al. 2013). Nonetheless, 

differences in prediction accuracy associated with TC were trait specific.   

High H2 and genetic relatedness between individuals are important factors for increased 

prediction accuracy in additive genetic models (Daetwyler at al. 2010). Using ex-PVP germplasm 

resulted in low genetic relatedness between the NSSS lines (Figure 2.4) and a large range of H2 

for N-use traits (Figure 2.5). Technow et al. (2014) compared different cross-validation methods 

using G-BLUP by changing the training composition and found higher prediction accuracy values 

than reported here, due to a greater number of both hybrids and environments. High prediction 

accuracies obtained by Technow et al. (2014) were associated with higher H2 and realized 

relationship between parental lines. Similarly, a low amount of phenotypic observations decrease 

genomic prediction accuracy (Meuwissen et al., 2001). 

Prediction accuracy response to increased training size 

Increased TP size has an important effect on GS accuracy with both animals (VanRaden et 

al., 2008) and crops (Lorenzana and Bernardo, 2009). However, increased TP size was minimally 

or not effective when no parental information was available in the training population (T0 hybrids), 

(Figure 2.7). Increased TP size may gain more importance than prediction accuracy when training 

and validation populations become more genetically related. 



40 
 

One of the possible reasons for the success of increasing prediction accuracy by increasing 

TP size is due to the fact that the SCA effect had only a small contribution to the total phenotypic 

variance (Figure 2.5). Therefore, increasing TP size will increase the precision to estimate the 

GCA effects (Technow et al., 2014). The greater importance of GCA than SCA for genomic 

prediction is mainly associated in plant species with genetically distinct heterotic patterns (Reif et 

al., 2007). This heterotic-pattern condition may be one explanation why prediction accuracy 

benefits more from increasing TP size using the T2 hybrids in a TP than the T0 hybrids. 

Another interesting finding from this study was the negative prediction accuracy found for 

NUtE and NHI-N (Table 2.3). While negative prediction accuracy for NUtE was observed only 

when using unrelated parents (T0 hybrids) in the TP, NHI-N provided negative accuracies 

regardless of TC or TP size. Previous reports have also reported negative prediction accuracy in 

maize (Riedelsheimer et al., 2013; Daetwyler et al., 2015). The large residual variance and small 

genetic variance of NUtE and NHI-N traits may have provided a poor genetic signal for the training 

model and reduced the GS accuracy. 

Use of secondary traits for NUE breeding 

One strategy for a maize NUE breeding program is to integrate into the genotype the 

desirable phenotypic traits that are correlated to increased yield under N-stress (Yield-N) or high N 

conditions (Yield+N). Moreover, the use of secondary traits may improve the precision to identify 

a genotype, identify the degree of the N stress, and aid plant breeders in making selection. Under 

low-N stress conditions, GU and HI-N both displayed higher GS accuracy and correlation to Yield-

N. These N-use traits may be integrated into maize breeding programs targeting improved 

performance under N-stress conditions. Alternatively, NUE and NUpE were the secondary traits 

that provided the highest GS accuracy under high N and correlation to Yield+N. These traits will 

be desirable in breeding programs developing hybrids for agricultural systems using high N 

fertilizer inputs.   

 

CONCLUSIONS 

Nitrogen use traits are highly polygenic and complex. Phenotyping for maize NUE under 

field conditions is time consuming and requires great research effort. The use of GS for NUE 

improvement holds great promise, since it can reduce the number of breeding cycles and the cost 
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for field phenotyping. Thus, the identification of highly heritable and predictable N-use traits is 

important and must be targeted according to the breeding objectives (tolerance to N-stress or yield 

response to N fertilizer). Training composition and size are important factors for GS accuracy, but 

their usefulness will vary according to the N-use trait desired. Future research integrating the G × 

E effect and crop growth models into GS may improve the prediction accuracy of N-use traits.   

 

REFERENCES  

Agrama, H.A. 2005. Application of molecular markers in breeding for nitrogen use efficiency. 

Molecular Genetics. 15:175-211.  

Amiour N., S. Imbaud, G. Clement, N. Agier, M. Zivy, B. Valot, T. Balliau, P. Armengaud, I. 

Quillere, R. Canas, T. Tercet-Laforgue, and B. Hirel. 2012. The use of metabolomics 

integrated with transcriptomic and proteomic studies for identifying key steps involved in 

the control of nitrogen metabolism in crops such as maize. J. Exp. Bot. 63:5017–5033. 

Bänziger, M., and H.R. Lafitte. 1997. Efficiency of secondary traits for improving maize for low-

nitrogen target environments. Crop Sci. 37:1110-1117. 

Bänziger, M., G.O. Edmeades, and H.R. Lafitte. 1999. Selection for drought tolerance increases 

maize yields over a range of N levels. Crop Sci. 39:1035-1040. 

Bänziger, M., G.O. Edmeades, D. Beck, and M. Bellon. 2000. Breeding for drought and nitrogen 

stress tolerance in maize: From theory to practice. Mexico, D.F. CIMMYT. 

Bernardo, R. 1996. Best linear unbiased prediction of maize single-cross performance. Crop Sci. 

36:50–56. 

Bernardo, R. 2008. Molecular markers and selection for complex traits in plants: Learning from 

the last 20 years. Crop Sci. 48:1649-1664.  

Bertin P., and A. Gallais. 2001. Genetic variation for nitrogen use efficiency in a set of recombinant 

inbred lines. II. QTL detection and coincidences. Maydica 46:53–68. 

Bradbury, P.J., Z. Zhang, D.E. Kroon, T.M. Casstevens, Y. Ramdoss, and E.S. Buckler. 2007. 

TASSEL: Software for association mapping of complex traits in diverse samples. 

Bioinformatics. 23:2633-2635. 



42 
 

Chen Q., Z. Liu, B. Wang, X. Wang, J. Lai, and F. Tan. 2015. Transcriptome sequencing reveals 

the roles of transcription factors in modulating genotype by nitrogen interaction in maize. 

Plant Cell Rep. 34:1761–1771.  

Daetwyler, H.D., R. Pong-Wong, B. Villanueva, and J.A. Woolliams. 2010. The impact of genetic 

architecture on genome-wide evaluation methods. Genetics 185:1021–1031. 

Daetwyler H.D., M.J. Hayden, G.C. Spangenberg, and B.J. Hayes. 2015. Selection on optimal 

haploid value increases genetic gain and preserves more genetic diversity relative to 

genomic selection. Genetics. 200:1341-1348.  

Elshire, R.J., J.C. Glaubitz, Q. Sun, J.A. Poland, K. Kawamoto, E.S. Buckler, and S.E. Mitchell. 

2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity 

species. Plos One. 6:1-10. 

Falconer, D.S., and T.F.C. Mackay. 1996. Introduction to quantitative genetics. 4th ed. Longman 

Technical and Scientific, Essex, UK. 

Haegele, J.W., K.A. Cook, D.M. Nichols, and F.E. Below. 2013. Changes in nitrogen use traits 

associated with genetic improvement for grain yield of maize hybrids released in different 

decades. Crop Sci. 53:1256-1268.  

Hauck, A.L., G.R. Johnson, M.A. Mikel, G.S. Mahone, A.J. Morales, T.R. Rocheford, and M.O. 

Bohn. 2014. Generation means analysis of elite ex-plant variety protection commercial 

inbreds: A new public maize genetics resource. Crop Sci. 54:174-189.  

Holland, J.B., W.E. Nyquist, and C.T. Cervantes-Martinez. 2003. Estimating and interpreting 

heritability for plant breeding: An update. Plant Breed. Rev. 22:9–112. 

Liu, R., H. Zhang, P. Zhao, Z. Zhang, W. Liang, Z. Tian, and Y. Zheng. 2002.  Mining of 

candidate maize genes for nitrogen use efficiency by integrating gene expression and 

QTL data. Plant Mol. Biol. Rep. 30:297-308.  

Lipka, A.E., C.B. Kandianis, M.E. Hudson, J. Yu, J. Drnevich, P.J. Bradbury, and M.A. Gore. 

2015. From association to prediction: Statistical methods for the dissection and 

selection of complex traits in plants. Curr. Opin. Pl. Bio. 24:110-118. 



43 
 

Lorenzana, R.E., and R. Bernardo. 2009. Accuracy of genotypic value predictions for marker-

based selection in biparental plant populations. Theor. Appl. Genet. 120:151–161. 

Lynch, M., and B. Walsh. 1998. Genetics and analysis of quantitative traits. Sinauer 

Associates, Inc., Sunderland, MA. 

Meuwissen, T.H.E., B.J. Hayes, and M.E. Goddard. 2001. Prediction of total genetic value using 

genome-wide dense marker maps. Genetics 157:1819-1829.  

Moll, R.H., E.J. Kamprath, and W.A. Jackson. 1982. Analysis and interpretation of factors which 

contribute to efficiency of nitrogen utilization. Agron. J. 74:562–564. 

Moose, S.P., and F.E. Below. 2009. Biotechnology approaches to improving maize nitrogen use 

efficiency. p. 65-77. In: A.L. Kriz and B.A. Larkins (eds). Molecular genetic approaches 

to maize improvement. Biotechnology in agriculture and forestry, Vol. 63. Springer-

Verlag, Berlin Heidelberg. 

Owens, B.F., A.E. Lipka, M. Magallanes-Lundback, T. Tiede, C.H. Diepenbrock, C.B. Kandianis, 

E. Kim, J. Cepela, M. Mateos-Hernandez, C.R. Buell, ES. Buckler, D. DellaPenna, M.A. 

Gore, and T.R. Rocheford. 2014. A foundation for provitamin A biofortification of maize: 

Genome-wide association and genomic prediction models of carotenoid levels. Genetics. 

198:1699–1716. 

Patterson, K., T. Cakmak, A. Cooper, I. Lager, A.G. Rasmudson, and M.A. Escobar. 2010. Distinct 

signaling pathways and transcriptome response signatures differentiate ammonium- and 

nitrate-supplied plants. Plant Cell Env.33:1486–1501. 

R Development Core Team. 2015. R: A language and environment for statistical computing. 

Available at http://www.r-project.org (verified 10 Dec 2016). R Foundation for Statistical 

Comput., Vienna, Austria. 

Reif, J.C., F.M. Gumpert, S. Fischer, and A.E. Melchinger. 2007. Impact of interpopulation 

divergence on additive and dominance variance in hybrid populations. Genetics 176:1931–

1934. 

Reif, J.C., Y. Zhao, T. Würschum, M. Gowda, and V. Hahn. 2013. Genomic prediction of 

sunflower hybrid performance. Plant Breed. 132:107–114. 



44 
 

Riedelsheimer, C., J.B. Endelman, M. Stange, M.E. Sorrells, J.L. Jannink, and A.E. Melchinger. 

2013. Genomic predictability of interconnected bi-parental maize populations. Genetics 

194:493–503. 

Ritchie, S.W., J.J. Hanway, and G.O. Benson. 1997. How a corn plant develops. Spec. Rep. No. 

48. Iowa State University of Science and Technology Cooperate Extension Service, Ames, 

IA. 

Simons, M., R. Saha, L. Guillard, G. Climent, P. Armengaud, R. Canas, C.D. Maranas, P.J. Lea, 

and B. Hirel. 2014. Nitrogen-use effciency in maize (Zea mays L.): From ‘omics’ studies 

to metabolic modeling. J. Exp. Bot. 65:5657-5671. 

Smith, J.S.C., D.N. Duvick, O.S. Smith, M. Cooper, and L. Feng. 2004. Changes in pedigree 

backgrounds of Pioneer brand maize hybrids widely grown from 1930 to 1999. Crop Sci. 

44:1935-1946. 

Technow, F., A. Bürger, and A. E. Melchinger. 2013 Genomic prediction of northern corn leaf 

blight resistance in maize with combined or separated training sets for heterotic groups. 

Genes Genomes Genet. 3:197–203. 

Technow, F., TA. Schrag, W. Schipprack, E. Bauer, H. Simianer, and A.E. Melchinger. 2014. 

Genome properties and prospects of genomic prediction of hybrid performance in a 

breeding program of maize. Genetics. 197:1343-1355. 

VanRaden, P.M. 2008. Genomic measures of relationship and inbreeding. Interbull Bull. 37:33-36. 

Uribelarrea, M., S.P. Moose, and F.E. Below. 2007. Divergent selection for grain protein affects 

nitrogen use in maize hybrids. Field Crops Res. 100:82-90.  

Xu G., X. Fan, and A.J. Miller. 2012. Plant nitrogen assimilation and use efficiency. Annu. Rev. 

Plant Biol. 63:153–182. 

Ziyomo, C., and R. Bernardo. 2013. Drought tolerance in maize: Indirect selection through 

secondary traits versus genomewide selection. Crop Sci. 53:1269-1275. 

 

 

 



45 
 

TABLES AND FIGURES 

 

 
Figure 2.1. Principal component analysis (PCA) of 89 ex-PVP and 2 public (B73 and Mo17) 

inbred lines using 26,769 single-nucleotide polymorphisms. The main progenitor lines for each 

cluster are identified: B73 for the stiff-stalk synthetic (SSS), PH207 for the Iodent, and Mo17 for 

the Lancaster heterotic groups. Colors represent the origin of the different inbred lines.   
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Figure 2.2. Heat map of the genomic relationship coefficients (K-matrix) for 91 maize inbred 

lines using 26,769 single-nucleotide polymorphisms. Rows and columns represent different 

inbred lines and genomic coefficients were calculated between each inbred combination. Dark 

red represents high genomic coefficients (high genetic relatedness between inbred lines) and 

white and light-yellow represent low genomic coefficients (low genetic relatedness between 

inbred lines). Hierarchical clusters using the K-matrix are represented by different heterotic 

groups (Stiff-stalk synthetic, Iodent, and Lancaster).   
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Figure 2.3. Schematic illustration of the mating factorial of 36 stiff-stalk synthetic by 53 non-

stiff-stalk synthetic lines. A total of 522 single-cross hybrids indicated by the orange squares were 

planted at two N fertilizer rates (0 and 252 kg N ha-1) across 10 environments in Illinois from 

2011 to 2016. Rows and columns represent different inbred lines. 
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Table 2.1. List of 12 phenotypic traits, units, acronyms, and formulas. Differerent trait 

measurements included: grain weight at low and high N (Grain-N and Grain+N, respectively), total 

above-ground dry biomass at low and high N (BM-N and BM+N, respectively), and total plant 

biomass N content at low and high N (PN-N and PN+N, respectively).  

Trait name, unit Trait acronym Formula 

Yield at low N, Mg ha-1 Yield-N - 

Yield at high N, Mg ha-1 Yield+N - 

Harvest index at low N, kg kg-1 HI-N 

𝐺𝑟𝑎𝑖𝑛−𝑁

𝐵𝑀−𝑁
 

 

Harvest index at high N, kg kg-1 HI+N 

𝐺𝑟𝑎𝑖𝑛+𝑁

𝐵𝑀+𝑁
 

 

Nitrogen harvest index at low N, kggrainN kgplantN
-1 NHI-N 

𝐺𝑟𝑎𝑖𝑛𝑁−𝑁

𝑃𝑁−𝑁
 

 

Nitrogen harvest index at high N, kggrainN kgplantN
-1 NHI+N 

𝐺𝑟𝑎𝑖𝑛𝑁+𝑁

𝑃𝑁+𝑁
 

 

Grain protein concentration at low N, g kg-1 Protein-N - 

Grain protein concentration at high N, g kg-1 Protein+N - 

Nitrogen use efficiency, kg kgNfert
-1 NUE 

𝑌𝑖𝑒𝑙𝑑+𝑁 − 𝑌𝑖𝑒𝑙𝑑−𝑁

𝑁 𝑟𝑎𝑡𝑒
 

Nitrogen uptake efficiency, kgplantN kgNfert
-1 NUpE 

𝑃𝑁+𝑁 − 𝑃𝑁−𝑁

𝑁 𝑟𝑎𝑡𝑒
 

Nitrogen utilization efficiency, kg kgplantN
-1 NUtE 

𝑌𝑖𝑒𝑙𝑑+𝑁 − 𝑌𝑖𝑒𝑙𝑑−𝑁

𝑃𝑁+𝑁 − 𝑃𝑁−𝑁
 

Genetic utilization, kg kgplantN
-1 GU 

  
𝑌𝑖𝑒𝑙𝑑−𝑁

𝑃𝑁−𝑁
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Figure 2.4. Density histogram of pairwise genomic relationship coefficients between SSS lines 

(A), NSSS lines (B), and SSS by NSSS lines (C). Coefficients are elements of the K-matrix as 

computed in the G-BLUP model. 
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Figure 2.5. Relative contribution to total phenotypic variance of general combining ability 

[Var(GCA)], specific combining ability [Var(SCA)], genetic by environment interaction [Var(G 

× E)], and residual variances [Var(R)] for 12 different N-use traits averaged over 522 maize 

hybrids grown at low (0 kg N ha-1) or high N (252 kg N ha-1) from 2011 to 2016. The measured 

traits included: yield at low N (Yield-N), yield at high N (Yield+N), harvest index at low N (HI-N), 

harvest index at high N (HI+N), nitrogen harvest index at low N (NHI-N), nitrogen harvest index at 

high N (NHI+N), grain protein concentration at low N (Protein-N), grain protein concentration at 

high N (Protein+N), nitrigen use efficiency (NUE), N-uptake efficiency (NUpE), N-utilization 

efficiency (NUtE), and genetic utilization (GU). Broad-sense heritabilities (H2) were estimated on 

a entry mean basis for the same hybrids described above.  
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Figure 2.6. Biplot derived from principal component analysis of 12 phenotypic traits. Principal 

component analyses were performed comparing N-use phenotypic traits to 522 single-cross 

hybrids receiving either low N (0 kg N ha-1) or high N (252 kg N ha-1) fertilizer and averaged 

across 10 environments from 2011 to 2016. Phenotypic traits positively correlated to yield at low 

N and yield at high N are respresented by blue and orange arrows, respectively. Phenotypic traits 

not positively correlated to yield (Low or High N) are represented by black arrows. 
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Table 2.2. Genomic prediction accuracies of maize yield when grown 

under low (Yield-N; 0 kg N ha-1) or high N (Yield+N; 252 kg N ha-1) and 

grain protein concentration under low (Protein-N) and high N (Protein+N) 

conditions in response to different training composition (TC) schemes and 

training population (TP) sizes. 

TC† TP‡ Yield-N Yield+N Protein-N Protein+N 

T0 30 0.17§ 0.17 0.13 0.16 

 50 0.20 0.21 0.13 0.17 

 70 0.21 0.24 0.15 0.19 

 90 0.22 0.26 0.13 0.20 

T1 30 0.23 0.29 0.24 0.23 

 50 0.29 0.39 0.30 0.30 

 70 0.34 0.45 0.35 0.35 

 90 0.37 0.50 0.37 0.39 

T2 30 0.27 0.37 0.36 0.28 

 50 0.38 0.53 0.53 0.41 

 70 0.47 0.64 0.67 0.53 

  90 0.53 0.72 0.76 0.62 
† Training composition (TC) for T0, T1, and T2 represent groups of 

hybrids with zero, one, and both parents that were tested in the training 

set, respectively.  
‡Training population (TP) size constituted from a random selection of 30, 

50, 70, and 90 single-cross hybrids set from a constant number of 16 SSS 

and 30 NSSS inbreds. The total data set consisted of a group of 522 

hybrids.  
§Accuracy values represent the Pearson correlation mean between 

observed and predicted values averaged over 1,000 cross-validation runs. 
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Table 2.3. Genomic prediction accuracies of maize harvest index when grown with low N 

(HI-N; 0 kg N ha-1) or high N (HI+N; 252 kg N ha-1), nitrogen harvest index under low N (NHI-

N) and high N (NHI+N), N-use efficiency (NUE), N-uptake efficiency (NUtE), N-utilization 

efficiency (NUtE), and genetic utilization (GU) in response to different training composition 

(TC) schemes and training population (TP) sizes. 

TC† TP‡ HI-N HI+N NHI-N NHI+N NUE NUpE NUtE GU 

T0 10 0.26§ 0.16 -0.08 0.06 0.05 0.06 -0.06 0.06 

 20 0.34 0.20 -0.12 0.08 0.07 0.08 -0.05 0.13 

 30 0.38 0.22 -0.12 0.11 0.09 0.09 -0.06 0.17 

 40 0.41 0.23 -0.10 0.12 0.11 0.09 -0.05 0.23 

T1 10 0.28 0.18 -0.05 0.09 0.11 0.08 0.03 0.15 

 20 0.45 0.28 -0.07 0.18 0.21 0.16 0.05 0.30 

 30 0.57 0.35 -0.09 0.28 0.28 0.21 0.07 0.41 

 40 0.63 0.42 -0.06 0.35 0.36 0.25 0.07 0.48 

T2 10 0.31 0.19 -0.04 0.11 0.14 0.10 0.08 0.19 

 20 0.53 0.33 -0.07 0.23 0.28 0.20 0.11 0.42 

 30 0.69 0.46 -0.08 0.38 0.40 0.28 0.15 0.56 

  40 0.78 0.55 -0.05 0.48 0.51 0.35 0.15 0.68 
† Training composition (TC) for T0, T1, and T2 represent groups of hybrids with zero, one, 

and both parents that were tested in the training set, respectively.  
‡Training population (TP) size constituted from a random selection of 10, 20, 30, and 40 single-

cross hybrids set from a constant number of 16 SSS and 30 NSSS inbreds. Total data set 

consisted of a group of 259 hybrids. 
§Accuracy values represent the Pearson correlation mean between observed and predicted 

values averaged over 1,000 cross-validation runs. 
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Figure 2.7. Prediction accuracy response to different training population sizes and compositions for 12 phenotypic traits of 

maize when grown with either low N (0 kg N ha-1) or high N (252 kg N ha-1) fertilization. Training composition schemes 

were categorized into T0 (hybrids in which none of the parents were included in the random subset of inbreds), T1 (hybrids 

in which one of their parents were included in the random subset of inbreds), and T2 (hybrids in which both of their parents 

were included in the random subset of inbreds). A total of 522 hybrids were used for the prediction of yield and grain protein, 

and 259 hybrids were used for HI, NHI, NUE, NUpE, NUtE, and GU. Vertical bars represent the standard deviation of the 

accuracy mean. 
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CHAPTER 3 

SELECTING MAIZE GENOTYPES WITH IMPROVED YIELD RESPONSE TO 

NITROGEN FERTILIZER AND PLANT DENSITY 

 

ABSTRACT  

Continued yield increases in modern commercial maize (Zea mays L.) hybrids will require 

increased plant density, improved N use efficiency, and breeding for a hybrid’s potential yield 

response to this management. The objective of this study was to determine the genetic variation of 

commercial hybrids in response to plant density and N fertilizer levels to assist breeding programs 

selecting for hybrids with high yield stability or adaptability to crop management. From 2011 to 

2014, 101 hybrids were grown in eight different environments at two planting densities (79,000 

and 110,000 plants ha-1), three N rates (0, 67, and 252 kg N ha-1), and four blocks. Broad-sense 

heritability increased with increased N rate and plant density. Increased plant density altered yield 

from -0.60 Mg ha-1 to +0.58 Mg ha-1 under high N conditions, while the yield response to increased 

N ranged from +4.47 to +5.64 Mg ha-1. Hybrids that combined above average yield under low N 

conditions and to the initial N fertilizer increment exhibited greater yield stability under high N 

conditions. Hybrid yield stability variance was larger under high N than low N conditions due to 

greater genetic by environment interaction. Selecting hybrids with high yield stability may be 

challenging since yield under lower N levels and yield increases with high N fertilization were 

negatively correlated. Hybrids that are adaptable to high plant density and N conditions exhibited 

greater yield potential, but also greater stability variance. 

 

INTRODUCTION 

Maize yield increases since the 1930s have been due to a combination of genetic 

improvement and better crop management practices (Duvick, 2005). Because maize genotypes 

interact with crop management in producing yield, understanding the dynamics between plant 

genetics and agronomic management will provide the opportunity to obtain the maximum yield 

potential of a hybrid using a corresponding recommended agricultural management system. In 

addition, continued increases in corn yield will depend on a hybrid’s ability to utilize resources 

more efficiently when grown under greater planting densities (Tollenaar and Lee, 2002) and under 
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favorable agronomic conditions (Boomsma et al., 2009). Nonetheless, increased plant density 

needs to be in synergy with other intensified management factors, such as better soil fertility, in 

order to minimize the current maize yield gap that exists in the U.S. Corn Belt (Ruffo et al., 2015).  

For maximum yield, nitrogen (N) is the nutrient required in the greatest amount for maize 

production (286 kg N to produce 14.4 Mg ha-1 of grain) accompanied by a high N harvest index 

(58%) in the grain (Bender et al., 2013). Increased N fertilizer rate was one of the major crop 

management practices that contributed to increased maize yield over the past 20 years (Egli, 2008). 

In comparisons of the genetic gain of maize hybrids under different levels of N fertility, newer 

hybrids (1990’s) exhibited greater yield than older hybrids (1970’s) under low and high N 

conditions (Tollenaar et al., 1997; O’Neil et al., 2004). Although this genetic improvement of 

maize did not increase plant total N uptake, current maize hybrids have greater N utilization, and 

approximately 70% of the genetic gain of maize yield under high N conditions is due to yield 

improvement under low N conditions (Haegele et al., 2013).  

Current commercial breeding programs select and develop elite hybrids under optimal 

agronomic inputs (high N fertilizer level and standard plant density), only evaluating a hybrid’s 

yield responses to different crop management practices at the pre-commercial stage. Therefore, 

there are limited reports of genetic variability of elite hybrids for different N-use traits (Bertin and 

Gallais, 2000). The genetic improvement in the yield response to N fertilizer in maize hybrids is 

well documented (Ding et al., 2005; Coque and Gallais, 2007; Haegele et al., 2013). However, 

these previous studies used a small representation of elite maize hybrids across a limited number 

of environments, which may have underestimated the genetic variation of current maize hybrid 

yields in response to N fertilizer supplementation. 

In addition to the genetic improvements in nitrogen use efficiency, tolerance to increased 

plant density is one of the most valuable agronomic advances since the development of the maize 

hybrid (Duvick, 1977). The most recent maize yield record in the U.S. (31.5 Mg ha-1) was achieved 

with a plant density (128,000 plants ha-1) much greater than common agronomic practices 

(National Corn Growers Association, 2015), indicating that the average yield of maize is still far 

from a plateau and that current maize hybrids exhibit greater crowding stress tolerance when 

compared to their predecessors (Tollenaar and Wu, 1999).  
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One of the possible reasons for the success of increasing plant density to improve maize 

yield is due to the fact that the yield potential of individual plants has not increased in the past 80 

years, rather maize hybrids have better stress tolerance, including the ability to tolerate higher plant 

densities (Tollenaar and Lee, 2002; Duvick, 2005). Increased plant density typically reduces the 

yield of individual plants, but increases light interception, and as a result, kernels produced per 

ground area, therefore increasing the area-wide source-sink ratio (Borras et al., 2003). In turn, the 

greater number of potential kernels produced per area in density- tolerant hybrids may minimize 

the yield decreases from environmental stresses. 

Genotypes that are tolerant to abiotic and biotic stresses are expected to have more yield 

stability, i.e., greater ability to maintain consistent yield across different environmental conditions 

(Tollenaar and Lee, 2002). On the other hand, genotypes that are responsive to high yield 

environments are defined as adaptable genotypes and are expected to have greater yield under 

favorable agronomic conditions. Stability and adaptability classifications were first proposed by 

Finlay and Wilkinson (1963) and are based on a hybrid’s performances compared to the 

corresponding environmental indices (average performance of multiple hybrids at a certain 

environment). High stability genotypes have been further characterized as “work-horse” hybrids, 

while hybrids with high adaptability are “race-horse” hybrids (Tollenaar and Lee, 2002). 

One of the future challenges of maize breeding will be selecting genotypes with greater 

yields in response to increased plant density with concurrent yield stability across environments 

(Tokatlidis and Koutroubas, 2004). Genetic gain for yield has been found to be reduced when 

maize hybrids were grown under high plant density conditions (De Leon and Coors, 2002; Fasoula 

and Tollenaar, 2005). These authors attributed the higher genetic gain observed at low plant 

densities to improved prolificacy and the yield potential of individual plants. However, most 

current elite hybrids are single-eared plants and are better adapted to increased plant densities than 

older hybrids. Breeding programs targeting for maize hybrids with improved tolerance to high 

plant density and utilization of N fertilizer need a comprehensive evaluation including a 

representative number of commercial maize hybrids, N rates, plant densities, and environments. 

Therefore, the objective of this research was to evaluate the genetic × environment × management 

interaction on current maize hybrid yields, yield stability, and adaptability.  
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MATERIALS AND METHODS   

Cultural practices 

Eight environments were used for the experiment, covering the years 2011 to 2014. Data 

from 2012 of the trial was excluded from the analysis due to severe drought stress. Research sites 

were planted for two years at DeKalb, IL (DK; 41°47′ N, 88°50′ W; 15 May 2013 and 20 May 

2014), three years at Champaign, IL (CH; 40°3′ N, 88°14′ W; 18 May 2011, 19 May 2013, and 08 

May 2014), and three years at Harrisburg, IL (HB; 37°43′ N, 88°27′ W; 01 June 2011, 29 May 

2013, and 23 May 2014). Field trials from 2011 and 2013 were conducted by Dr. Jason Haegele. 

Soil types at the research sites generally were Flanagan silt loam at DeKalb, IL, Drummer silty 

clay loam at Champaign, IL, and Patton silty clay loam at Harrisburg, IL. The previous crop 

planted in each environment was soybean [Glycine max (L.) Merr.].  

The experiment was planted using a precision plot planter with variable seeding rate 

capability (SeedPro 360, ALMACO, Nevada, IA). Plots were 5.6 m in length with 0.76 m row 

spacing and two rows in width. At planting, Force 3G insecticide [(tefluthrin 2,3,5,6-tetrafluoro-

4-methylphenyl)methyl-(1α,3α)-(Z)-(±)-3-(2-chloro-3,3,3-trifluoro-1-propenyl)-2,2-

dimethylcyclopropanecarboxylate; Syngenta Crop Protection, Greensboro, NC] was applied in-

furrow at a rate of 0.15 kg a.i. ha-1 to control soil pests. Pre-emergence herbicide Lumax EZ 

(mixture of S-metolachlor, atrazine, and mesotrione; Syngenta Crop Protection, Greensboro, NC) 

was applied at a rate of 7 L ha-1 to control early season weeds. Post-emergence herbicide Roundup 

(N-phosphonomethyl, glycine; Monsanto, St. Louis, MO) was applied at a rate of 1.75 L ha-1 when 

necessary.  

A set of representative elite single-cross maize hybrids commercially available at the time 

adapted to the state of Illinois were evaluated. These 101 commercial maize hybrids had a variety 

of biotechnology traits and seed treatment technologies, were from eleven different seed brands, 

and had relative maturities ranging from 101 to 117 days (Table 3.1). On average, 42 hybrids were 

planted at each environment. 

Treatments 

To assess the ability of the hybrids to tolerate high plant density conditions (Ruffo et al., 

2015), two plant densities (79,000 and 110,000 plants ha-1, denoted as standard and high plant 
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density, respectively) were used. Final plant stands were determined prior to harvest. Nitrogen 

stress tolerance was measured by check plot yield (0 kg N ha-1), while 67 and 252 kg N ha-1 were 

used to estimate the yield response to initial and maximum N fertilizer, respectively. Nitrogen 

treatments were broadcast applied as urea (46-0-0) between the V2 to V4 developmental stages in 

each environment (Ritchie et al., 1997). Nitrogen application dates were 18 June 2013 and 20 May 

2014 at DeKalb, IL, 03 June 2011, 13 June 2013, and 08 May 2014 at Champaign, IL, and 01 July 

2011, 25 June 2013, and 23 May 2014 at Harrisburg, IL. 

Yield and yield component measurements 

At maturity, plots were harvested with a two-row plot combine (SPC40, ALMACO, 

Nevada, IA). Grain yield is reported as Mg ha-1 at 15.5% grain moisture. A representative grain 

subsample from each plot was collected during harvest from which 300 random kernels were 

selected and weighed to estimate average kernel weight (KW). Kernel number (KN) per area was 

estimated from the total plot grain weight, individual kernel weight, and final plant density. Seed 

protein and oil concentrations were estimated using Near Infrared Transmittance (NIT) 

spectroscopy (Infratec 1241, FOSS, Eden Prairie, MN) from the same subsample used for yield 

component measurements. 

Statistical design, derived measurements, and analysis 

The experimental design was a strip-plot with a split plot arrangement in four randomized 

complete blocks within each environment. The main plot was hybrid, the split plot was N fertilizer 

rate, and the split-split plot was plant density level. Statistical analysis was performed using a 

linear mixed model approach in PROC MIXED in SAS version 9.4 (SAS Institute, 2013). Nitrogen 

fertilizer rates and plant density levels were included in the model as fixed effects, while 

environment, block, and hybrid were considered random effects. The interactions between fixed 

effects and random effects were included in the model as random effects. The normality of 

residuals, outlier observations, and assumptions of homoscedasticity were assessed using PROC 

UNIVARIATE in SAS. 

Since not all hybrids were planted in every environment, and the objective of this study 

was to make an inference about the distribution of current maize hybrid performances, best 

unbiased linear predictors (BLUP’s) were calculated within each N fertilizer and plant density 
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treatments using restricted estimation of maximum likelihood. Therefore, the phenotypic 

observations (𝑦𝑖𝑗𝑘) were modeled according to Eq. [1]:    

Yijk = μ + Ei + B(i)j + Gk + (G × E)ik + εijk        [1] 

in which Yijk is the phenotypic observation of ith environment within jth block, for kth hybrid, 𝜇 

is the overall mean, Ei is the random effect of ith environment (i=1, 2,…, and 8), B(i)j is the random 

effect of jth block nested within ith environment (j= 1, 2, 3, and 4), Gk is the genetic random effect 

of kth hybrid (k=1, 2, … , and 101), (G × E)ik is random effect of the interaction between kth hybrid 

and ith environment, and εijk is the random error term. Variance component estimates from this 

model were used to calculate the broad-sense heritability (H2) per hybrid mean basis (Holland et 

al., 2003). 

Nitrogen use efficiency was calculated as the ratio of grain yield increase from the amount 

of N fertilizer supplied relative to the unfertilized control treatment (Moll et al., 1982). In addition, 

yield stability and adaptability were calculated in PROC REG regressing the BLUP estimates from 

each hybrid (sum of the Ei, Gk, and G × Eik effects) against the environmental indices (Ei). Pearson’s 

pairwise correlation coefficients (r) between the hybrid b-values (slopes derived from the yield 

across environments arranged in increasing average yield order) at different N rates and population 

densities were calculated using PROC CORR. The mean of all hybrid b-values evaluated was set 

to 1.0 and hybrids with a b-value equal to 1 were considered average hybrids. High stability hybrids 

were defined as those with regression slopes of b < 1, i.e., “work-horse”; while hybrids with b > 1 

were classified as high adaptability, or “race-horse” hybrids (Tollenaar and Lee, 2002).  

Hybrids were separated into four groups based on comparing their yield performance to 

the mean distribution across environments for four phenotypic traits. The phenotypic traits 

considered in this study were: check plot yield (yield at 0 kg N ha-1 at 79,000 plants ha-1), initial 

N yield response (yield change between 0 and 67 kg N ha-1 at 79,000 plants ha-1), yield response 

to maximum N (yield change between 0 and 252 kg N ha-1 at 79,000 plants ha-1), and yield response 

to plant density (yield change between 79,000 and 110,000 plants ha-1 at 252 kg N ha-1). Mean 

separation for different hybrid groups were analyzed in PROC MIXED using hybrid group as fixed 

effect at the 95% significance level. The test for equal stability variances across hybrid groups was 

performed using the Brown-Forsythe method in PROC GLM (Brown and Forsythe, 1974).  
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RESULTS AND DISCUSSION 

Weather conditions 

Air temperature and rainfall amounts from all environments were obtained from the Water 

and Atmospheric Resources Monitoring Program (Illinois Climate Network, 2016) and presented 

in Table 3.2. During July 2011, precipitation at Champaign was 10.6 mm below the 10-yr average. 

While in 2011, both minimum and maximum average daily temperatures during July were greater 

than the 10-yr average at Champaign (min. +2.95 °C, max.+3.18 °C) and Harrisburg (min. 

+2.34°C, max.+2.51°C) (Table 3.2). Late vegetative and early reproductive development of maize 

usually occur during July and August in the U.S. Corn Belt, and are important growth stages in 

determining maize yield. In contrast, the weather of 2013 provided ideal environmental conditions 

for maize development and yield at all three sites, with daily temperatures similar to the 10-year 

average and above- average precipitation during July (+15.0, +4.8, and +9.9 mm at DeKalb, 

Champaign, and Harrisburg, respectively). In 2014, above average precipitation occurred during 

June (+17.9, +17.1, and +5.9 mm at DeKalb, Champaign, and Harrisburg, respectively), and below 

average temperature occurred in July with minimum daily average temperatures deviating from 

the mean by -2.25, -2.47, and -3.37 °C and maximum average daily temperature deviating from 

the mean by -2.46, -2.62, and -2.17 °C for DeKalb, Champaign, and Harrisburg, respectively. The 

environmental conditions in 2014 led to a statewide record corn yield 12,500 kg ha-1. 

Hybrid yields and variance components 

Averaged across environments, N fertilizer increased maize yield, but hybrids exhibited 

similar yields within N rates regardless of the plant density (Table 3.3). Environments provided 

different crop growing conditions (Table 3.1). Consequently, over the eight location-year 

environments, environmental indices for the average yield with high N conditions (252 kg N ha-1) 

deviated from the overall mean from -1.6 to +2.4 Mg ha-1 at the standard plant density (79,000 

plants ha-1) and from -1.9 to +2.3 Mg ha-1 at the higher plant density (110,000 plants ha-1) (Figure 

3.1). Although hybrids exhibited similar yields at both plant densities, the highest-yielding hybrids 

within each environment were usually grown at the higher plant density and with the highest N 

supply (data not shown).  

Maize genetic improvement for NUE has been more attributed to improved yield under 

low N than to yield increases with N fertilizer (Haegele et al., 2013). In this study, maize yield 
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under low N conditions (0 kg N ha-1) accounted for, on average, 55 and 52% of the yield under 

high N at the standard and high plant densities, respectively (Table 3.3). The initial yield response 

to N (i.e., the yield increase between 0 and 67 kg N ha-1) accounted for +2.7 and +2.9 Mg ha-1, and 

the yield response to maximum N (i.e., the yield increase between 0 and 252 kg N ha-1) accounted 

for +5.1 and +5.6 Mg ha-1 at the standard and high plant densities, respectively. As a result, the 

NUE for the initial yield response to N was greater than the NUE for the yield response to 

maximum N. Increased plant density may increase NUE under greater N fertilizer rates (165 and 

330 kg N ha-1) (Boomsma et al., 2009). Accordingly, commercial hybrids increased in NUE from 

34.0 to 37.7 kg kg N-1 for the initial N response and from 16.5 to 18.4 kg kg N-1 for the maximum 

N response under standard and high plant densities, respectively (Table 3.3), supporting the idea 

that maize hybrids have improved their tolerance to crowding stress (Tollenaar and Lee, 2002) in 

synergy with NUE improvement (Tollenaar and Wu, 1999). 

Environmental (σ2
E), genetic (σ2

G) and the genetic × environmental interaction (σ2
G × E) 

variances for yield differed across N rates and plant densities (Table 3.3). While the environmental 

variance for yield decreased from low to high N conditions, the genetic variance tended to increase. 

Other investigators have also reported a reduction in environmental variance for yield due to better 

agronomic conditions (Banziger and Cooper, 2001). Also, high N conditions may have reduced 

the soil heterogeneity and allowed for an increased genetic effect (Bertin and Gallais, 2000). At 

the standard plant density (79,000 plant ha-1), N fertilizer increased yield σ2
G × E over the 

unfertilized control, but at the high plant density the σ2
G × E remained similar regardless of the N 

fertilizer rate.  

High N conditions can increase heritability (Brun and Dudley, 1989; Bänziger et al., 1997; 

Bertin and Gallais, 2000) or decrease heritability (Agrama et al., 1999) depending on the 

germplasm and the agronomic condition evaluated. Higher heritability under high N can increase 

the effectiveness of selection and be used as indirect selection for maize genetic improvement 

under low N (Gallais et al., 2008). Conversely, a reduced response to selection has been found for 

maize hybrids grown under high plant densities due to reduced stand uniformity and individual 

plant yield (Fasoula and Tollenaar, 2005). In this study, genetic variance for yield increased 41% 

and broad-sense heritability increased 15% with increased plant density (Table 3.3). Therefore, 

current maize hybrids are more tolerant of crowding stress as a group, and under these conditions, 

the greater variability of yield potential allows for improved NUE and yield.  
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Yield components and grain quality 

Although plant density treatments did not affect overall yields, they influenced yield 

components (Figure 3.2). Increased plant density has been found to reduce total leaf area per plant, 

individual kernel weight (KW), and kernel number (KN) per plant (Borrás et al. 2003). Under low 

N, KW and KN were similar across plant densities. However, the maximum N rate increased both 

KW and KN by 16 and 34% at the standard plant density, and by 13 and 40% at high plant density, 

respectively, over the unfertilized control. Kernel number often exhibits greater plasticity than KW 

when maize hybrids are exposed to different agronomic conditions (Sadras et al., 2009; Boomsma 

et al., 2009). In a similar manner, KN was more correlated to yield than KW across all N and plant 

density treatments (Table 3.4). Maize seed set and the resulting KN is sensitive to N-stress (Below 

et al., 1981). Accordingly, the highest correlation coefficients were found between yield at low N 

and KN at both plant densities. Correlations between KW and KN to yield tended to decrease with 

increased N rate regardless of the plant density, but KW was more correlated to yield at the 

standard plant density than at the high plant density. Reduced correlations between yield 

components and yield with increased N fertilizer may be associated with increased genetic 

variance (Table 3.3) and to specific hybrid grain characteristics. Individual KW was under greater 

genetic control than KN at 0 and 67 kg N ha-1, but under high N both yield components were highly 

heritable. 

In addition to yield components, N fertilizer and plant density had an effect on grain quality 

(Table 3.5). Grain oil concentration was stable across plant density treatments. Therefore, due to 

increased yield, maximum N fertilizer increased oil content by approximately 35% over the control 

regardless of the plant density. In addition, N fertilizer increased grain protein content by 60% at 

both plant densities, due to increases in both yield and protein concentration. Although grain 

protein and oil proportions have a negative relationship (Simmonds, 1995), increases in N 

availability increased the content per area of both traits, while no changes to grain quality were 

observed with increased plant density. Nitrogen fertility affected protein more than oil content, 

since protein contains N. These results using 101 current commercial hybrids reveal less genetic 

variation in grain protein and oil concentration than previous studies (Below et al., 2004; 

Uribelarrea et al., 2004).  
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Hybrid characterization 

The large genetic variance for yield response to N fertilization and plant density highlights 

the importance of hybrid characterization to identify proper agronomic management. There was 

no difference among maize hybrids’ responses to N fertilizer and plant density when comparing 

different seed brands and relative maturities (data not shown). At high N, the majority of the 10 

highest-yielding and the 10 lowest-yielding maize hybrids were observed at the higher plant 

density condition (Table 3.6), indicating that hybrids with tolerance to crowding stress under high 

N can express high yield performance, while hybrids that are susceptible to crowding stress may 

have a more limited yield, regardless of N fertility. While full-season compared to short-season 

hybrids can exhibit greater biomass plasticity and partitioning to the grain in response to plant 

density (Sarlangue et al., 2007), there was no significant relationship for yield found in this study 

between hybrid maturity (CRM) and tolerance to crowding stress (data not shown). Contrasting 

results obtained by Sarlangue et al. (2007) may be attributed to the genetic improvement of current 

early maturity hybrids with increased reproductive sink capacity or to different agronomic 

conditions. 

Although the 10 highest-yielding hybrids achieved similar yields under high N conditions, 

these hybrids exhibited different NUE and yield component proportions across N rates and plant 

densities (Table 3.6). The 10 highest-yielding hybrids exhibited higher NUE (P ≤ 0.01) under 

initial N (NUE between 0 and 67 kg N ha-1) and high N (NUE between 0 and 252 kg N ha-1) than 

the 10 lowest-yielding hybrids. However, not all of the top-yielding hybrids expressed the same 

NUE at initial or high N conditions. Similarly, the 10 highest-yielding hybrids had greater KN at 

initial and high N conditions (KN change from 0 to 67 and 0 to 252 kg N ha-1, respectively) 

compared to the 10 lowest-yielding hybrids, but there was no significant difference in KW within 

each group. Differences in NUE between hybrids when grown under high N are attributed to both 

the difference in a hybrid’s yield performance at low N and its yield response to N fertility. 

In order to identify hybrids with good agronomic performance under conditions associated 

with lower soil N availability (i.e. lower rates of N fertilizer application and/or weather conditions 

leading to N loss), yields were compared at low N versus the response to initial N (Figure 3.3A). 

Yields at low N ranged from 5.87 to 6.78 Mg ha-1 and the initial N response ranged from +2.40 to 

+3.14 Mg ha-1 among all hybrids when averaged across all environments. Subsequently, hybrids 



65 
 

were divided into four groups: group 1A (42% of the hybrids) included those that yielded below 

average at low N but had an above average yield response to the initial N increment, group 2A 

(9% of the hybrids) included those with above average responses for both yield at low N and initial 

N increment, group 3A (4% of the hybrids) included those with below average responses for both 

yield at low N and the initial N increment, and group 4A (45% of the hybrids) included those with 

above average yield at low N but below average response to initial N. Since yield at low N and the 

yield response to the initial N increment were negatively correlated (r = –0.35), selecting hybrids 

with above average performance for both traits (group 2A) may be challenging in a maize breeding 

program. 

Hybrids adaptable to intensive crop management were identified as those with high yield 

response to both maximum N and increased plant density (Figure 3.3B). Among all hybrids, and 

averaged across environments, the yield response to maximum N fertilizer ranged from +4.47 to 

+5.64 Mg ha-1 and the yield response to increased plant density ranged from -0.60 to +0.58 Mg ha-

1. Compared to results from previous studies under similar agronomic conditions, the findings 

reported here identified substantially greater yield ranges for both response to maximum N 

fertilizer (Haegele et al., 2013) and increased plant density (Ruffo et al., 2015), demonstrating 

greater genetic variability for these traits in current elite maize hybrids. Moreover, four groups of 

hybrids were identified: group 1B (25% of the hybrids) included those with below average yield 

response to maximum N but above average response to increased plant density, group 2B (24% of 

the hybrids) included those with above average yield responses to both maximum N and increased 

plant density, group 3B (25% of the hybrids) included those with below average yield response to 

both maximum N and plant density, and group 4B (26% of the hybrids) included those with above 

average yield response to maximum N but below average response to increased plant density. 

Under standard plant density and high N, groups 2B and 3B obtained the same average yield (11.64 

Mg ha-1), which was significantly greater (P < 0.001) than groups 1B and 4B (11.32 and 11.19 Mg 

ha-1, respectively). However, under high N and high plant density, group 2B (11.99 Mg ha-1) 

obtained a significantly greater yield (P < 0.001) than groups 3B, 4B, and 1B (11.15, 11.59, and 

11.67 Mg ha-1, respectively). Maize hybrids that were adaptable to increased N fertilizer and plant 

density exhibited greater yield and would be more suitable for intensive crop management 

practices.  
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Hybrid stability analysis    

Yield stability among different N rates and plant densities was evaluated for 61 maize 

hybrids that were grown in at least three environments. Hybrids exhibited similar yield stability 

correlations within N levels across different plant densities (Table 3.7). Overall, phenotypic 

correlations for hybrid stability (b-values) across N treatments and plant densities for yield ranged 

from non-significant to 0.85. Correlation coefficients tended to be greater at standard compared to 

high plant density. In addition, hybrid yield stability appeared to be more associated with a hybrid’s 

tolerance to N stress at low N, than a hybrid’s response to N fertilizer or tolerance to crowding 

stress. Increased σ2
G × E at high N and high plant density may have resulted in decreased correlation 

coefficients for yield stability. 

Hybrids characterized with different crop management responses also exhibited different 

characteristics of yield stability across N and plant density treatments (Table 3.8). Group 2A 

(hybrids with above average yield at low N and initial N increment response) had greater yield 

stability (smaller b-value) than groups 1A, 3A and 4A at 67 kg N ha-1 (both plant densities) and 

greater yield stability than group 4A at 252 kg N ha-1 and standard plant density. Yield stability 

from hybrid group 2A tended to increase with additional N fertilizer regardless of the plant density, 

indicating that hybrids with above average tolerance to N loss will provide consistent performance 

across high yield environments and this stability is plant density independent. On the other hand, 

hybrid group 2B (hybrids with above average yield response to both maximum N and increased 

plant density) exhibited average yield stability across N and plant density treatments. Hybrids with 

above average response to maximum N and below average response to increased plant density 

(group 4B) had greater yield stability than hybrids with below average yield response to maximum 

N and above average response to increased plant density (group 1B). 

Previous authors have attributed less response to selection for yield at high plant density 

due to reduced stand uniformity, increased plant-to-plant variability, and reduced plant prolificacy 

(Hallauer and Sears, 1969; De Leon and Coors, 2002; Fasoula and Tollenaar, 2005). However, the 

improvement of maize agronomic management over time has increased stand uniformity and 

reduced plant-to-plant variability. In addition, current maize genotypes appear to be more density 

dependent, exhibit reduced barrenness, and are mostly single-ear hybrids. Hybrids with a high 

yield response to maximum N fertilizer and that are also plant density independent (their yield is 
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less hindered by increased plant density) may have greater yield stability under standard plant 

density. Yield stability variance significantly increased (P ≤ 0.05) with additional N fertilizer at 

both plant densities (Table 3.8). Under high N conditions, yield stability variance was notably 

greater at standard compared to the high plant density condition. 

 

CONCLUSIONS   

Current elite maize hybrids expressed large genetic variation for yield in tolerance to N 

loss, N fertilizer response, and tolerance to crowding stress when grown across different 

environments in Illinois. Yield stability was more associated with a hybrid’s ability to tolerate N 

stress and respond to N fertilizer than a hybrid’s ability to tolerate high plant density conditions. 

Selecting hybrids with above average yield performance under both low N and high N conditions 

may be challenging in a maize breeding program, since less than 10% of the hybrids evaluated in 

this study were characterized as such. These hybrids achieved greater yield stability under high 

yield environments. Although hybrids with an above average yield response to high N fertilizer 

supply and increased plant density exhibited greater yield performance, these hybrids also revealed 

larger stability variance suggesting that hybrid selection will be more advantageous under specific 

growing environments. Future research evaluating hybrids’ responses to agronomic management 

(e.g. N fertilizer, plant density, and row spacing) may be integrated with different hybrid selection 

methods for the development of maize hybrids with improved agronomic performance.  
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TABLES AND FIGURES 

Table 3.1. Hybrid names, seed company names, and crop relative maturity (CRM), for hybrids 

planted at DeKalb (DK), Champaign (CH), and Harrisburg (HB) in 2011, 2013 and 2014. 

Hybrid Company† CRM DK CH HB Stability 

      2013 2014 2011 2013 2014 2011 2013 2014 Analysis 

N45P-4011 Syngenta 101 x     x           

D42SS42 CPS 102    x      

N49W-3000GT Syngenta 102 x   x      

DKC55-09SSTX Monsanto 105 x   x      

206-78STXRIB Monsanto 106    x      

5415SS Winfield 106 x x  x x   x x 

5516SS Winfield 106  x   x   x x 

5828RIB Monsanto 107 x   x   x  x 

85V88-3000GT Syngenta 107   x   x    

D47SS23 CPS 107 x x  x x   x x 

G07F23-3111 Syngenta 107 x   x   x  x 

G07V88-5122 Syngenta 107     x     

N60F-3111 Syngenta 107  x      x  

N61P-3000GT Syngenta 107 x   x   x  x 

5875SS/RIB Winfield 108 x   x      

W5787RIB Wyffels 108 x   x      

209-46STXRIB Monsanto 109  x   x   x x 

209-53STXRIB Monsanto 109 x x  x x  x x x 

5975VT3P Winfield 109  x   x   x x 

84S08-4011 Syngenta 109   x   x    

N63H-3111 Syngenta 109 x   x   x  x 

N63R-3000GT Syngenta 109 x x  x x  x x x 

N64M-5122 Syngenta 109     x     

210-95STXRIB Monsanto 110 x   x   x  x 

6175VT3P Winfield 110 x   x      

DKC60-67RIB Monsanto 110 x x  x x  x x x 

N65D-3122 Syngenta 110 x   x   x  x 

W6487RIB Wyffels 110 x x  x x   x x 

W6627RIB Wyffels 110 x   x      

211-24STXRIB Monsanto 111 x x  x x  x x x 

211-35STXRIB Monsanto 111  x   x   x x 

6065SS Winfield 111  x   x   x x 

6148RIB Monsanto 111  x   x   x x 

61BV3 Growmark 111   x   x    
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Table 3.1. (Continued) 

Hybrid Company CRM DK CH HB Stability 

      2013 2014 2011 2013 2014 2011 2013 2014 Analysis 

D51VP32 CPS 111 x x  x x  x x x 

DKC61-16SSTX Monsanto 111 x   x   x  x 

DKC61-21SSTX Monsanto 111     x     x       

DKC61-54GENSSRIB Monsanto 111   x     x     x x 

N68A-3000GT Syngenta 111   x   x    

N68B-3111 Syngenta 111 x x x x x x  x x 

P1184XR Pioneer 111   x   x    

W6917RIB Wyffels 111 x   x   x  x 

212-86STXRIB Monsanto 112 x   x   x  x 

6160VT3P Winfield 112   x   x    

6258SS Monsanto 112 x x   x   x x 

6265SS Winfield 112 x x  x x  x x x 

6274RIB Winfield 112 x x  x x  x x x 

D52SS91 CPS 112 x x  x x  x x x 

DKC62-08RIB Monsanto 112 x x  x x  x x x 

DKC62-63VT3P Monsanto 112   x x  x x  x 

DKC62-77GENSSRIB Monsanto 112  x   x   x x 

DKC62-97RIB Monsanto 112 x x x x x x x x x 

H-90023110 Syngenta 112 x   x   x  x 

H-90114011 Syngenta 112 x   x   x  x 

N69Z-5222 Syngenta 112     x     

N70J-4011 Syngenta 112 x   x   x  x 

N72A-3111 Syngenta 112   x   x    

P1221AMXT Pioneer 112  x   x   x x 

P1236XR Pioneer 112   x   x    

W7477RIB Wyffels 112 x x  x x  x x x 

213-28STXRIB Monsanto 113  x   x   x x 

213-59STXRIB Monsanto 113 x   x   x  x 

33Z74XR Pioneer 113   x   x    

6358RIB Monsanto 113 x   x   x  x 

6364RIB Monsanto 113 x   x   x  x 

6378RIB Monsanto 113  x   x   x x 

63MV4 Growmark 113   x   x    

6594SS Winfield 113  x   x   x x 

6640VT3P Winfield 113 x x  x x  x x x 

83S06-3000GT Syngenta 113    x   x   

DKC63-33RIB Monsanto 113 x x  x x  x x x 

DKC63-

55GENDGVT2P 
Monsanto 113  x   x   x x 
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Table 3.1. (Continued) 

Hybrid Company CRM DK CH HB Stability 

      2013 2014 2011 2013 2014 2011 2013 2014 Analysis 

DKC63-84VT3 Monsanto 113   x   x    

H-91383000GT Syngenta 113   x x  x x  x 

N71U-3122 Syngenta 113 x   x   x  x 

N72Q-3111 Syngenta 113   x           x   

N74G-3000GT Syngenta 113 x     x     x   x 

P1395XR Pioneer 113   x   x    

6448RIB Monsanto 114  x   x   x x 

6914AS3000GT Winfield 114   x x  x x  x 

6926VT3P Winfield 114 x x  x x  x x x 

6960VT3P Winfield 114   x   x    

7087VT3P Winfield 114  x  x x  x x x 

83R38-3000GT Syngenta 114    x   x   

DKC64-69VT3P Monsanto 114   x   x    

DKC64-87GENSSRIB Monsanto 114  x   x   x x 

G14H66-GTA Syngenta 114 x   x   x  x 

H-93413000GT Syngenta 114 x   x   x  x 

N74R-3000GT Syngenta 114  x x  x x  x x 

N75H-5122A Syngenta 114     x     

N77P-3000GT Syngenta 114    x   x   

215-52VT3P Monsanto 115 x   x   x  x 

215-82VT3PRIB Monsanto 115 x   x   x  x 

7505VT3 Winfield 115   x   x    

DKC65-63VT3 Monsanto 115   x   x    

N79Z-3000GT Syngenta 115  x  x x  x x x 

H-95743111 Syngenta 116    x   x   

N78S-3111 Syngenta 116  x      x  

8505VT3P Winfield 117    x   x   

D57VP51 CPS 117       x     x     

† CPS, Crop Productions Services; Monsanto, Monsanto Company; Pioneer, DuPont Pioneer; Winfield, Winfield 

United. 
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Table 3.2. Average monthly minimum (Tmin.) and maximum (Tmax.) temperatures, and 

precipitations for different locations and years used in this study. Values in parenthesis indicate 

deviation from 10 yr- average within each location and year.   

 

 

 

 

 

Year Month Tmin. Tmax. Preciptation Tmin. Tmax. Preciptation Tmin. Tmax. Preciptation

cm cm cm

2011 May - - -
11.44 

(+0.50)

22.44     

(-0.95)

15.54             

(+4.38)

12.88 

(+0.16)

23.50     

(-0.97)

24.09              

(+7.42)

June - - -
17.54 

(+1.09)

28.40 

(+0.01)

14.00            

(+1.09)

18.55 

(+1.27)

30.35 

(+1.41)

25.66              

(+16.89)

July - - -
21.09 

(+2.95)

32.89 

(+3.18)

5.03                       

(-10.66)

21.41 

(+2.34)

32.83 

(+2.51)

14.67         

(+0.08)

Aug. - - -
17.59      

(-0.13)

31.02 

(+1.77)

5.70                      

(-5.38)

18.92 

(+0.01)

30.85 

(+0.34)

13.00          

(+3.12)

Sept. - - -
11.97     

(-1.38)

23.84       

(-2.52)

9.30                      

(-0.83)

12.97     

(-1.42)

24.60     

(-2.36)

22.10            

(9.22)

2013 May
10.41 

(+1.43)

22.92 

(+1.47)

11.67                  

(-1.10)

12.08 

(+1.14)

23.98 

(+0.58)

15.09                 

(+3.93)

12.85 

(+0.13)

24.57 

(+0.09)

13.74                  

(-2.93)

June
14.72      

(-0.05)

25.98     

(-0.69)

26.03    

(+15.00)

16.16     

(-0.27)

27.94      

(-0.44)

17.80              

(+4.89)

17.39 

(+0.11)

29.03 

(+0.08)

18.70             

(+9.92)

July
15.50     

(-0.47)

27.03     

(-0.90)

5.41                    

(-5.08)

17.56     

(-0.57)

28.26     

(-1.44)

11.22                        

(-4.47)

17.67     

(-1.39)

28.68     

(-1.62)

13.38                     

(-1.20)

Aug.
14.32     

(-0.64)

27.23 

(+0.27)

14.03      

(+0.44)

16.85     

(-0.87)

29.51 

(+0.25)

1.54                         

(-9.54)

18.24     

(-0.67)

29.33     

(-1.17)

21.06              

(+11.19)

Sept.
10.48 

(+0.31)

24.64 

(+0.23)

4.60                    

(-5.17)

14.01 

(+0.66)

28.35 

(+1.98)

1.63                        

(-8.50)

15.28 

(+0.88)

27.50 

(+0.53)

6.30                    

(-6.58)

2014 May
9.48 

(+0.51)

22.86 

(+1.41)

7.87                    

(-4.91)

11.99 

(+1.05)

23.76 

(+0.37)

13.80                 

(+2.63)

13.79 

(+1.07)

25.42 

(+0.93)

8.58                   

(-8.09)

June
15.47 

(+0.68)

27.05 

(+0.37)

29.00    

(+17.96)

17.76 

(+1.31)

28.61 

(+0.22)

30.10                

(+17.19)

18.84 

(+1.56)

28.72     

(-0.22)

14.76                

(+5.99)

July
13.72     

(-2.25)

25.47     

(-2.46)

8.03                    

(-2.47)

15.72     

(-2.41)

27.08     

(-2.62)

25.87               

(+10.17)

15.70     

(-3.37)

28.13     

(-2.17)

6.87                    

(-7.72)

Aug.
15.66 

(+0.69)

26.94     

(-0.01)

13.16                  

(-0.42)

18.13 

(+0.40)

28.70     

(-0.54)

4.54                       

(-6.54)

18.97 

(+0.06)

30.50     

(-0.01)

12.77              

(+2.9)

Sept.
9.15        

(-1.01)

22.96     

(-1.43)

9.70                     

(-0.07)

11.98     

(-1.36)

25.16     

(-1.20)

11.73               

(+1.60)

13.24     

(-1.15)

26.51     

(-0.45)

9.40                    

(-3.48)

 
ο
C  

ο
C  

ο
C

DeKalb Champaign Harrisburg
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Table 3.3. Plant density and N fertilizer effects on yield, variance components, broad-sense 

heritability (H2, estimated on hybrid-mean basis), and nitrogen use efficiency (NUE). Values are 

averaged across 101 maize hybrids grown at three locations (DeKalb, Champaign, and Harrisburg, 

IL) and three years (2011, 2013, and 2014).  

Plant 

density 
N Rate Yield† σ2

E σ2
G σ2

G × E σ2
ε H2 NUE 

plant ha-1 kg N ha-1 ------------------  Mg ha-1  ------------------  kg kg N-1 

79,000 0 6.3 ± 0.6 2.50 0.09 0.15 1.05 0.38  ± 0.10 - 

 67 9.1  ± 0.6 2.39 0.05 0.26 1.21 0.20  ± 0.11 34.0 ± 4.1 

 252 11.4  ± 0.4 1.62 0.16 0.23 0.75 0.52  ± 0.09 16.5 ± 2.2 

110,000 0 6.0 ± 0.6 2.68 0.17 0.29 1.10 0.45  ± 0.09 - 

 67 8.9  ± 0.7 3.34 0.19 0.35 1.42 0.43  ± 0.09 37.7 ± 3.9 

  252 11.6  ± 0.5 1.94 0.27 0.26 0.83 0.61  ± 0.06 18.4 ± 2.2 
† Yield, H2, and NUE average values are shown with ± 1 standard error for 95% significance level. 
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Figure 3.1. Influence of location, year, and plant population on grain yield, arranged by increasing 

average yield (Environmental index) for 101 maize hybrids grown at DeKalb (DK), Champaign, 

(CH), and Harrisburg (HB) under high N conditions (252 kg N ha-1) in 2011, 2013, and 2014. Dots 

represent yield estimates for individual hybrids within each environment and population. 

Horizontal lines in the box plot indicate the median, top and bottom edges of the box refer to 75th 

and 25th percentiles, and whiskers refer to 10th and 90th percentiles. 
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Figure 3.2. Plant density and N fertilizer rate effects on kernel number, kernel weight, and broad-

sense heritability (estimated on hybrid-mean basis) for 101 maize hybrids grown at three locations 

(DeKalb, Champaign, and Harrisburg, IL) and three years (2011, 2013, and 2014). Bars extending 

from data points indicate ±1 standard error for 95% significance level.  
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Table 3.4. Pearson’s pairwise correlation coefficients (r) between maize yield 

and yield components (kernel number and individual kernel weight) at different 

N fertilizer rates and plant densities. Values are averaged across 101 hybrids 

grown at three locations (DeKalb, Champaign, and Harrisburg, IL) over three 

years (2011, 2013, and 2014). 

  N Fertilizer Rate (kg N ha-1) 

 0 67 252 

Kernel parameter 79,000 plant ha-1 

Number, kernel m-2 0.90*** 0.85*** 0.74*** 

Weight, mg kernel-1 0.55*** 0.54*** 0.38*** 

    

 110,000 plant ha-1 

Number, kernel m-2 0.93*** 0.89*** 0.75*** 

Weight, mg kernel-1 0.38*** 0.46*** 0.30*** 

***Significant at P ≤ 0.001. 
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Table 3.5. Maize grain oil and protein concentration and content responses to N fertilizer 

supply and plant density. Values are averaged across 101 hybrids grown at three locations 

(DeKalb, Champaign, and Harrisburg, IL) over three years (2011, 2013, and 2014). 

  N Fertilizer Rate (kg N ha-1) 

Kernel parameter 0† 67 252 

 
79,000 plant ha-1 

Oil concentration, g kg-1 38.5 ± 0.1 38.0 ± 0.1 38.1 ± 0.1 

Oil content, kg ha-1 246 ± 25 347 ± 25 437 ± 18 

Protein concentration, g kg-1 58.9 ± 0.2 63.6 ± 0.1 77.5 ± 0.1 

Protein content, kg ha-1 376 ± 38 583 ± 44 890 ± 42 

 
110,000 plant ha-1 

Oil concentration, g kg-1 38.0 ± 0.1 37.3  ± 0.1 36.7 ± 0.1 

Oil content, kg ha-1 230 ± 26 335 ± 28 426 ± 17 

Protein concentration, g kg-1 58.0 ± 0.2 62.0 ± 0.1 75.5 ± 0.1 

Protein content, kg ha-1 348  ± 35 557 ± 45 876 ± 40 

† Oil and protein (concentration and content) average values are shown with ± 1 standard error for 

95% significance level. 
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Table 3.6. Plant density effects on yield, N-use efficiency (NUE), kernel number (KN), and 

kernel weight (KW) from the 10 highest and lowest-yielding maize hybrids grown under high N 

conditions (252 kg N ha-1). Values are averaged over three locations (DeKalb, Champaign, and 

Harrisburg, IL) and three years (2011, 2013, and 2014). Initial and high N for NUE indicate the 

ratio between yield and N fertilizer supplied at 67 – 0 and 252 – 67 kg N ha-1, respectively. Initial 

and high N values for both ΔKN and ΔKW indicate the change in kernel number and kernel 

weight between 67 – 0 and 252 – 67 kg N ha-1, respectively.  

 

 

†Least significant difference was estimated from groups of 10 hybrids in ascending yield order 

under high N conditions (252 kg N ha-1). 

Rank CRM Plant density Yield NUELowN NUEHighN ΔKNLowN ΔKNHighN ΔKWLowN ΔKWHighN

plant ha
-1

Mg ha
-1

1 113 111,000 12.5 45.4 24.6 1235.1 2027.0 6.6 35.5

2 115 111,000 12.3 46.8 25.4 1252.7 2021.5 15.9 51.5

3 110 111,000 12.3 38.9 24.2 1040.3 1909.4 -0.3 41.6

4 112 111,000 12.2 40.9 23.0 945.5 1765.1 8.8 29.3

5 113 111,000 12.2 47.7 24.1 1169.9 1968.7 13.7 33.0

6 111 111,000 12.2 44.4 23.8 1199.5 2075.5 8.8 33.5

7 111 111,000 12.2 45.9 24.3 1353.1 2599.5 9.3 17.9

8 113 111,000 12.2 44.4 23.5 1041.2 1838.2 23.9 44.9

9 114 111,000 12.2 42.2 21.7 1039.8 1714.8 17.5 39.5

10 109 111,000 12.1 45.5 24.6 979.7 1540.6 19.1 59.0

193 107 111,000 11.0 38.8 19.0 1001.1 636.1 2.8 15.5

194 102 79,000 10.9 41.6 18.6 906.4 493.4 15.5 29.4

195 115 111,000 10.9 42.0 22.6 1194.3 973.6 -3.7 17.0

196 109 111,000 10.9 39.4 19.9 888.9 804.0 14.3 21.7

197 111 111,000 10.9 40.0 20.7 1003.3 824.0 14.6 32.4

198 113 79,000 10.8 40.1 18.6 665.3 562.7 22.9 45.3

199 109 111,000 10.8 43.6 21.1 1185.5 960.4 12.7 23.9

200 113 111,000 10.7 41.2 20.8 968.8 797.1 7.7 20.4

201 114 111,000 10.5 45.3 19.7 1141.9 440.2 16.2 34.9

202 112 111,000 10.4 41.7 19.7 923.7 545.3 11.5 25.6

12.2 44.2 23.9 1125.7 1946.0 12.3 38.6

10.8 41.4 20.1 987.9 703.7 11.4 26.6

0.1 3.0 1.2 161.4 299.7 7.7 12.5

mg kernel
-1

Average from 10 highest-

yielding

Average from 10 lowest-

yielding

Least square difference       

(P  ≤ 0.01)

kg kg N
-1

kernel m
-2 
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Figure 3.3. Characterization of 101 elite maize hybrids under different agronomic conditions: A) 

relationship between yield at low N (0 kg N ha-1) and initial N response (67 – 0 kg N ha-1) and B) 

relationship between yield response to plant density (110,000 – 79,000 plt ha-1) at high N 

conditions and yield response to maximum N (252 – 0 kg N ha-1). Hybrids were grouped based on 

below or above average performance for each phenotypic trait. Values are averaged across three 

locations (DeKalb, Champaign, and Harrisburg, IL) and three years (2011, 2013, and 2014). 

Dashed lines represent the average performance from all hybrids within each phenotypic trait.   
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Table 3.7. Pearson’s pairwise correlation coefficients (r) for yield stability (b-values) from 

sixty-one maize hybrids grown at different N rates and plant densities and averaged across 

three locations (DeKalb, Champaign, and Harrisburg, IL) and three years (2011, 2013, and 

2014). 

  79,000 plt ha-1  110,000 plt ha-1 

  Nitrogen fertilizer rate (kg N ha-1) 

Plant density N rate 0 67 252  0 67 

plant ha-1 kg N ha-1  
 

79,000 67 0.54*** - -  - - 

 252 0.34** 0.46*** -  - - 

110,000 0 0.85*** 0.47*** 0.36**  - - 

 67 0.44*** 0.82*** 0.48***  0.43*** - 

 252 NS NS 0.56***  NS 0.32* 

NS, non- significant 

* Significant at P ≤ 0.10. 

**Significant at P ≤ 0.01. 

*** Significant at P ≤ 0.001.   



 

83 
 

Table 3.8. Plant density and N fertilizer effects on yield stability (b-value) 

from 61 maize hybrids averaged across eight environments and three 

years. Hybrids were grouped based on their average yield response to N 

fertilizer and plant density. Yield stability variance was calculated from 

all hybrids tested within each N fertilizer and plant density treatment.   

    
  Plant density (plant ha-1) 

  79,000   110,000 

      N fertilizer rate (kg N ha-1) 

Group N   0 67 252   0 67 252 

      Yield response to initial N vs. at 0 N at 79,000 plt ha-1 

1A 26   0.98 1.03 0.97   0.96 1.06 1.03 

2A 4   1.01 0.8 0.38   1.06 0.73 0.55 

3A 3   1.08 1.17 0.94   1.07 1.11 0.85 

4A 29   1.01 1.03 1.22   1.01 1.02 1.09 

LSD (P ≤ 0.05)†   NS 0.18 0.68   NS 0.25 0.56 

                    

      Yield response to increased density vs. to maximum N 

1B 17   1.05 1.08 1.36   1.1 1.1 1.14 

2B 17   0.99 1.02 1.05   0.96 1.04 1.1 

3B 12   0.94 0.99 0.97   0.91 1 0.84 

4B 16   1 0.98 0.77   0.96 0.95 0.93 

LSD (P ≤ 0.05)   0.06 NS 0.45   0.1 NS NS 

                    

Variance‡   0.01b 0.03b 0.41a   0.02b 0.06b 0.27a 
† Least square difference for yield stability between hybrid groups within N and 

plant density treatments (P ≤ 0.05); NS, Non- significant. 

‡ Within plant density level, variances followed by the same letter are not 

significant different according to the Brown-Forsythe method (P ≤ 0.05). 
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CHAPTER 4 

USING THE SMITH-HAZEL INDEX FOR THE AGRONOMIC CHARACTERIZATION 

OF MAIZE HYBRIDS 
 

ABSTRACT 

 Intensive crop management systems and accurate agronomic characterization of hybrids 

are important factors for continued maize yield increases. The yield response to nitrogen (N) 

fertilizer and to increased plant density are among the most important traits for maize 

improvement. The objectives of this research were to evaluate the effect of N fertilizer, increased 

plant density, and narrower row spacing on maize yield, and develop selection indices for better 

agronomic characterization of maize hybrids. In 2015 and 2016, 67 commercial maize hybrids 

were planted in three locations at three N fertilizer rates (0, 67, 312 kg N ha-1), three plant densities 

(79,000, 94,000, and 108,000 plants ha-1), and two row spacing arrangements (56 and 70 cm). 

Hybrids exhibited large genotypic variation and broad-sense heritability ranged from 0.66 to 0.87 

across different agronomic conditions. Smith-Hazel indices using the yield response to different 

agronomic conditions were generated to characterize hybrids for N stress tolerance and high yield 

potential. The hybrid response to N fertilizer was the most important agronomic factor influencing 

yield increases. The yield response to maximum N fertilizer and narrower row spacing averaged 

+5.9 and +0.53 Mg ha-1 yield increases over the unfertilized control, respectively across hybrids 

and environments. The large genetic variation and high heritability observed for the yield response 

to high N fertilizer supply combined with narrower row spacing suggests that further selection 

under this agronomic condition may provide high genetic gain and improve hybrid performance 

under intensive crop management systems.    

 

INTRODUCTION 

Maize yield and plant density in the U.S. Corn Belt have steadily increased since 1930 

(Troyer, 2004). However, the success of increased plant density affecting maize yield during the 

last seven decades was not associated with an equivalent increase in the individual plant yield 

potential (Duvick, 1997; Hernández et al., 2014). Rather, this yield increase over time was 

correlated with a greater number of kernels per unit area (Carlone and Russell, 1987; Li et al., 

2011), and to a lesser extent, increased kernel size (Barker et al., 2005). Because the sink capacity 

of an individual maize plant (ear size and number of ears per plant) has not increased, greater plant 
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densities will be important for continued maize yield increases, and will involve future crop 

management challenges (Egli, 2015). 

The yield response to increased plant density is usually related to the individual plant yield 

potential and the genotype’s tolerance to crowding stress (Hernández et al., 2014). Therefore, 

while little genotypic differences are observed for yield potential on an individual plant basis, 

previous research has reported large genotypic differences to crowding stress tolerance (Hernández 

et al., 2014). In addition, increased plant density can be associated with several plant physiological 

changes, such as increased plant-to-plant variability (Boomsma et al., 2009), changes in yield 

components (Haegele et al., 2014), increased anthesis-to-silking interval, and increased barrenness 

(Mansfield and Mumm, 2014). These physiological changes may reduce the crop growth rate 

during reproductive development (Rossini et al., 2011) by decreasing individual plant leaf area 

and light interception (Westgate et al. 1997), and increasing the crop senescence rate (Borrás et 

al., 2003). Alternatively, narrower row spacing (<0.76 m) may lead to less plant-to-plant variability 

by altering the light quality (red:far-red ratio) within the crop canopy (Borrás et al., 2003) and 

reducing plant-to-plant competition (Haegele et al., 2014). As a result, the combination between 

increased plant density and narrower row spacing may be one strategy to increase the number of 

plants per area, while achieving the individual plant yield potential.        

Maize genetic improvement and better crop management practices have both contributed 

to maize yield increases (Tollenaar and Lee, 2002). In addition to improved crowding stress 

tolerance in maize hybrids (Tollenaar and Lee, 2002), genetic improvement and crop management 

have contributed to cold tolerance and earlier planting dates (Kucharik, 2008), prolonged seed fill 

duration (Echarte et al., 2008), and greater tolerance to abiotic stresses such as nitrogen (N) 

deficiency (Haegele et al., 2013).  

While plant density in maize has continually increased, N fertilizer consumption in the U.S. 

has remained constant for the last three decades, indicating successful genetic improvement for 

maize nitrogen use efficiency (Haegele et al., 2013). In addition to improved nitrogen use 

efficiency, newer maize hybrids have exhibited greater tolerance to N stress than older hybrids 

(Ciampitti and Vyn, 2011). More recently, Mueller and Vyn (2016) have shown that newer hybrids 

have a greater ability to uptake N during late reproductive development and exhibited greater yield 

under N stress and higher plant density conditions than older hybrids.  
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The integration between plant genetics and crop management in maize breeding programs 

is becoming an important research topic in the seed industry. Hybrid selection and positioning into 

an agronomic management arrangement will require a better understanding of the interactions 

between important agronomic factors and maize yield, such as increased plant density, narrower 

row spacing, and different N fertility conditions. As such, maize hybrids that combine a high 

increased yield response to increased plant density, narrower row spacing, and high N fertility 

conditions may express an adaptability to intensified crop management practices and high yield 

potential. These hybrid types are often called ‘Racehorses’. On the other hand, hybrids that exhibit 

a high tolerance to N stress conditions may have stable yield performance across a wider range of 

environments. These hybrid types are often called ‘Workhorses’. 

The objectives of this study were to investigate the relative merits of increased plant 

density, narrower row spacing, and different N fertilizer conditions on commercial hybrids’ yield 

performance, understand the phenotypic and genotypic variation of these traits, and develop a 

selection framework for better agronomic characterization of hybrids. Selection indices (Smith, 

1936; Hazel, 1943) for each hybrid were generated, which considered the phenotypic variation and 

relationship of each agronomic factor across environments and their genetic contributions to the 

observed yield increases. The Smith-Hazel index selection has been commonly used in plant 

breeding for simultaneous selection of traits in a variety of crops (Smith et al., 1981). However, to 

the best of our knowledge, this method has not been used yet for characterization of hybrid 

responses to different agronomic factors. Smith-Hazel indices may be used to identify hybrids that 

are responsive to crop management (‘Racehorses’) or tolerant to N deficiency (‘Workhorses’). 

These hybrid indices may assist agronomists for better hybrid management recommendations.  

 

MATERIALS AND METHODS      

Cultural practices 

Six environments were used for the experiment, covering the years 2015 and 2016. 

Research sites were planted for one year at DeKalb, IL (DK; 41°47′ N, 88°50′ W; 22 May 2015), 

one year at Yorkville, IL (YV; 41°44′ N, 88°40′ W; 20 May 2016), and two years each at 

Champaign, IL (CH; 40°3′ N, 88°14′ W; 06 May 2015 and 24 April 2016), and Harrisburg, IL 

(HB; 37°43′ N, 88°27′ W; 02 June 2015 and 26 April 2016). Soil types at the research sites were 

Flanagan silt loam at DeKalb and Yorkville, IL, Drummer silty clay loam at Champaign, IL, and 
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Patton silty clay loam at Harrisburg, IL. The previous crop planted in each environment was 

soybean [Glycine max (L.) Merr.], and conventional tillage was used.  

The experiment was planted using a precision plot planter with variable seeding rate 

capability (SeedPro 360, ALMACO, Nevada, IA). Plots were 5.6 m in length and two rows in 

width. At planting, Force 3G insecticide [(tefluthrin 2,3,5,6-tetrafluoro-4-methylphenyl)methyl-

(1α,3α)-(Z)-(±)-3-(2-chloro-3,3,3-trifluoro-1-propenyl)-2,2-dimethylcyclopropanecarboxylate; 

Syngenta Crop Protection, Greensboro, NC] was applied in-furrow at a rate of 0.15 kg a.i. ha-1 to 

control soil pests. Pre-emergence herbicide Lumax EZ (mixture of S-metolachlor, atrazine, and 

mesotrione; Syngenta Crop Protection, Greensboro, NC) was applied at a rate of 7 L ha-1 to control 

early season weeds. Post-emergence herbicide Roundup (N-phosphonomethyl, glycine; Monsanto, 

St. Louis, MO) was applied at a rate of 1.75 L ha-1 when necessary.  

A set of 67 representative elite single-cross maize hybrids commercially available at the 

time in the state of Illinois were evaluated (Table 4.1). These hybrids originated from four different 

seed companies, had a variety of biotechnology traits and seed treatment technologies, and ranged 

in relative maturities from 104 to 117 days. On average, 41 hybrids were planted at each 

environment and 15 hybrids were planted in all environments. 

Treatments 

To assess the ability of the hybrids to respond to increased plant density conditions, three 

plant densities (79,000, 94,000, and 108,000 plants ha-1, denoted as standard, intermediate, and 

maximum plant density, respectively) were used. Final plant stands were determined prior to 

harvest. To assess the ability of the hybrids to respond to narrower row spacing, two row spacing 

configurations (0.76 and 0.50 m) were used. Nitrogen stress tolerance was measured by check plot 

yield (0 kg N ha-1), while 67 and 312 kg N ha-1 were used to estimate the yield response to initial 

and maximum N fertilizer, respectively.  

Treatments included: (i) 79,000 plants ha-1 at 76-cm row spacing with 0 kg N ha-1, (ii) 

79,000 plants ha-1 at 76-cm row spacing with 67 kg N ha-1, (iii) 79,000 plants ha-1 at 76-cm row 

spacing with 312 kg N ha-1, (iv) 94,000 plants ha-1 at 76-cm row spacing with 312 kg N ha-1, (v) 

108,000 plants ha-1 at 76-cm row spacing with 312 kg N ha-1, and (vi) 108,000 plants ha-1 at 50-

cm row spacing with 312 kg N ha-1. In 2016, treatment (vi) at Champaign was planted at 170,000 

plants ha-1 instead of the desired 108,000 plants ha-1 due to a problem in the configuration of the 

planter’s software and was removed from the data analysis. Nitrogen treatments were broadcast 
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applied as urea (46-0-0) between the V2 to V4 developmental stages in each environment (Ritchie 

et al., 1997). Nitrogen application dates were 11 June 2015 at DeKalb, IL, 16 June 2016 at 

Yorkville, IL, 28 May 2015, and 24 May 2016 at Champaign, IL, and 02 June 2015 and 01 June 

2016 at Harrisburg, IL. 

Yield and yield component measurements 

At maturity, plots were harvested with a two-row plot combine (SPC40, ALMACO, 

Nevada, IA). Grain yield is reported as Mg ha-1 at 15.5% grain moisture. A representative grain 

subsample from each plot was collected during harvest from which 300 random kernels were 

selected and weighed to estimate kernel weight (KW). Kernel number (KN) per area was estimated 

from the total plot grain weight, individual kernel weight, and final plant density.  

Statistical design, derived measurements, and analysis 

The experimental design was a strip-plot with a split plot arrangement in four randomized 

complete replications within each environment. The main plot was hybrid, the split plot was N 

fertilizer rate, and the split-split plot was plant density level. Statistical analysis was performed 

using a linear mixed model approach in PROC MIXED in SAS version 9.4 (SAS Institute, 2013). 

Plant density, row spacing, and N fertilizer levels were included in the model as fixed effects, 

while environment, replication, and hybrid were considered random effects. The interactions 

between fixed effects and random effects were included in the model as random effects. The 

normality of residuals, outlier observations, and assumptions of homoscedasticity were assessed 

using PROC UNIVARIATE in SAS. 

Since not all hybrids were planted in every environment, and the objective of this study 

was to make an inference about all possible current maize hybrids performance, best unbiased 

linear predictors (BLUP’s) were calculated within each N fertilizer, plant density, and row spacing 

treatment using restricted estimation of maximum likelihood. Therefore, the phenotypic yield 

observations (Yijk) within each treatment were modeled according to Eq. [4.1]:    

Yijk = μ + Ei + R(i)j + Gk + (G × E)ik + εijk  [4.1] 

in which Yijk is the phenotypic observation of ith environment within jth replication, for kth hybrid, 

μ is the overall mean, Ei is the random effect of ith environment (i=1, 2,…, and 6), R(i)j is the 

random effect of jth replication nested within ith environment (j= 1, 2, 3, and 4), Gk is the genetic 

random effect of kth hybrid (k=1, 2, … , and 67), (G × E)ik is random effect of the interaction 

between kth hybrid and ith environment, and εijk is the random error term. Variance component 
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estimates from this model were used to calculate the broad-sense heritability (H2) per hybrid mean 

basis. Phenotypic variance (σ2
P) was calculated according to Eq. [4.2]: 

σ2
P = σ

2
G + (σ2

G×E / e) + (σ2
ε / er) [4.2] 

where σ2
G is the genotypic variance, σ2

G×E is the genotypic by environment interaction variance, 

σ2
ε is the residual variance, e is the harmonic mean for the number of environments, and r is the 

harmonic mean for the number of replications. Broad-sense heritability (H2) was calculated as the 

ratio between σ2
G and σ2

P. Pearson’s pairwise correlation coefficients (r) between the hybrid yield 

at different treatments and yield components were calculated using PROC CORR. Principal 

component analysis was performed to identify patterns among hybrid yield performance across 

different agronomic conditions using R Studio (R Development Core Team, 2015). 

The identification of ‘Racehorse’ hybrids, or hybrids with adaptability to high yield 

environments (i.e. responsive to crop management), and ‘Workhorse’ hybrids, or hybrids with 

acceptable yields in a low fertility environment (i.e. tolerant to N loss) was achieved based on a 

hybrid’s yield response to different agronomic management conditions. Accordingly, ‘Racehorse’ 

hybrids are the genotypes that have greater yield increases in the following categories: (i) yield 

response to maximum N fertilizer (RTN, yield change between 0 and 312 kg N ha-1 when grown 

at 79,000 plants ha-1), (ii) an intermediate plant density (IntRTD, yield response between 79,000 

and 94,000 plants ha-1 when grown with 312 kg N ha-1), (iii) maximum plant density (MaxRTD, 

yield change between 94,000 and 108,000 plants ha-1 when grown with 312 kg N ha-1), and (iv) 

narrower row spacing (RTR, yield change between 76 and 50-cm row spacing when grown at 

108,000 plants ha-1 and 312 kg N ha-1). Conversely, hybrids with high Check Plot (Check, yield at 

0 kg N ha-1) and a high initial yield increase when grown with moderate N (InitN, yield change 

between 0 and 67 kg N ha-1 at 79,000 plants ha-1) supply were considered ‘Workhorse’ hybrids. 

Hybrids were categorized into decile ranks from 1 to 10 using the PROC RANK procedure 

of SAS to generate scores for Check Plot, initial N response (InitN), response to maximum N 

(RTN), yield response to intermediate population (IntRTD), yield response to maximum plant 

population (MaxRTD), and yield response to row spacing (RTR). This assessment provided scores 

for each parameter and hybrid within each year, and combined across all years using the overall 

yields for the hybrid. Scores for each parameter (and the indices) ranged from 1 to 10, with 1 being 

the least yield increase compared to the overall average, and 10 being the greatest yield increase 

compared to the overall average, with average ranking equaling 5. 
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‘Racehorse’ and ‘Workhorse’ indices were estimated using a multiple regression approach 

with the Smith-Hazel index (Smith, 1936; Hazel, 1943). The data for the yield response to narrower 

row spacing at Champaign in 2016 was not included in the ‘Racehorse’ index analysis. Moreover, 

the genotypic and phenotypic variance-covariance matrices among all the parameters were 

estimated using restricted maximum likelihood in PROC MIXED of SAS (Holland, 2006). Index 

weights (vector) for each parameter were estimated by multiplying the phenotypic covariance 

matrix, the genotypic covariance matrix, and a vector of weight 1 Eq. [4.3]. ‘Racehorse’ and 

‘Workhorse’ indices were calculated using the relative weights of each parameter multiplied by 

their corresponding scores (Eq. [4.4] and [4.5]). 

bn = P-1 G a [4.3] 

‘Workhorse index’ = b1Check + b2InitN  [4.4] 

‘Racehorse index’ = b3IntRTP + b4MaxRTP + b5RTN + b6RTR [4.5] 

Where bn is the vector of the weights of the indices, P-1 is the inverse matrix of the phenotypic 

variance-covariance, G is the matrix of the genetic variance-covariance, and a is the initial weight 

(a = 1).  

 

RESULTS AND DISCUSSION 

Yield performance and variance components 

When hybrids were grown at 79,000 plants ha-1, N fertilizer increased yield by 60 and 74% 

with the initial (67 kg N ha-1) and maximum (312 kg N ha-1) N fertilizer conditions, respectively 

(Table 4.2). These yield increases indicates that the initial N fertilizer amount had a greater 

contribution to yield than the additional (maximum) N fertilizer. When hybrids were grown with 

maximum N, average yield remained unchanged, regardless of increasing the plant density or 

providing narrower row spacing. Yet notably, the top 8 highest yields of hybrids (ranging from 

16.3 to 16.7 Mg ha-1), when averaged across all environments and treatments, were obtained under 

the narrower row spacing and the highest plant density (108,000 plants ha-1), (data not shown). 

Continued maize yield increases will require a synergistic integration between important 

agronomic practices (increased plant density, better soil fertility, and plant protection), (Ruffo et 

al. 2015). Although this study did not evaluate different fertilizer sources and foliar protection, it 

is possible to achieve even greater yields under higher plant density and narrower row spacing 

conditions than the current national average (National Corn Growers Association, 2015).  
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Similar to previous research (Boomsma et al., 2009), this study highlights the importance 

of breeding efforts to simultaneously target maize genetic improvement in tolerance to crowding 

stress, N-stress, and the yield response to N fertilizer. Large genotypic variation was found for 

yield performance across the diverse N fertilizer rates and plant density conditions provided in this 

study. Previous studies have also reported a large genotypic variation in maize hybrids in their 

response to N fertilizer supply levels (Uribelarrea et al., 2007) and increased plant density 

(Sarlangue et al., 2007). However, genotypic variance (σ2
G) increased with increasing N fertilizer 

rate and plant density (Table 4.2). Also, the σ2
G for yield, when hybrids were grown at the narrower 

row spacing, high plant density, and maximum N conditions was at least two fold greater than 

when grown with any other agronomic treatment. The large σ2
G found under these conditions may 

be due to higher yield potential conditions and decreased plant-to-plant competition with abundant 

soil N availability. Therefore, maize genotypes when grown under narrower row spacing were able 

to express more of their individual plant yield potential and via different physiological mechanisms 

(e.g. root growth, photosynthetic activity, and biomass accumulation), (Borras et al., 2003).  

In addition to σ2
G, residual variance (σ2

ε) for yield increased under the narrower row 

spacing, high plant density, and high N conditions compared to other agronomic treatments (Table 

4.2). The large σ2
ε for yield found when plants were grown under narrower row spacing may be 

associated with a greater border effect between plots (influenced by the neighboring plots’ plant 

height and plant size). This study used two-row plots; although it was blocked by hybrid, it is 

possible that four-row plots may decrease the border effect and σ2
ε, and increase broad-sense 

heritability (H2). When averaged across all the agronomic conditions studied, yield H2 ranged from 

0.66 to 0.87 and was less under low and initial N conditions (0 and 67 kg N ha-1, respectively). 

Similar to previous reports (Brun and Dudley, 1989; Bänziger et al., 1997), high N fertilizer 

conditions decreased soil heterogeneity and increased H2. Conversely, increased plant density 

when plants were grown under maximum N and 76-cm row spacing conditions had no effect on 

H2.   

Yield components  

When averaged across all hybrids and environments, the relationship between yield and 

yield components changed in response to different row spacing, plant density, and N fertilizer 

conditions (Table 4.3). Under N stress conditions, a reduction in dry matter redistribution to the 

reproductive organs may result in decreased kernel number (KN) and kernel weight (KW), 
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(Below et al., 2000). As such, the Pearson’s correlation between yield, KN, and kernel number 

per plant (KNPP) was higher when hybrids were grown under low N than high N conditions; 

suggesting that N-deficient tolerant hybrids have greater seed-set under N-stress conditions than 

hybrids that are susceptible to N deficiency.  

Yield components are more affected by N fertilizer supply level than increased plant 

density (Ciampitti and Vyn, 2011). When hybrids were grown under conventional row spacing 

(76 cm) and high N conditions, the correlation between yield and KN, KNPP, and KW were 

similar at 79,000 and 94,000 plants ha-1 (Table 4.3). But, when hybrids were grown at the highest 

plant density (108,000 plants ha-1) and conventional row spacing only KW was correlated to 

yield. Under the narrower row spacing condition, the average yield correlation coefficients for 

KN was greater than for KNPP or KW. The lower correlation found between yield and KN or 

KNPP at high plant densities (94,000 and 108,000 plants ha-1) may be associated with greater 

plant-to-plant variability than when the plants were grown at the lowest plant density (79,000 

plants ha-1). 

Yield response to different agronomic conditions 

Yield increases in response to high plant densities and supplemental fertility are only 

possible with hybrids that are tolerant to crowding stress and have high yield potential (Haegele et 

al., 2014). Therefore, hybrid characterizations as to how they are affected by different agronomic 

conditions are essential for better agronomic recommendations. The hybrid yield response to 

maximum N fertilizer (312 kg N ha-1) was the agronomic parameter with the greatest impact on 

yield (Table 4.4). Across all hybrids and environments, the initial (InitN) and maximum (RTN) 

yield responses to N fertilizer averaged +5.1 and +5.9 Mg ha-1, respectively. In contrast, the 

intermediate (IntRTD) and maximum (MaxRPD) response to increased plant density changed 

yield by +0.30 and -0.12 Mg ha-1, respectively. In addition, the average yield response of the 

hybrids to being grown at the narrower row spacing (RTR) was +0.53 Mg ha-1.  

Broad-sense heritability (H2) for yield ranged from 0.40 to 0.91 across the different 

agronomic parameters provided, suggesting that additive and dominant effects will differ 

depending on the agronomic trait (Table 4.4). The low H2 found for hybrids’ MaxRTD may have 

increased the shrinkage effect on the BLUP’s estimation (Robinson, 1991) reducing the range of 

this phenotypic value. Alternatively, there was high H2 exhibited for yield averaged over the 
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hybrids and environments in their response to maximum N supply (RTN) and/or the narrower row 

spacing (RTR).  

Agronomic hybrid characterization using selection indices 

The evaluation of the crop responses to different agronomic factors gives growers and 

agronomists the knowledge to better position their hybrids and to obtain the maximum yield 

potential of the hybrid using the recommended agricultural management. Typical variety testing 

methods using ‘standard’ agronomic conditions (e.g., 312 kg N ha-1 at 79,000 plants acre-1 and 76-

cm row spacing) are used to determine a hybrid’s yield potential, but do not provide information 

regarding a hybrid’s responses to N loss, increased plant density, or narrower row spacing. 

Intensive crop management practices are necessary in order to decrease the current corn yield gap 

existing in the U.S Corn Belt (Ruffo et al., 2015). Moreover, hybrid selection based on agronomic 

management performance is a key component to the success of intensive farming practices.  

Using the Smith-Hazel Index Selection method (Smith et al., 1981), this study identified 

the impact on yield due to changes in the most important agronomic factors (e.g. N rate, hybrid 

selection, plant population, and row spacing) using the factors’ phenotypic and genotypic 

correlations and variance components. The average hybrid phenotypic and genotypic correlation 

coefficients for yield between check plot (Check) and InitN (used to calculate ‘Workhorse’ 

indices), and RTN, IntRTD, MaxRTD, and RTR (used to calculate ‘Racehorse’ indices) are 

presented in Table 4.5. Although producing high yields when grown in unfertilized (Check) and 

low N (InitN) conditions are desirable traits for ‘Workhorse’ hybrids, their negative phenotypic 

and genotypic correlations highlight the challenge for breeding for N stress tolerance. Similarly, 

the negative correlations found between RTR and IntRTD and MaxRTD, suggests that hybrids 

that are population-dependent (need increased plant density for greater yields) may not produce 

greater yields in response to narrower row spacing or to situations where plants are more equally 

distant. However, the positive genetic correlation between RTN and MaxRTD indicates that 

hybrids that produce greater yields in response to maximum N fertilizer provided may also make 

use of high plant densities in order to efficiently use the N available.         

Using the phenotypic and genotypic correlations between each desirable trait, relative 

weights for each agronomic factor were calculated (Eq.[4.3]). Relative weights for each agronomic 

factor were calculated within each year and across years (2015 and 2016) in order to understand 

the effect of varying environments (Table 4.6). Averaged across years, relative weights for the 
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Check, InitN, RTN, IntRTD, MaxRTD, and RTR were 0.735, 0.260, 0.615, 0.104, 0.039, and 

0.242, respectively. As a result, Check had a higher relative weight than InitN for the estimation 

of the ‘Workhorse’ index; while RTN and RTR were more important than IntRTD and MaxRTD 

to the ‘Racehorse’ index estimation. Changes in the relative weights among agronomic parameters 

are associated with differences in H2 and their effects on yield. 

The primary objective for using the Smith-Hazel index was to estimate the value of a 

genotype using a linear function of multiple traits with their genetic effect (Baker, 1974). Using 

‘Workhorse’ and ‘Racehorse’ indices, maize hybrids were categorized based on their yield stability 

and response to different agronomic conditions (Figure 4.1). Biplot analysis using average yield 

across the different agronomic conditions and environments revealed that the yield variation was 

a function of N fertilizer rate, rather than different plant densities or row spacing arrangements. As 

such, hybrids with high ‘Workhorse’ indices (WHI > 7) were grouped between yield vectors for 0 

and 67 kg N ha-1. Hybrids with high ‘Racehorse’ indices (RHI > 7) were grouped closer to all 

vectors at 312 kg N ha-1 with the planting densities of 79,000, 94,000, and 108,000 plant ha-1. 

Interestingly, only one hybrid across all genotypes evaluated combined high ‘Workhorse’ and 

‘Racehorse’ indices (WHI > 7 and RHI > 7). This hybrid combined tolerance to N-stress conditions 

with a high yield response to intensive crop management conditions (high N fertilizer, increased 

plant density, and narrower row spacing conditions).           

Selection indices correlation across environments 

 The understanding of the correlation between ‘Workhorse’ and ‘Racehorse’ indices across 

environments is important for the accurate application of hybrid characterization. ‘Workhorse’ 

indices were positively correlated across environments within years (Table 4.7). However, 

‘Racehorse’ index exhibited higher correlations coefficients than the ‘Workhorse’ index within 

and across years. Low correlation coefficients with the DeKalb, 2015 location (DK, 2015) may be 

due to the unusual environmental conditions there (excessive rainfall and water logging).  

 

CONCLUSIONS  

 Commercial maize hybrids exhibited a large genotypic variation in response to different 

crop management factors. Having a large genotypic variation pool provides the foundation for 

continued genetic selection and hybrid improvement for different agronomic conditions. Nitrogen 

fertilizer supply level was the agronomic factor with the greatest effect on yield and H2. In addition, 
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the yield response to narrower row spacing under high plant density conditions exhibited large 

genotypic variance and was highly heritable. Future breeding efforts for intensive agronomic 

management should focus on increased plant density at narrower row spacing. The Smith-Hazel 

index has categorized maize hybrids for their tolerance to N stress (‘Workhorse index’) and their 

response to intensive crop management practices (‘Racehorse index’). These selection indices may 

be used by agronomists for better hybrid positioning according to the desired agronomic 

management style.     
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TABLES AND FIGURES 

Table 4.1. Hybrid names, seed company names, and crop relative maturity (CRM), 

for hybrids planted at, DeKalb (DK), Yorkville (YV), Champaign (CH), and 

Harrisburg (HB) in 2015 and 2016. 

      2015 2016 

Hybrid Company† CRM DK CH HB YV CH HB 

P0419AMX Pioneer 104 x x x       

5369SS Winfield 105 x x x    
4644DGVT2P Winfield 106    x x  

5516SS Winfield 106 x x x    
G06N80-3111 Syngenta 106 x x x    

207-27STXRIB Monsanto 107 x x x    
G07B39-3111A Syngenta 107 x x x x x x 

G07F23-3111 Syngenta 107 x x x x x x 

208-23STXRIB Monsanto 108    x  x 

4895SS/RIB Winfield 108    x x x 

5887VT2P Winfield 108 x x x x x x 

DKC58-06RIB Monsanto 108 x x x    
5938RIB Monsanto 109 x x x    

5978VT3P Winfield 109 x x x    
DKC59-50SS Monsanto 109    x x x 

G09E98-3122-EZ0 Syngenta 109 x x x x x x 

P0987AMX Pioneer 109 x x x    
6068RIB Monsanto 110    x x x 

6110SS/RIB Winfield 110 x x x x x x 

DKC60-87SS Monsanto 110     x x 

G10S30-3220-EZ0 Syngenta 110 x x x x x x 

G10T63-3000GT Syngenta 110 x x x x x x 

6065SS Winfield 111 x x x x x x 

6148RIB Monsanto 111 x x x    
DKC61-54RIB Monsanto 111 x x x    
G11F16-3111A Syngenta 111    x x x 

G11K47-3110 Syngenta 111 x x x    
P1197AMXT Pioneer 111    x x x 

5290DGVT2P Winfield 112    x x x 

6265SS/RIB Winfield 112 x x x x x x 

6288RIB Monsanto 112 x x x    
D52VC91RIB CPS 112    x x x 

DKC62-77RIB Monsanto 112 x x x    
DKC62-97RIB Monsanto 112 x x x    
G12J11-3111A Syngenta 112 x x x x x x 
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Table 4.1. (Continued) 

      2015 2016 

Hybrid Company CRM DK CH HB YV CH HB 

G12W66-3000GT Syngenta 112    x x x 

P122AMXT Pioneer 112 x x x    
P1257AMXT Pioneer 112    x x x 

P1339AMI Pioneer 112 x x x    
213-19STXRIB Monsanto 113    x  x 

6594SS/RIB Winfield 113 x x x x x x 

6640VT3P Winfield 113 x x x x x x 

DKC63-33RIB Monsanto 113 x x x    
DKC63-71SS Monsanto 113 x x x x x x 

G13G41-3000GT Syngenta 113 x x x    
P1311AMXT Pioneer 113    x x x 

214-45STXRIB Monsanto 114 x x x    
6448RIB Monsanto 114 x x x    
6458RIB Monsanto 114    x x x 

7087VT2P/RIB Winfield 114 x x x x  x 

D54DC94RIB CPS 114    x x x 

DKC64-34SS Monsanto 114    x x x 

DKC64-87RIB Monsanto 114 x x x    
G14H66-3010A Syngenta 114 x x x    

G14R38-3122GT Syngenta 114 x x x x x x 

G14Y81-3000GT Syngenta 114 x x x    
P1479AM Pioneer 114    x x x 

215-05STXRIB Monsanto 115 x x x    
D55VC77RIB CPS 115    x x x 

DKC63-60SS Monsanto 115    x x x 

216-36STXRIB Monsanto 116     x x 

D56VC46RIB CPS 116    x x x 

DKC66-74SS Monsanto 116    x x x 

G16C59-3010 Syngenta 116 x x x    
6718RIB Monsanto 117    x x x 

7927VT3P/RIB Winfield 117 x x x x x x 

8621VT2P/RIB Winfield 117 x x x x x x 

† CPS, Crop Productions Services; Monsanto, Monsanto Company; Pioneer, DuPont 

Pioneer; Winfield, Winfield United. 
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Table 4.2. Row spacing, plant density, and N fertilizer effects on yield, variance 

components and broad-sense heritability (H2). Values are averaged across 67 maize 

hybrids grown at four locations (DeKalb, Yorkville, Champaign, and Harrisburg, IL) and 

two years (2015 and 2016).  

Row 

spacing 

Plant 

density 
N rate Yield σ2

E σ2
G σ2

G × E σ2
ε H2 

cm plant ha-1 kg N ha-1 ------------------  Mg ha-1  ------------------  

76 79,000 0 8.5 ± 1.2† 8.5 0.15 0.13 1.53 0.69‡ 

76 79,000 67 13.6  ± 1.3 4.5 0.20 0.25 1.39 0.66 

76 79,000 312 14.5  ± 0.9 4.3 0.68 0.34 0.91 0.85 

76 94,000 312 14.8 ± 0.9 4.8 0.69 0.43 1.14 0.82 

76 108,000 312 14.7  ± 0.9 4.3 0.71 0.43 1.31 0.82 

50 108,000 312 14.7  ± 1.1 5.9 1.61 0.67 2.57 0.87 
† Yield average values are shown with ± 1 standard error for 95% significance level. 
‡H2 was calculated using the harmonic mean values for environments (e = 3.43) and 

replications (r = 13.31) across six environments in Illinois. 
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Table 4.3. Pearson’s pairwise correlation coefficients between 

maize yield and kernel number per area (m-2), kernel number per 

plant, and kernel weight (g m-2) at different row spacing, plant 

densities, and N fertilizer rates. Values are averaged across 67 

commercial hybrids grown at four locations (DeKalb, Yorkville, 

Champaign, and Harrisburg, IL) for two years (2015 and 2016). 

Row 

spacing 

Plant 

density 
N rate 

Kernel 

Number 

Kernel 

Weight 

cm plant ha-1 kg N ha-1 m2 plant-1 g m-2 

76 79,000 0 0.80* 0.79 0.48 

76 79,000 67 NS NS 0.53 

76 79,000 312 0.47 0.41 0.40 

76 94,000 312 0.48 0.30 0.42 

76 108,000 312 NS NS 0.55 

50 108,000 312 0.69 0.49 0.56 

  *Significant at P ≤ 0.05. 
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Table 4.4. Yield increase from initial N fertilizer (InitN), yield 

response to maximum N fertilizer (RTN), yield response to 

intermediate increased plant population (IntRTD), yield response 

to maximum increased plant population (MaxRTD), and yield 

response to narrower row spacing (RTR) effects on yield, 

variance components and broad-sense heritability (H2). Values 

are averaged across 67 maize hybrids grown at four locations 

(DeKalb, Yorkville, Champaign, and Harrisburg, IL) and two 

years (2015 and 2016). 

Parameter Yield 

change 
σ2

E σ2
G σ2

G × E σ2
ε H2 

 ------------------  Mg ha-1  ------------------  

InitN +5.1 ± 1.2† 3.9 0.09 0.01 1.45 0.71‡ 

RTN +5.9  ± 1.0 6.5 0.53 0.06 2.30 0.91 

IntRTD +0.3  ± 0.2 4.3 0.04 0.00 0.93 0.66 

MaxRTD -0.12 ± 0.1 0.1 0.02 0.00 1.18 0.40 

RTR +0.53  ± 0.3 0.3 0.47 0.00 3.84 0.91 
† Yield average values are shown with ± 1 standard error for 

95% significance level. 
‡H2 was calculated using the harmonic mean values for 

environments (e = 3.43) and replications (r = 13.31) across six 

environments in Illinois. 
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Table 4.5. Phenotypic (lower triangle) and genotypic (upper triangle) 

correlation coefficients between yield under low N (Check), initial yield 

increase with N fertilizer (InitN), maximum yield response to N fertilizer 

(RTN), yield response to intermediate increased plant population (IntRTD), 

yield response to maximum increased plant population (MaxRTD), and 

yield response to narrower row spacing (RTR). Coefficients were calculated 

using 67 hybrids at DeKalb, Yorkville, Champaign, and Harrisburg in 2015 

and 2016.  

Traits†  Check InitN RTN IntRTD MaxRTD RTR 

Check   -0.20 - - - - 

InitN -0.50   - - - - 

RTN - -   -0.11 0.53 -0.16 

IntRTD - - -0.30   0.42 -0.17 

MaxRTD - - 0.09 -0.35   -0.56 

RTR - - -0.04 -0.10 -0.37   
†Check and InitN parameters were used to calculate ‘Workhorse’ indices 

(Eq. [4.4]). RTN, IntRTD, MaxRTD, and RTR parameters were used to 

calculate ‘Racehorse’ indices (Eq. [4.5]). 
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Table 4.6. Relative weights (bn) for yield under low N (Check, b1), initial yield 

increase with N fertilizer (InitN, b2), maximum yield response to N fertilizer (RTN, 

b3), yield response to intermediate increased plant population (IntRTD, b4), yield 

response to maximum increased plant population (MaxRTD, b5), and yield response 

to narrower row spacing (RTR, b6). Relative weights were generated across different 

number of environments (E) and hybrids (N). A total of 67 hybrids were evaluated at 

DeKalb, Yorkville, Champaign, and Harrisburg in 2015 and 2016.  

Year  E N Relative weights 

   Check 

(b1) 

InitN 

(b2) 

RTN 

(b3) 

IntRTD 

(b4) 

MaxRTD 

(b5) 

RTR 

(b6) 

2015 3 43 0.355 0.645 0.485 0.026 0.004 0.486 

2016 3 42 0.846 0.154 0.616 0.085 0.013 0.286 

2015 + 2016 6 67 0.735 0.260 0.615 0.104 0.039 0.242 
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Figure 4.1. Biplot derived from principal component analysis using average yield of 67 hybrids 

grown at different agronomic conditions: (i) 79,000 plants ha-1 at 76-cm row space and 0 kg N ha-

1, (ii) 79,000 plants ha-1 at 76-cm row space and 67 kg N ha-1, (iii) 79,000 plants ha-1 at 76-cm row 

space and 312 kg N ha-1, (iv) 94,000 plants ha-1 at 76-cm row space and 312 kg N ha-1, (v) 108,000 

plants ha-1 at 76-cm row space and 312 kg N ha-1, and (vi) 108,000 plants ha-1 at 50-cm row space 

and 312 kg N ha-1. Vectors represent average yield at different agronomic conditions, with high- 

N vectors in the order of iv, v, and vi from top to bottom on the figure. Hybrids were categorized 

within low ‘Workhorse’ index (WHI < 4), low ‘Racehorse’ index (RHI < 4), average ‘Workhorse’ 

and ‘Racehorse’ indices (4 < WHI < 7 and 4 < RHI < 7), high ‘Workhorse’ index (WHI > 7), high 

‘Racehorse’ index (RHI > 7), and high ‘Workhorse’ and ‘Racehorse’ indices (WHI > 7 and RHI 

> 7). Data points for each hybrid were averaged over their evaluations at DeKalb, Yorkville, 

Champaign, and Harrisburg in 2015 and 2016. 
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Table 4.7. Pearson’s pairwise correlation coefficients between ‘Workhorse’ 

(lower triangle) and ‘Racehorse’ (upper triangle) indices for the different locations 

and years. Correlation coefficients were calculated using common hybrids planted 

at Champaign (CH), DeKalb (DK), Yorkville (YV), and Harrisburg (HB), in 2015 

and 2016.  

    'Racehorse index'   

  

  CH, 

2015 

DK, 

2015 

HB, 

2015 

CH, 

2016 

YV, 

2016 

HB, 

2016   

'W
o
rk

h
o
rs

e 
in

d
ex

' 

CH, 2015 - 0.38

** 

0.70*** 0.47* 0.52** 0.44* 

'R
a
ceh

o
rse in

d
ex

' 

DK, 2015 0.26* - 0.48*** NS NS NS 

HB, 2015 0.47*** NS - NS 0.44* NS 

CH, 2016 NS NS NS - 0.52*** 0.54*** 

YV, 2016 NS NS NS 0.30* - 0.53*** 

HB, 2016 NS NS NS 0.42*** 0.38* - 

    'Workhorse index'   

NS, non- significant. 

* Significant at P ≤ 0.10. 

**Significant at P ≤ 0.01. 

*** Significant at P ≤ 0.001. 
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CHAPTER 5 

CONCLUSIONS AND DISCUSSION 

 

Genetic improvement and hybrid performance under different N conditions 

Maize is an important staple crop in many developing countries and the primary energy 

source for animal production worldwide. Increases in world demand for food will require greater 

maize yield and more agricultural inputs. Therefore, intensive agronomic management practices 

and genetic improvement of nitrogen use efficiency (NUE) need to be combined in order to obtain 

a more sustainable maize yield increase worldwide. This research evaluated the genetic variation 

of N-responsive traits using ex-PVP and commercial maize hybrids and identified novel research 

strategies for the genetic improvement of maize NUE. 

The genetic improvement of maize NUE has received considerable attention in the 

scientific community and was one of the major focuses of this dissertation. Experiments conducted 

from chapters 1 and 3 were planted in adjacent fields with similar planting dates and agronomic 

practices. Therefore, similar environmental conditions between experiments from chapters 1 and 

3 allow an indirect comparison between ex-PVP and commercial maize hybrids for NUE 

performance. Averaged across different years and environments, commercial maize hybrids 

exhibited 28% and 25% greater yield than ex-PVP hybrids under low and high N conditions (0 

and 252 kg N ha-1 at 79,000 plants ha-1, respectively) (Tables 1.1 and 3.1). Yield differences 

between ex-PVP and commercial hybrids suggests that maize breeding may have simultaneously 

improved N stress tolerance and the yield response to N fertilizer. As a result, a similar average 

NUE was observed between commercial and ex-PVP maize hybrids (16.5 kg kgNfert.
-1).  

In addition to the yield performance under different N fertilizer rates, the variance 

components observed between commercial and ex-PVP germplasms provides a better 

understanding of NUE breeding. When averaged across different years and environments, the 

genetic variance of both commercial and ex-PVP hybrids increased and the residual variance 

decreased with additional N fertilizer (Tables 1.1 and 3.1). This comparison indicates that hybrids 

may express more of their genetic yield potential under high N and lower soil heterogeneity 

conditions, thereby increasing the power of selection. In addition, N fertilizer supplementation 

increased the environmental variance for ex-PVP hybrids but decreased it for commercial hybrids. 

These differences in environmental influences found between ex-PVP and commercial hybrids 
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suggest that commercial hybrids exhibited more yield stability across high N environments than 

ex-PVP hybrids, highlighting the genetic improvement in current commercial maize genotypes. 

Breeding strategies for maize NUE improvement 

 Phenotypic characterization of maize NUE in field conditions requires complex 

measurements and experimental procedures. Having a better understanding of the genetic basis of 

different N use traits and their contribution to NUE will assist breeding programs in accurate field 

phenotyping. In addition, the integration of genomic selection using desirable phenotypic traits 

may increase the genetic gain of maize NUE breeding programs. One of the major objectives of 

this project was to identify N use traits associated with N stress tolerance and/or high N conditions 

that have high genomic prediction accuracy and to evaluate their application in a NUE breeding 

program. While substantial genetic variation was found across different N use traits, breeding for 

improved N stress tolerance or for a greater yield response to N fertilizer will require different 

phenotypic selection traits.  

Phenotypic traits associated with N utilization under low N (GU, genetic utilization) or 

biomass partitioning (HI, harvest index) were highly correlated to yield under N stress conditions 

(Table 1.2). Genetic utilization and HI also exhibited high heritability (Tables 1.1 and 1.2). 

Moreover, GU was the most stable trait measured across low N environments (Figure 1.2A). In 

addition to the phenotypic selection, HI and GU were the secondary traits that provided the highest 

genomic prediction accuracy under N stress conditions (Table 2.3). However, HI under low N 

provided higher prediction accuracy than GU across different training composition and training 

sizes. Therefore, under N stress environments, the most effective phenotypic trait to select for is 

HI for the following reasons: i) HI is highly genetically controlled and associated with yield under 

N stress conditions, ii) HI requires less genetic information in the training population than GU 

within the same prediction accuracy value, iii) HI requires less number of hybrids to be phenotyped 

than GU within the same prediction accuracy, and iv) HI is easier and cheaper to measure than 

GU. 

  Nitrogen use efficiency (NUE), N-uptake efficiency (NUpE), and N-utilization efficiency 

(NUtE) were highly correlated to yield under high N conditions (Table 1.2). However, NUE 

exhibited greater broad-sense heritability (H2) than NUpE and NUtE (Table 1.1). The derivation 

of NUpE and NUtE from multiple plant measurements (individual plant biomass, seed weight, and 

N concentration) may have contributed to increased residual error of these factors. On the other 
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hand, NUE is derived from only two component measurements (yield at low and high N). In 

addition to higher H2, NUE was more stable than NUpE and NUtE across high N environments 

(Figure 1.2B). As such, among secondary traits associated with yield at high N conditions, NUE 

exhibited the greatest genomic prediction accuracy.  

The large genotypic variation of N use traits found among the ex-PVP germplasm 

highlights the opportunity that exists for selecting maize genotypes with desirable NUE 

performance. Inbred lines of ex-PVP germplasm were identified with high general combining 

ability for N stress tolerance combined with a high yield potential under high N conditions 

(Chapter 1). Moreover, genomic prediction can be integrated into NUE breeding programs using 

specific phenotypic traits depending on the target environment for N condition (low or high N). 

Since H2 and prediction accuracy for yield at low N is less than for yield at high N, breeding for 

low N tolerance may benefit more by the use of secondary traits in genomic selection than when 

breeding for increased yields at high N. Furthermore, HI at low N exhibited higher H2 and higher 

prediction accuracy than yield at low N. 

Maximizing yield potential using hybrid agronomic characterization 

 The integration between innovative agronomic practices and novel breeding strategies has 

become a common research effort in the seed industry. Therefore, it is of critical importance that 

research agronomists and breeders understand the so called genotype × environment × 

management interaction (G×E×M) for better hybrid selection and placement. In contrast to the 

traditional maize breeding scheme, current breeding efforts are selecting and characterizing maize 

genotypes for specific agronomic traits (e.g., tolerance to N deficiency, yield response to N 

fertilizer, and tolerance to crowding stress) earlier in the breeding pipeline. As a result, coordinated 

improvement between hybrid adaptation to crop management and yield stability requires 

knowledge of agronomic factors affecting hybrid performance. 

 Current maize hybrids exhibit a large genotypic variation for their yield response to 

different agronomic factors (Chapters 3 and 4). Notably, the diverse yield responses found among 

the commercial hybrids to additional N fertilizer and increased plant density highlights the 

importance of accurate agronomic characterization of maize hybrids (Figure 3.3). Hybrids that 

combined an above average tolerance to N stress and an above average yield response to initial N 

fertilizer supply accounted for less than 10% of all hybrids evaluated during 2011 and 2014 (9 of 

101 hybrids). These hybrids exhibited greater yield stability with high N fertilizer regardless of 
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the concurrent plant density conditions (Table 3.6). On the other hand, hybrids with high yield 

responses to maximum N fertilizer and increased plant density exhibited greater yield potential 

overall. 

 The Smith-Hazel index was used to better characterize hybrids based on their yield 

response to different crop management conditions (Chapter 4). Across the different agronomic 

management settings studied, N fertilizer was the most important factor impacting maize yield, 

followed by narrower row spacing, and then increased plant density (Table 4.3). As a result, the 

agronomic parameter associated with N stress tolerance exhibited the highest relative weight for 

the ‘Workhorse’ index (index selection for hybrids with high yield stability) when estimated across 

years and environments (Table 4.5). Similarly, the agronomic parameter associated with the yield 

response to maximum N fertilizer contributed the highest relative weight for the ‘Racehorse’ index 

(index selection for hybrids with increased yield adaptability to intensified crop management).   

 Selection indices using the yield response to key agronomic factors have categorized 

hybrids according to their yield performance across different N fertilizer rates, plant density, and 

row arrangement conditions (Figure 4.1). The previous chapter reported the first attempt to 

categorize hybrids based on their agronomic features using selection indices. However, the low 

correlations found between hybrid indices across environments suggest that more research is 

needed for generating selection indices based on hybrid agronomic features (Table 4.6). The 

integration of genomic marker data and crop growth models into hybrid characterization efforts 

may be possible by using innovative statistical model approaches. 

 In addition to categorizing maize hybrid’s responses to agronomic factors, this research 

evaluated the effect of different crop management practices on maize yield. Averaged across all 

hybrids and environments, increased plant density (Chapters 3 and 4) and narrower row spacing 

(Chapters 4) did not increase maize yield. Yet all the top-yielding hybrids within each environment 

were planted at the highest plant density (Chapters 3 and 4) and the narrower row spacing 

conditions (Chapters 4). Increased plant density imparted more plant-to-plant competition for 

abiotic resources (e.g., radiation, water, and soil nutrients) increasing the genotypic variance. 

These increases in genotypic variance associated with increased plant density suggest that there 

exists different crowding stress tolerances among commercial hybrids. Continued advances in 

maize yield potential will require more intensive agronomic management practices using maize 



 

112 
 

hybrids that combine a high yield response to N fertilizer, tolerance to crowding stress, and 

adaptation to narrower row spacing.  

 


