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Abstract

This thesis presents some work on two quite disparate kinds of dynamical systems described by Hamiltonian

dynamics.

The first part describes a computation of gauge anomalies and their macroscopic effects in a semiclassical

picture. The geometric (symplectic) formulation of classical mechanics is used to describe the dynamics of

Weyl fermions in even spacetime dimensions, the only quantum input to the symplectic form being the Berry

curvature that encodes the spin-momentum locking. The (semi-)classical equations of motion are used in

a kinetic theory setup to compute the gauge and singlet currents, whose conservation laws reproduce the

nonabelian gauge and singlet anomalies. Anomalous contributions to the hydrodynamic currents for a gas

of Weyl fermions at a finite temperature and chemical potential are also calculated, and are in agreement

with similar results in literature which were obtained using thermodynamic and/or quantum field theoretical

arguments.

The second part describes a generalized transfer matrix formalism for noninteracting tight-binding models.

The formalism is used to study the bulk and edge spectra, both of which are encoded in the spectrum of

the transfer matrices, for some of the common tight-binding models for noninteracting electronic topological

phases of matter. The topological invariants associated with the boundary states are interpreted as winding

numbers for windings around noncontractible loops on a Riemann sheet constructed using the algebraic

structure of the transfer matrices, as well as with a Maslov index on a symplectic group manifold, which is

the space of transfer matrices.
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Notation

Spaces: The n dimensional real and complex Euclidean spaces are denoted by Rn and Cn. The tangent and

cotangent spaces of a manifold M are denoted by TM and T ∗M , respectively. The set of vector fields and

1-forms on M are denoted by Vect(M) and Ω1(M), respectively. We denote the Hodge dual of a differential

form X as either ?X or X̄.

The standard basis of Rn or Cn is denoted by with ei, i = 1, . . . n, where (ei)j = δij . Given a set of oriented

orthonormal axes xi on a n-dimensional manifold M , we have defined dmx ≡ dx1 ∧ dx2 ∧ · · · ∧ dxn.

Indices: The Greek indices (µ, ν) run over all the spacetime coordinates and the Latin indices from the

middle of the alphabet (i, j, k) run over only the space coordinates. The Latin indices from the beginning

of the alphabet are used for Lie algebras. Einstein summation for repeated indices is always assumed unless

stated otherwise.

Brackets: The angled brackets 〈 , 〉 have been used to denote inner products. The braces { , } have been

used for Poisson brackets. The commutators are denoted by [ , ]− or simply [ , ], while the anticommutators

are denoted by [ , ]+.

Matrices: The space of all n × n real and complex matrices is denoted by Mat(n,R) and Mat(n,C),

respectively, while GL(n,R) and GL(n,C) denote the corresponding subspaces of nonsingular matrices. The

Pauli matrices are defined as

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
.

Physics: The Minkowski metric is defined as ηµν = diag{−1, 1, . . . 1} on R2N+1,1, following the general

relativity convention. We set ~ = c = e = kB = 1.

Misc: We use the notation {Xi}ni=1 to denote sets of the form {X1, X2, . . . Xn}.

vi



1 Introduction

This thesis consists of two largely disjoint parts. The first part is based on a series of papers[1, 2, 3, 4]

with Prof Michael Stone, on the connection between semiclassical dynamics and anomalies in quantum field

theories(QFTs), derived using the chiral kinetic theory. The second part is based on a long paper[5] in

collaboration with Dr Victor Chua, on a general construction of transfer matrices for tight binding models

in condensed matter physics. In the rest of this chapter, I introduce the two sections separately and conclude

with a briefly discussion of certain similar themes in the underlying mathematical structures.

1.1 Part I: Anomalies and Semiclassics

In quantum field theory, an anomaly [6] is a breakdown of a classical symmetry when the theory is quantized,

manifesting in the breakdown of the conservation law for the corresponding Noether current for continuous

symmetries. Since the discovery of the U(1) anomaly by Adler[7], and independently Bell and Jackiw[8]

to explain the anomalous pion decay, they have been an integral part of the quantum field theory of chiral

fermions coupled to gauge degrees of freedom. At first sight, the anomalies seem to be quite undesirable!

Indeed, if a classical gauge symmetry becomes anomalous on quantization, the theory is rendered inconsis-

tent, since the gauge symmetry is simply a redundancy in description. This can sometimes be mended by a

precise anomaly cancellation, as is the case with the standard model of particle physics[9].

However, an anomaly in a global symmetry can be a powerful theoretical probe into the behavior of the

theory. One primary reason is their nonperturbative nature; anomalies computed at one loop level do not

get renormalized at higher orders. Furthermore, they are related to certain topological data associated

with the theory, e.g, to the index of the Dirac operator, via index theorems[6]. The topological nature of

anomalies implies that they must appear, in various disguises, in various effective descriptions of the theory

at different energy/length scales. The conventional examples are the Chern-Simons and the Wess-Zumino-

Witten theories, which have found various applications in condensed matter physics lately.

A particular low energy description of QFTs is relativistic hydrodynamics[10, 11], which provides an

ideal setup to study the finite temperature/chemical potential behavior of the theory. A hydrodynamic
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description of a QFT can often be constructed systematically from the symmetries of the QFT, which has

proved useful in the study of gauge-gravity duality [12]. The manifestation of anomalies in hydrodynamics

as anomalous contributions to various transport coefficients have been investigated over the past decade[13,

14, 15]. A particularly striking result, conjectured in Ref [16] and further studied in Refs [17, 18, 19, 20, 21],

relates the anomalous contributions in the hydrodynamic currents to the mixed anomaly polynomials in 2

higher dimensions by a simple substitution of the gauge curvatures in the anomaly polynomials with the

thermodynamic variables, termed replacement rules.

Another low energy description for general quantum theory is a semiclassical description, which is essen-

tially classical Hamiltonian dynamics with additional “features” added to include some quantum effects. A

particular example is wavepackets[22], which can be treated as classical (point) particles with an additional

Berry curvature term. Such descriptions have been used since the beginnings of quantum mechanics to study

transport in metals and semiconductors[23, 24, 25].

It is somewhat surprising that anomalies, whose computation generally requires sophisticated quantum

mechanical computations, can be derived in a classical setup, with the only quantum inputs being the phase

space volume, as is conventionally done in classical kinetic theory, and the Berry curvature. The first step in

this direction was by Stephanov and Yin[26], who derived a semiclassical action for positive energy, positive

chirality Weyl fermions and showed that a computation of the gradient of the particle current using a (chiral)

kinetic theory reproduces the expression for the U(1) (Adler-Bell-Jackiw) anomaly. The intuitive picture of

their argument hinges on the fact that the U(1) anomaly manifests itself as a breakdown of the conservation

of particle number for chiral (Weyl) fermions, and near the Fermi surface, and well away from the Dirac

point, a semiclassical effect is sufficiently accurate that the influx of extra particles can be counted reliably

in a kinetic theory setup.

In Refs [1, 2], we generalized the semiclassical calculation to compute nonabelian gauge and singlet anoma-

lies in arbitrary even spacetime dimensions. The central mathematical tool for this generalization was the

geometric formulation of classical mechanics[27, 28], and the anomaly manifests itself as a symplectic form

that fails to be closed at the diabolical (Weyl) point, thereby violating Liouville’s theorem. Thus, the

anomalies are, in fact, encoded in the phase space structure.

An increasing application of quantum field theory techniques to study condensed matter systems has made

the study of macroscopic effects of anomalies particularly relevant. In particular, Weyl semimetals[29, 30, 31]

provide a condensed matter realization of Weyl fermions, and hence the Adler-Bell-Jackiw anomaly[32]. The

effect of anomaly on electronic transport[33] has been widely studied in recent years using various techniques,

including the kinetic theory approach[34] discussed above. Transport phenomenon associated with gauge
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anomalies have also been studied in quark-gluon plasma formed in heavy-ion collisions. In this case, the

anomaly manifests as the chiral magnetic effect(CME)[35, 36] and chiral vortical effect(CVE)[37], and the

computation of relevant coefficients have been approached from many direction, including hydrodynamics[13,

14], kinetic theory[26] and holography[38].

On the theoretical side, the chiral kinetic theory provides an interesting perspective on gauge anomaly,

and it would be interesting to generalize it to curved spacetime backgrounds so as to derive the gravitational

contribution to gauge anomaly. However, this approach, being based on Hamiltonian dynamics, treats space

and time differently, and is thus not manifestly Lorentz invariant. The Lorentz symmetry is implemented

on the position and momentum coordinates in an unusual representation of the Lorentz group[3, 39]. A

manifestly Lorentz invariant formalism would be the first step in studying chiral kinetic theory on curved

spacetime background, required to compute the most general mixed anomaly polynomials for Weyl fermions.

Our first steps in this direction are discussed in Ref [3].

1.2 Part II: Transfer matrices

The topological phases of matter[40, 41, 42] have been a subject of considerable interest in recent years. In

the most general (and vague) sense, they are ordered phases of matter, whose order cannot be characterized

by a local order parameter á la Landau theory of phase transitions, or, equivalently, cannot be understood

as a “symmetry breaking”. Instead, they are characterized by a global invariant, which is “topological” in

the sense that it is invariant under “continuous deformations” of the system.

We unpack this vague terminology for a quite plebeian system: one consisting of noninteracting fermions

on a lattice, described by a Bloch Hamiltonian over the Brillouin zone (i.e, the reciprocal lattice). The

eigenstates of the Bloch Hamiltonian corresponding to a given energy eigenvalue then form a vector bundle

over the Brillouin zone. We deem two states, i.e, two Bloch Hamiltonians, to be “topologically equivalent”

if they can be deformed into each other without closing the gap, i.e, without changing the topology of the

corresponding vector bundles. The topological invariant is the Chern number of the vector bundle[43, 44].

Since tuning such a topological insulator (nonzero Chern number) to a trivial insulator must involve closing

the bulk gap, it follows that whenever the topological insulator is placed next to vacuum (a trivial insulator)

or another topological insulator with a different Chern number, the bulk gap must close at the interface,

leading to gapless edge states. These edge states also carry topological information: for instance, the (signed)

intersections of the edge spectrum with a given energy level is a topological invariant determined by the

bulk, and cannot be changed by local perturbations at the edge.
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The bulk invariants of the system can be computed, in principle, by using the momentum state represen-

tation of the system. However, in order to investigate the edge behavior of the system, one needs to open an

edge along at least one space dimension, thereby breaking the lattice translation invariance in that direction

and rendering the momentum space picture inapplicable. The edge spectrum is then usually calculated

either using exact diagonalization, which can be computationally expensive for large systems (esp for 3d

systems), or using a decaying ansatz[45, 46], which usually needs additional input regarding the existence of

edge modes, for instance, from symmetry considerations. However, another way of studying these systems is

using transfer matrices. The central idea is that given a quasi-1D system (obtained by Fourier transforming

a given system in d space dimensions along the d−1 periodic directions), once we obtain the transfer matrix

for translation by a period, we can obtain both bulk and edge characteristics by looking at the eigenvalues

of the transfer matrix.

Transfer matrices have been studied in diverse contexts. They have been used to study electronic band

structure[47, 48, 49, 50], conductivity[51], Majorana fermions[52] and wave motion in electromechanical

systems[53]. They have also been studied by mathematicians under the banner of Floquet theory[54, 55, 56],

known to physicists as Bloch theory. The monodromy matrix[54, 57] in Floquet theory, which translates the

solution by one period, is the direct analogue of the transfer matrix in condensed matter systems. However,

often there is additional structure associated with the monodromy matrix. For instance, if the system is

Hamiltonian, the transfer matrix turns out to be symplectic[58], in which case the eigenvalues of the transfer

matrix can be computed and hence its eigenstates classified as growing/decaying or propagating, using a set

of quantities called Floquet discriminants[59], which are derived directly from the traces of powers of the

transfer matrix.

The properties of a transfer matrix associated with a topological state was studied, to interesting results,

by Y Hatsugai[47, 60]. He computed the transfer matrix for the Hofstadter model with flux φ = p/q per

plaquette on a cylinder, finite along x and periodic along y, so that ky is a good quantum number, and showed

that one can obtain the bulk bands as well as the edge states using the transfer matrix. Furthermore, the

eigenvalues of his transfer matrix are given by

ρ± =
1

2

[
∆(ε, ky)±

√
∆2(ε, ky)− 4

]
, (1.1)

where ∆(ε, ky), the trace of the transfer matrix, is a polynomial in ε. Given the square root, it is natural

to allow ε to be a variable on a two-sheeted Riemann surface, glued along branch cuts corresponding to the

bulk bands. This ε-Riemann surface is a two-dimensional complex manifold with genus g = q−1, where q is
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the number of bulk bands. Hatsugai shows that in such a picture, the topological nature of the edge states

manifests as windings around the holes of the ε-Riemann surface, the winding number being equal to the

Chern number of the filled bulk bands.

This equality is an instance of a more general issue of fundamental importance, viz, the connection (usually

equality) between the bulk topological invariant and the number of edge modes in a gap, usually referred to

as the bulk-boundary correspondence. Various proofs of this correspondence have been discussed in literature

for different classes of topological phases. In particular, using the methods of non-commutative geometry,

the equality of the Chern number and the Hall conductivity at finite disorder have been rigorously addressed

within the mathematical physics literature[61, 62], and with generalizations to time-reversal invariant topo-

logical insulators[63]. Complementary to this are approaches based on Green’s functions[64, 65], which

have also demonstrated the bulk-boundary correspondence from a field theoretic perspective. In addition,

aspects of this correspondence have also been discussed from the viewpoint of quantum transport using

S-matrices[66, 67]. Other notable citations are Refs [68, 45, 60], however, none of them, to our knowledge,

are entirely general.

In this work, we generalize the transfer matrix construction to certain systems where the hopping matrix

turns out to be singular, so that the transfer matrices cannot be constructed using the conventional tech-

niques. The generalization also provides us insight into the algebraic and geometric structure of the problem,

as well as new ways to characterize the topological invariant(s) associated with the nontrivial boundary states

for the topological phases of matter. This approach can potentially lead to a purely algebraic proof of the

bulk-boundary correspondence.

1.3 Outlook and Outline

A common thread running through the two seemingly disparate parts of this dissertation is the general idea

of dynamical systems, and in particular, those described by Hamiltonian dynamics. We have used many

results commonly studied in the mathematics literature under that banner, and applied them to physically

relevant systems.

A related idea, which makes its appearance in both sections, is that of a symplectic structure. In Part I,

the classical Hamiltonian dynamics can be recast as flows on a symplectic manifold, and the Hamiltonian

flows are those which generate symplectomorphisms, which can be crudely thought of as elements of an

(infinite-dimensional) symplectic group. In the second part, for all of the tight-binding models studied, the

generalized transfer matrix turns out to be a symplectic matrix, i.e, an element of a (finite-dimensional)
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symplectic group, which leads to various simplifications in computation.

The rest of this thesis is organized as follows:

Part I

In Ch 2, we describe the symplectic formulation of classical mechanics, and a generalization to contact

manifolds to for time-dependent systems, and reformulate the conventional kinetic theory in geometric

terms. In Ch 3, we discuss the basis of gauge theories and anomalies, and use the anomalous conservation

laws and thermodynamic constraints to compute the anomalous contributions to the hydrodynamic currents

in arbitrary spacetime dimensions. In Ch 4, we introduce (abelian and nonabelian) Berry phases and their

various topological aspects, and compute the Chern numbers for various systems. In Ch 5, we describe the

chiral kinetic theory computation of the U(1) anomaly and assemble the ingredients from Ch 2, 3 and 4 to

generalize it to Weyl fermions coupled to nonabelian gauge fields in arbitrary even dimensions. We also use

the generalization to compute the anomalous contribution to the hydrodynamic currents, and compare with

the replacement rules discussed in Ch 3.

Part II

In Ch 6, we start from general noninteracting tight-binding models and construct generalized transfer matri-

ces. We also discuss the computation of bulk/edge spectra using the transfer matrices. In Ch 7, we apply the

generalized transfer matrices to a wide variety of commonly studied topological phases, including disordered

Hamiltonians, and study windings associated with edge states for certain cases.

We present our general conclusions, as well as outlook, in Ch 8. Formal definitions of certain mathematical

objects used in the thesis are collected in Appendix A, while Appendices B and C contain a mixed bag of

general results that turned out to be useful for various parts of the thesis, as well as details of certain tedious

or not-particularly-informative calculations.
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Part I

Anomalies
and

Semiclassical Dynamics
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2 Classical mechanics

Classical mechanics is the vast body of analytical mechanics developed before the 20th century to describe

the mechanics of material bodies. In recent times, it has been described more accurately only in contradis-

tinction to the newer physical theories, particularly quantum mechanics and special theory of relativity.

Tracing its origins in the work of Galileo and Newton in the 17th century, classical mechanics has acquired

many analytical tools and reformulations, the Hamiltonian and the Lagrangian mechanics being the major

examples. These formulations, besides simplifying the analysis of complicated systems, also provide useful

insights into the structure of classical mechanics.

The latest addition to this repertoire is the geometric formulation of classical mechanics in terms of flows

on symplectic manifolds, developed in the 20th century[28, 27]. Since smooth manifolds generically admit

coordinate systems only locally, it is more efficient to use Cartan’s intrinsic calculus instead of the traditional

Newtonian calculus, thereby replacing analytical methods with those of differential geometry and topology.

This perspective also lets us generalize the conventional classical mechanics to include arbitrary symplectic

manifolds, and thus make use of many ideas that historically emerged from the study of dynamical systems.

In the first part of this dissertation, we shall often use an extension of the symplectic formulation of

classical mechanics, usually termed extended phase space or contact structure, necessary to deal with time-

dependent systems. Thus, in this chapter, we describe the symplectic formulation of classical mechanics and

a reformulation of kinetic theory in geometric terms. Besides being a primer on these topics, this chapter

would set up the notations and basic results used in rest of Part I.

2.1 Newton, Lagrange and Hamilton

The foundation of classical mechanics lies in the Newton’s laws of mechanics, esp the second law, which

describes the mechanics of a point particle as a function of time t ∈ R in presence of external “forces”[69].

Mathematically speaking, associated with a point particle in Newtonian mechanics is its mass, m ∈ (0,∞),

and its position, x ∈ Rd, in a fixed coordinate system. In an inertial frame, given an external force F(x, t)

and some data at a the time origin (t = 0), one is interested in computing the trajectory, i.e, a continuous
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curve r : R→ Rd so that the position of the particle at a given time t is x = r(t). Note that conventionally,

both the coordinates and the trajectories are notated by the same letter; however, for this section we shall

keep that distinction explicit.

The linear momentum of the point particle is defined as p = mṙ. Newtonian mechanics posits that the

state of a point particle is completely determined by the knowledge of its position x and momentum p, so

that one can define a state space R2d 3 (x,p). Furthermore, Newton’s second law states that the rate of

change of momentum is equal to the force acting on the body, i.e, ṗ = F. Assuming m to be independent

of time, the trajectory is then obtained as a solution of a second order initial value problem(IVP)

mr̈ = F(r(t), t); r(tz) = r0, ṙ(tz) = v0. (2.1)

A force F is termed conservative if it is time-independent and can be written as a gradient of a scalar

function, i.e, Fx(x) = −∇φ(x). For such a force, we can integrate the IVP by multiplying with ṙ:

0 = ṙ · (mr̈− F) = mṙ · r̈ + ṙ · ∇φ =
d

dt

(
1

2
m|ṙ|2 + φ

)
.

Thus, for a given trajectory r(t), the quantity in the bracket is conserved (i.e, independent of time), which

we define as the total mechanical energy of the system:

ε =
1

2
m|ṙ|2 + φ(r) =

|p|2
2m

+ φ(r). (2.2)

In the subsequent discussions, we shall only consider conservative forces.

Thus, the mechanics of a point particle is described by a second order IVP in d variables ri. These can

readily be reduced to a first order IVP in 2d variables, which define flows on R2d, the 2d-dimensional state

space. In this formulation, the 2d variables can be treated as independent. There are two distinct choices

of independent variables, viz, (r, ṙ) and (r,p), which correspond to two alternative formulations of classical

mechanics, viz, the Lagrangian and the Hamiltonian formalisms, respectively.

We begin with Hamiltonian mechanics, which takes place on a phase space M, which is the space of all

possible positions and momenta. For a point particle on Rd, the (classical) phase space is simply Rd × Rd,

with coordinates ζ = (p,x). Then, we seek to compute the trajectory γ : R →M, where the state of the

particle at time t is γ(t) = (γp(t),γx(t)). The Newton’s second law reduces to

γ̇r(t) =
γp

m
, γ̇p(t) = F (γr(t)) = −∇φ(x)

∣∣∣
x=γr(t)

. (2.3)
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Furthermore, taking a cue from eq. (2.2), one defines a “Hamiltonian” H : R× Rd × Rd → R as

H(t,x,p) =
|p|2
2m

+ φ(x, t), (2.4)

Note that this quantity is defined in general for any system where the force can be written as a gradient,

i.e, F(x, t) = −∇xφ(x, t). However, it is a constant along the trajectories if φ is independent of t, i.e, if the

system has time translation symmetry.

In terms of the Hamiltonian, the equations of motion become

γ̇r(t) = ∇pH(t,x,p)
∣∣∣
(x,p)=γ(t)

, γ̇p(t) = −∇xH(t,x,p)
∣∣∣
(x,p)=γ(t)

. (2.5)

Conventionally, we ‘forget’ the distinction between x and γx, and between p and γp. Thus, the Hamilton’s

equations are simply written as

ẋi =
∂H

∂pi
, ṗi = −∂H

∂xi
, (2.6)

which can be combined as

ζ̇i = J ij ∂H
∂ζj

, J =

(
0 −1d
1d 0

)
, i, j = 1, . . . , 2d. (2.7)

The structure of this differential equation is termed symplectic. This equation would be the starting point

for a geometric formulation of classical mechanics, as discussed in Sec 2.2.

Next, we discuss Lagrangian mechanics, which reduces the IVP to a boundary value problem (BVP).

Given all possible (smooth) trajectories r(t) connecting the initial position r(t0) = r0 and the final position

r(t1) = r1, one defines an action functional S : r(t) 7→ S[r(t)] ∈ R. The actual trajectory of the particle

is then the trajectory r(t) that extremizes the action, i.e, for which the first order variation δS[r(t)] = 0.

The idea of writing dynamical equation of motion as extremization of a functional, commonly referred to as

Hamilton’s principle or the principle of least action, has wide applicability beyond classical mechanics, for

instance, in classical field theories or general relativity.

The action can be written as an integral

S[r(t)] =

∫ t1

tz

dtL (r(t), ṙ(t), t) , (2.8)

where L(x, ẋ, t) is the Lagrangian, and r and ṙ, being the coordinates on the state space, are to be treated
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as independent variables. Thus, a variation of action can then be written as

δS[r] = S[r + δr]− S[r]

=

∫ t1

t0

dt [L (r(t) + δr(t), ṙ(t) + δṙ(t), t)− L (r(t), ṙ(t), t)]

=

∫ t1

t0

dt

[
δri(t)

∂L

∂ri
+ δṙi(t)

∂L

∂ṙi

]
= δri(t)

∂L

∂ṙi

∣∣∣∣t1
t0

+

∫ t1

t0

dt δri(t)

[
∂L

∂ri
− d

dt

(
∂L

∂ṙi

)]
. (2.9)

The boundary term vanishes as we demand that each trajectory satisfies the boundary conditions, so that

δr(t0) = δr(t1) = 0. Then, the condition on r(t) for S[r] to achieve an extremum becomes

∂L

∂ri
− d

dt

(
∂L

∂ṙi

)
= 0. (2.10)

These are the Euler-Lagrange equations of motion. For instance, for a single particle moving under a

conservative force F(x) = −∇φ(x), we have

L =
1

2
m|ẋ|2 − φ(x, t) =⇒ 0 =

∂φ

∂ri
+
d

dt
(mṙi) = mr̈i − Fi, (2.11)

which precisely reproduces the Newton’s second law.

We note that there is a subtlety in going from Newtonian to Lagrangian formulation. If the forces are

smooth (more precisely, Lifshitz) functions of coordinates, then the IVP has a unique solution for all initial

conditions. However, for BVP, this is not the case in general. A typical example would be motion of a

point particle on a circle S1 = [−π, π), with the boundary conditions x(0) = x(T ) = 0. The corresponding

action does not have a unique extremum; instead, it is extremized by any trajectory that winds around S1

an integer number of times1

The Hamiltonian and Lagrangian for a given system are related by a Legendre transform. Explicitly,

L = p · ẋ−H. (2.12)

The existence of requires that H(x,p) be a convex function of p. We shall use this to write an action

functional for a given Hamiltonian.

The original Newtonian approach can often be quite complicated for many practical systems. A particular

1 These different winding numbers are just the topological sectors! When summing over “all paths” to quantize the theory
using Feynman’s path integral, one needs to sum over this sectors explicitly.
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example is systems with holonomic constraints, i.e, we require the trajectory to lie on the level set f(x) = 0,

where f : Rd → Rd′ . The resulting space R ⊂ Rd is generically d−d′ dimensional, and usually has a manifold

structure for systems of interest in classical mechanics. The Lagrangian and Hamiltonian formalisms are

convenient to deal with such cases, as one can define a set of coordinates on R, conventionally termed

“generalized coordinates”, and project the Hamiltonian or the action down to these coordinates. Since both

of these approaches describe flows on some 2d-dimensional manifolds, they can readily be generalized to

Hamiltonian flows on more general smooth manifolds. The symplectic formalism is just such a generalization

of the Hamiltonian mechanics.

2.2 Symplectic formulation of classical mechanics

Consider the Hamiltonian formulation of classical mechanics, where the underlying space is a even-dimensional

smooth manifold, viz, the phase space M ∼= R2m, and given a time-independent Hamiltonian H : M → R

and a point ζ0 ∈ M, the Hamilton’s equations of motion associate with it a trajectory passing through ζ0.

Geometrically, these trajectories are simply smooth 1-parameter family of curves, generated by a vector field

ξH ∈ Vect(M), which can be explicitly written as

ξH = ξiH
∂

∂ζi
, ξiH = ζ̇i = J ij ∂H

∂ζj
, (2.13)

with J as defined in eq. (2.7), and ∂H
∂ζj are simply the components of dH. We can potential generalize

this to a larger class of even-dimensional smooth manifolds M on which have a “sensible” antisymmetric

matrix analogous to J . Such a structure is termed a symplectic structure, and such manifolds are termed

symplectic manifolds.

Geometrically speaking, Hamiltonian mechanics associates vector fields to the differentials of functions

(Hamiltonians) H : M→ R. This amounts to a linear map Ω1(M)→ Vect(M), which can be defined using

a map T ∗M→ TM. Such a map is induced by a symplectic structure on the manifold M.

Symplectic manifolds

A symplectic manifold (M, ρ) is an even-dimensional smooth manifold M equipped with a closed, nondegen-

erate 2-form ρ, termed the symplectic form. More explicitly, ρ ∈ Ω2(M) such that dρ = 0, and the nonde-

generacy of ρ means that if for some ξ ∈ Vect(M), the symplectic form satisfies ρ(ξ, ξ′) = 0 ∀ ξ′ ∈ Vect(M),

then ξ = 0.
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The symplectic form induces a canonical isomorphism, ρ̃ : Vect(M) → Ω1(M), which maps ρ̃ : ξ 7→ iξρ,

where ξ is a vector field onM. The nondegeneracy of the symplectic form implies that the map ρ̃ is invertible

(see eq. (2.17)). Using its inverse, we define the symplectic gradient d : C∞(M,R)→ Vect(M), which acts

on a smooth function f : M→ R as

df = − (ρ̃)
−1
df ⇐⇒ i

df
ρ = −df. (2.14)

Thus, given a Hamiltonian H, the symplectic derivate associates to it the vector field dH, which defines the

trajectories for given initial conditions. The Hamilton’s equation of motions can be written concisely in a

coordinate-independent form as

i
dH
ρ = −dH. (2.15)

Vector fields of the form ξ = df for some f ∈ C∞(M) are hereafter termed Hamiltonian vector fields.

More explicitly, consider a set of local coordinates ζ = {ζi} on some open set ofM. In these coordinates,

the symplectic form can be written as

ρ =
1

2
ρij(ζ) dζi ∧ dζj , (2.16)

where ρ is an antisymmetric matrix, and non-degeneracy of the 2-form ρ implies that ρ is invertible. Given

a vector field ξ ∈ Vect(M), the map ρ̃ acts as

ρ̃ : ξ = ξi
∂

∂ζi
7→ iξρ =

1

2
ρij
(
ξidζj − ξjdζi

)
= −ρij ξjdζi. (2.17)

Thus, given θ ∈ Ω1(M), we have ρ̃−1 : θi 7→ −
(
ρ−1

)ij
θj . Given a Hamiltonian H, the components of the

associated Hamiltonian vector field ξH = dH are then ξiH =
(
ρ−1

)ij ∂H
∂ζj . Thus, the phase-space trajectory

passing through ζ0 ∈M is given by the IVP

ρij ζ̇
j(t) =

∂H

∂ζi
⇐⇒ ζ̇i(t) =

(
ρ−1

)ij ∂H
∂ζj

, (2.18)

with the initial value ζ(t0) = ζ0. In practice, one ’defines’ the Hamiltonian vector field ξH = ζ̇i ∂
∂ζi , and

substitutes it in eq. (2.15) to derive the equations of motion[70].

We note that eq. (2.7) is now simply a special case of eq. (2.18), where ρ = J−1 is a constant. For

any symplectic manifold (M, ρ), one can locally set ρ to be constant, following Darboux theorem[71, 27].

More precisely, Darboux’s theorem states that any symplectic manifold (M, ρ) is locally isomorphic to

(R2m, ρ0), with ρ0 = dPi ∧ dXi, where (X1, . . . Xm, P1, . . . Pm) are coordinates on R2m. These are termed
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the “canonical” coordinates on M. The notations P and X are intended to be suggestive of momenta and

positions. However, it must be kept in mind that these are only local coordinates on M, which may not, in

general, be globally well-defined.

Structure preserving maps

We begin with the transformations of symplectic manifolds induced by Hamiltonian dynamics. Recall that

a vector field ξ ∈ Vect(M) can be defined as a generator of a 1-parameter family of curves. Explicitly, given

coordinates ζ and a point ζ0 ∈M, the vector field ξ defines a curve ζ(τ) on M with ζ(0) = ζ0. Given this

Hamiltonian evolution, define a family of maps Ξτ : M→M, τ ∈ R as

Ξτ : ζ0 7→ ζ(t) =⇒ d

dτ

(
Ξτζ

i
0

) ∣∣∣
τ=0

= ζ̇i(0) = ξi(ζ0). (2.19)

These, by definition, follow the composition Ξt ◦Ξt′ = Ξt+t′ = Ξt′ ◦Ξt. The variation of an arbitrary r-form

θ under these maps can be defined using the Lie derivative. Recall that the Lie derivative of θ along ξ is

defined as

Lξθ =
d

dτ
(Ξ∗τθ)

∣∣∣∣
τ=0

, (2.20)

where Ξ∗τ is the pullback of Ξτ . Equivalently, given a p-dimensional submanifold S ⊆M,

d

dτ

[∫
Ξ′τS

θ

]
τ=0

=

∫
S

d

dτ
Ξ′∗θ

∣∣∣
τ=0

=

∫
S
Lξ′θ. (2.21)

Furthermore,

d

dτ
(Ξ∗τθ)

∣∣∣∣
τ=t

=
d

dτ ′
(Ξ∗t ◦ Ξ∗τ ′θ)

∣∣∣∣
τ ′=0

= Ξ∗t
d

dτ ′
(Ξ∗τ ′θ)

∣∣∣∣
τ ′=0

= Ξ∗t (Lξθ) , (2.22)

where we have set τ = t+ τ ′. An immediate corollary is

Lξθ = 0 =⇒ θ is invariant under the flows induced by ξ. (2.23)

This follows from the fact that the vanishing of the Lie derivative implies that Ξ∗τθ is a constant. However,

Ξ0 is the identity operator, so that Ξ∗τθ = Ξ∗0θ = θ.

Given a symplectic manifold (M, ρ), consider the Hamiltonian vector field dH for some Hamiltonian

H ∈ C∞(M). Using the fact that Lξ = diξ + iξd, we compute

d

dt
Ξ∗t ρ = Ξ∗t [(d i

dH
+ i

dH
d) ρ] = −Ξ∗t [d(dH)] = 0. (2.24)
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Thus ρ is invariant under the Hamiltonian flows.

The structure preserving maps for symplectic manifolds are termed symplectomorphisms[71, 27]. Given

symplectic manifolds (M, ρ) and (M′, ρ′), a map f : M→M′ is a symplectomorphisms if f∗ρ′ = ρ, where

f∗ : T ∗M′ → T ∗M is the pullback of f . Thus, we have shown that Hamiltonian flows on (M, ρ) define a

family of symplectomorphisms (M, ρ)→ (M, ρ).

Action principle

We now reformulate the geometric form of the Hamilton’s equations in the form of an action principle.

Recall that since ρ is closed, by Poincaré’s lemma, it is exact on any contractible subspace U0 ⊆ M, i.e,

∃ η ∈ Ω1(U) with t1 > t0 such that ρ = dη. The 1-form η is referred to as the symplectic potential or the

Liouville 1-form. Given the Liouville 1-form η and a Hamiltonian H, we define the action functional as

S[C] =

∫
C
η −

∫ t1

tz

H(ζ(t)) dt, (2.25)

where C ≡ {ζ : [t0, t1]→M | ζ(t0) = ζ0, ζ(t1) = ζ1} defines a curve onM with fixed end points ζ0 and ζ1.

Given a set of local coordinates ζ on M, the variation of action becomes

0 = δ

∫ t1

t0

(
ηi(ζ)ζ̇i −H

)
dt =

∫ t1

t0

(
∂ηi
∂ζj

δζj ζ̇i + ηi(ζ)δζ̇i − ∂H

∂ζi
δζi
)
dt

=

∫ t1

t0

δζi
[(

∂ηj
∂ζi

ζ̇j − dηi
dt

)
− ∂H

∂ζi

]
dt =

∫ t1

t0

δζi
[(

∂ηj
∂ζi
− dηi
dζj

)
ζ̇j − ∂H

∂ζi

]
dt, (2.26)

which needs to be true for any variation δζ(t). Thus, we demand that

ρij ζ̇
j(t) =

∂H

∂ζi
, ρij =

∂ηj
∂ζi
− dηi
dζj

, (2.27)

which is precisely eq. (2.18), the equation of motion in our given coordinates.

Poisson brackets and Poisson manifolds

As an aside, we now discuss an algebraic (as opposed to geometric) description of the symplectic manifolds,

in terms of Poisson brackets. Recall that in conventional Hamiltonian mechanics, the Poisson bracket of two

functions f, g ∈ C∞(R2m) is an antisymmetric bilinear product on C∞(M), defined as

{f, g} =
∂f

∂xi
∂g

∂pi
− ∂f

∂pi

∂g

∂xi
= −J ij ∂f

∂ζi
∂g

∂ζj
, (2.28)
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where (p,x) are the canonical coordinates on R2n. For a symplectic manifold (M, ρ) with coordinates ζ,

this readily generalizes to

{f, g} = −
(
ρ−1

)ij ∂f
∂ζi

∂g

∂ζj
, (2.29)

which, using eq. (2.18), leads to a purely geometric expression for the Poisson bracket as

{f, g} = −
(
ρ−1

)ij
ρik(df)kρj`(dg)` = (df)kρk`(dg)` = ρ(df, dg). (2.30)

Thus, we also have

{f, g} = i
df
i
dg
ρ = −i

df
dg = −(df)µ∂µg, also, {f, g} = (dg)µ∂µf, (2.31)

so that geometrically, the Poisson bracket is simply the directional derivative of g along −df , or the direc-

tional derivative of f along dg.

Given any time-dependent quantity f and a Hamiltonian H,

df

dt
=
∂f

∂t
+ ζ̇i

∂f

∂ζi
=
∂f

∂t
+
(
ρ−1

)ij ∂H
∂ζj

∂f

∂ζi
=
∂f

∂t
+ {H, f}. (2.32)

If f does not depend explicitly on time, then {H, t} is simply the time-derivative of f . Thus, H can be

thought of as the generator of time translations.

Abstractly, a Poisson bracket is a map { , } : C∞(M)× C∞(M)→ C∞(M), which satisfies

1. Antisymmetry: {f, g} = −{g, f},

2. Bilinearity: {αf + βg, h} = α{f, h}+ β{g, h}, α, β ∈ R, and

3. Jacobi identity: {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.

Thus, the Poisson bracket defines an infinite-dimensional Lie algebra on C∞(M). A manifold M for which

C∞(M) is equipped with a Poisson bracket is termed a Poisson manifold. More precisely, a smooth manifold(
M̃, c

)
is termed a Poisson manifold if it is endowed with a bivector field c = cij∂i∂j which defines the

Poisson bracket {f, g} = cij∂if∂jg. Thus, symplectic manifolds are a special case2 of Poisson manifolds, for

which cij is invertible. Furthermore, when cij is noninvertible, the Poisson manifolds
(
M̃, c

)
can be foliated

by (i.e, represented as the disjoint union of) symplectic leaves Mα such that
(
Mα, c

−1
α

)
forms a symplectic

manifold, where cα is the restriction of the bivector c to Mα.

2For symplectic manifolds, d : C∞(M)→ Vect(M) becomes a Lie algebra homomorphism, i.e, d{f, g} = [df, dg], where [ , ]
denotes the Lie algebra of vector fields.
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2.3 Examples of symplectic manifolds

There are three mathematical contexts that naturally give rise to a symplectic manifolds: contangent bundles

of smooth manifolds, co-adjoint orbits of Lie groups and complex algebraic manifolds[72]. In this section,

we discuss the first two cases.

2.3.1 Cotangent bundles

In the traditional classical mechanics, the phase space is defined as the cotangent bundle of the d-dimensional

configuration space3 X , which, in conventional terminology, is simply the space of positions. More formally,

letM≡ T ∗X π−→ X be the cotangent bundle of a smooth manifold X , with π being the canonical projection.

A point ζ ∈ T ∗xX is actually a covector on X , which takes vectors to c-numbers, i.e, ζ : TxX → R. Given

ξ ∈ TζM with π(ζ) = x, using π∗ : TζM→ Tπ(ζ)X , we can push it forward to π∗(ξ) ∈ TxX . Thus, define a

1-form η ∈ T ∗ζM by its action on ξ ∈ TζM as

iξη = iπ∗(ξ)ζ. (2.33)

This defines the presymplectic form, and the symplectic form is simply ρ = dη, which is closed by definition.

This is a geometric formulation of all of the conventional classical mechanics.

Explicitly, given local coordinates x on X , the covectors are given by pidx
i, so that ζ = (x,p) are

coordinates on M, and the canonical projector is π : (x,p) 7→ x. Then, a vector ξ ∈ TζM can be explicitly

written as

ξ = ξi
∂

∂ζi
= ξix

∂

∂xi
+ ξip

∂

∂pi
=⇒ π∗(ξ) = ξix

∂

∂xi
, (2.34)

where π∗(ξ) ∈ TxX and ξi ∈ R. Then, using eq. (2.33)

η

(
ξix

∂

∂xi
+ ξip

∂

∂pi

)
= pidx

i

(
ξix

∂

∂xi

)
= piξ

i
x, (2.35)

which implies that η = pidx
i, and hence ρ = dpi ∧ dxi. These turn out to be the canonical (Darboux)

coordinates on the phase space.

By definition, the phase space M = T ∗X is noncompact, since it associates to each point in X a (non-

compact) vector space TxX . Finally, if X = Rd, then T ∗X = R2d, on which the canonical coordinates (x,p)

are defined globally, which is the setup for the conventional classical mechanics.

3 For free point particles, X = Rd. However, this is not the case, for instance, in presence of holonomic constraints.
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2.3.2 Coadjoint orbits

The second example of a symplectic manifold comes from the theory of Lie groups, and unlike the case of

cotangent bundles, often leads to compact symplectic manifolds. Given a Lie group G with its Lie algebra

g, the coadjoint orbits are defined as the orbits of elements of g∗, the dual of the Lie algebra, under the

coadjoint action of the group. In this section, we shall only describe the co-adjoint orbits for matrix groups,

for which they are identical to the adjoint orbits. For a more general and rigorous description, we refer the

reader to Appendix A.

Adjoint and coadjoint orbits

Consider a matrix group G ⊆ GL(N,C), its Lie algebra being g ⊂ Mat(N,C), and let n = dim(G) be the

dimensionality of the Lie group manifold. As vector spaces, g ∼= Rn, and the group has a representation on

g, the so called adjoint representation, defined as Ad(g) : X 7→ g ·X ·g−1, where g ∈ G, X ∈ g and ‘·’ denotes

the matrix multiplication, which we shall hereafter omit. Furthermore, being a subset of Mat(N,R), g

inherits an inner product, viz, the Killing form, defined as 〈X,Y 〉 = tr {XY }, which identifies g with its dual

vector space, g∗, so that we can define a canonical isomorphism ϕ : g∗ → g. The co-adjoint representation

is then given by K(g) : X 7→ g−1Xg. For a matrix Lie group, the adjoint and coadjoint representations are

isomorphic, the isomorphism being Ad(g) = K(g−1).

Given X ∈ g∗, its adjoint orbit is defined as

OX =
{
gXg−1 | g ∈ G

}
⊆ g∗, (2.36)

which coincides with its coadjoint orbit4. Furthermore, note that gXg−1 = X if, as elements of Mat(N,C),

g and X commute. Given X, define the set of g that commute with X as Stab(X) ⊆ G, the stabilizer of

G, which forms a subgroup of G. Then, OX ∼= G/Stab(X). A trivial example is X = 0 ∈ Mat(n,R), where

Stab(X) = G, so that OX can be identified with a single point. We are usually interested in the co-adjoint

orbits of highest possible dimensions (termed regular orbits), corresponding to smallest possible Stab(X).

The regular coadjoint orbits can be defined using the maximal tori (i.e, the maximal connected commuting

subgroup) T of the group. A maximal torus of G is generated by a Cartan subalgebra t ⊂ g, which can

be crudely5 defined as the vector space spanned by a subset of the Lie algebra whose elements commute

with each other. The choice of a Cartan subalgebra and hence of a maximal torus is nonunique; however,

4 This is not true in general, for instance, in infinite-dimensional cases, where it is possible that g � g∗.
5 More formally, a Cartan subalgebra t ⊆ g is defined as a nilpotent, self-normalizing Lie algebra, i.e, [t, [t, ..[t, t]..]] = 0 for

a finite number of nested commutators, and if ∃Y such that [X,Y ] ∈ t∀X ∈ g, then Y ∈ t.
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all maximal tori are isomorphic and hence of the same dimensionality. Given X ∈ g∗, choose a Cartan

subalgebra of g that commutes with ϕ(X) ∈ g, so that T ⊆ Stab(X). Thus, regular coadjoint orbits

are generated by X for which Stab(X) = T , so that OX ∼= G/T , any point on which can be written as

Q = g−1Xg, g ∈ G/T . Since Q ∈ g∗, this connects the two definitions of OX , viz, as a submanifold of

g ∼= Rn and as a quotient of G by T .

Vector fields and symplectic form

We next define the symplectic (Kirillov-Kostant) form[72] on OX using intrinsic (Cartan) calculus, i.e, as

a map Vect(OX) × Vect(OX) → R. Since vector fields can be geometrically thought of as generators of

curves[73, 70], for OX , every Y ∈ g induces a G-invariant curve X̃(t) via the adjoint action, explicitly

written as X̃(t) = etYXe−tY . Thus, we can define a vector ξY ∈ TXOX as

ξY (X) =
d

dt

(
etYXe−tY

)∣∣∣∣
t=0

= −[X,Y ], (2.37)

which can be used to compute ξY everywhere on OX using the G-invariance, and all G-invariant vector fields

can be written in such a fashion.

The symplectic form on OX can be defined by its action on vectors in TXOX as

ρ (ξY , ξZ)
∣∣∣
X
≡
〈
X, [Y,Z]

〉
= tr {X[Y, Z]} , (2.38)

which can be translated to X ′ ∈ OX using the coadjoint G-action on OX . We show that ρ is closed and

degenerate in the proof of Theorem A.1 in Appendix A. Given a Hamiltonian H : OX → R, we can use ρ to

associate with it a Hamiltonian vector field dH (see Sec 2.2) via

idHρ = −dH =⇒ ρ(dH, ξY ) = −ξYH ∀Y ∈ g. (2.39)

A class of Hamiltonians can be defined on OX using the Killing form on G, whose Hamiltonian vector fields

take a particularly simple form. Given a fixed Y ∈ g, and some Z ∈ OX , set

HY : Z 7→ tr {ZY } =⇒ dHY = ξY = −[ . , Y ], (2.40)

with ξY as defined in eq. (2.37). This can be derived explicitly using eq. (2.39), as shown in Appendix A.
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Parametrization

Finally, we discuss an explicit parametrization of the regular coadjoint orbits of a group G using the expo-

nential map. Consider then a basis {λi}dim(g)
i=1 of the Lie algebra g, which is orthonormal under the Killing

form and satisfy the commutation relation [λa, λb] = if abc λc, where f abc ∈ R are the structure constants of the

Lie algebra. The corresponding dual basis is denoted by {λi}dim(g)
i=1 . We have chosen the physics notation in

defining the basis, where λi are Hermitian matrices and the structure constants are real.

A Y ∈ g can then be expanded in this basis as6 Y = iYaλa. Since Q = g−1Xg ∈ g∗, in our chosen basis,

it can be expanded as Q = iQaλ
a with Qa ≡ −itr {Qλa} ∈ R and Q = {Qa}na=1 are simply coordinates of

the points of the Lie algebra in g ∼= Rn. Thus, this parametrization explicitly defines the coadjoint orbit as

a subspace of g∗ ∼= Rn.

Consider then the Hamiltonians Ha = Qa, or equivalently, Ha : Q 7→ −itr {Qλa} for Q ∈ OX . Using

eq. (2.40), the corresponding vector fields are simply ξa = −[ . , λa], so that using eqns 2.30 and 2.38, their

Poisson bracket becomes

{Qa, Qb} = ρ(ξa, ξb) = tr {Q[λa, λb]} = if cabtr {Qλc} = f cabQc. (2.41)

Thus, we have defined a set of functions Qa : OX → R, whose Poisson algebra is analogous to the Lie algebra

of the group we started with.

Example: SU(2)

We demonstrate our formal constructions from this section explicitly using SU(2). Some details and lengthy

computations have been relegated to Appendix A.4. Recall that SU(2) is the group defined as the set of

2× 2 unitary matrices with unit determinant, under the usual matrix multiplication. It can be conveniently

parametrized using the Pauli matrices as

SU(2) =

{
g01 + ig · σ

∣∣∣∣∣ (g0,g) ∈ R4,

3∑
µ=0

g2
µ = 1

}
. (2.42)

6 The i in the definition is required, since the basis elements are real, but the generators of curves on G must be skew-
symmetric. Mathematicians usually define the basis of the Lie algebra as skew symmetric to avoid this i, while physicists,
intending to identify the basis elements of g as physical (and hence Hermitian) symmetry operator, put in the i explicitly
instead.
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The constraint on gµ defines a 3-sphere in R4, so that as smooth manifolds, SU(2) is homeomorphic to S3.

The corresponding Lie algebra is

su(2) = {Xaσa |X ∈ R3}, [σa, σb] = iεabcσc, (2.43)

with the basis λi = σi being the Pauli matrices. In the following, we shall not distinguish between su(2)

and su∗(2), so that we only use lower indices. The maximal torus T ⊂ SU(2) can be written as the set of

diagonal matrices

T =

{(
α 0

0 α∗

)
, |α|2 = 1

}
∼= U(1). (2.44)

The regular adjoint/coadjoint orbits of SU(2) are then given by O = SU(2)/T . But as smooth manifolds,

SU(2) ∼= S3 and U(1) ∼= S1, so that7 O ∼= S3/S1 ∼= S2. Explicitly, all coadjoint orbits of SU(2) can be

written as |X|2 = r2, where r = 0 corresponds to the trivial orbit of 0 ∈ su(2), while all orbits for r > 0

are regular. Fixing an r and choosing an X on the 2-sphere of radius r (X = rσ3, say), the corresponding

coadjoint orbit is explicitly given by

OX = {Q ∈ R3 | |Q|2 = r2}. (2.45)

This defines the embedding of OX in R3.

To define the vector fields on OX , consider the Hamiltonians Ha : Q 7→ Qa = −itr {Qσa}. The corre-

sponding vector field ξa generates the curve X̃(t) = e−itσaXeitσa on OX . Thus,

ξa(Q) =
d

dt

(
e−itσaQeitσa

) ∣∣∣∣∣
t=0

= i[Q, σa] = εabcQbσc, (2.46)

which can be written in the traditional coordinate form as ξa = εabcQb ∂c, where ∂c = ∂
∂Qc

. Explicitly,

ξ1 = Q2∂3 −Q3∂2, ξ2 = Q3∂1 −Q1∂3, ξ3 = Q1∂2 −Q2∂1. (2.47)

These can be identified as the generators of rotations in R3 along the three orthogonal axes defined by Qa.

Finally, the symplectic form ρ can be explicitly written as

ρ =
1

2
ρab dQa ∧ dQb. (2.48)

7 This can also be seen by a somewhat lengthy computation using explicit coordinates on g ∼= R3, as shown in Appendix
A.4.
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Substituting the vectors and using eq. (2.41), we get

Q1 = ρ (ξ2, ξ3) = Q1

(
Q1ρ23 +Q2ρ31 +Q3ρ12

)
, (2.49)

and similar expressions for Q2 and Q3. Furthermore, since ρ is a 2-form on R3, its Hodge dual (using the

Euclidean metric on R3) is simply a 3-vector q, such that ρab = εabcqc. Thus,

1 = Q1ρ23 +Q2ρ31 +Q3ρ12 = Q · q =⇒ q =
Q

|Q|2
. (2.50)

Setting |Q| = r, we get ρab = r−2 εabcQc. Thus, the Kirillov form on OX can be written explicitly as

ρ =
1

r2

(
Q1dQ2 ∧ dQ3 +Q2dQ3 ∧ dQ1 +Q3dQ1 ∧ dQ2

)
= RΩ(S2), (2.51)

where Ω(S2) is the volume form on a 2-sphere.

2.4 Time-dependent systems and extended phase space

The conventional Hamiltonian mechanics is defined for time-dependent Hamiltonians; however, in the sym-

plectic formulation of classical mechanics, we assumed the Hamiltonian to be time-independent, so that time

was only as a quantity parameterizing the trajectories. We now remedy this shortcoming by considering a

general time-dependent Hamiltonian H : R ×M → R, as well as a time-dependent 2-form ρ : R → Ω2(M)

for some phase space M, such each for each time t, (M, ρ(t)) form a symplectic manifold. This situation is

quite relevant for this thesis, since we seek a description of point particles interacting with external fields,

which might be time-dependent.

Contact manifolds

The mathematical structure underlying this description is an extended phase space (or contact manifold)

including time as one of the coordinates. Formally, a contact manifold (MH , ρH) is an odd-dimensional

manifold MH equipped with a closed 2-form ρH of maximal rank. We shall refer to ρH as the generalized

symplectic form. The rank of ρH is defined as the maximal number of linearly independent vector fields

ξi ∈ Vect(MH) for which iξiρH 6= 0. Given coordinates ζ̃ on MH , we can write ρH = 1
2 (ρH)ij dζ̃

idζ̃j , where

ρH is a real skew-symmetric matrix. The rank of ρH is then simply the matrix rank of ρH . However, since

all eigenvalues of ρH are purely imaginary and occur in complex conjugate pairs, the matrix rank of ρH
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must be even. Thus, if dim (MH) = 2m + 1, we must have rank (ρH) = 2m, and the kernel of ρH , i.e, the

set of vectors ξ satisfying iξρH = 0 is one dimensional.

We begin by simply rephrasing the time-independent Hamiltonian case using the extended phase space

formalism. Consider a symplectic manifold (M, ρ) and a Hamiltonian H : M→ R and set MH =M× R,

where R corresponds to the time. Given coordinates ζ on M, define coordinates on MH as ζ̃ = (t, ζ), so

that ζ̃0 = t. Define

ρH = ρ− dH ∧ dt. (2.52)

Clearly, dρH = dρ = 0 and ρH is of maximal rank since ρ is nonsingular and hence of full rank, so

that (MH , ρH) forms a contact structure. To compute the null vector of ρH , we represent a vector field

ξ̃ ∈ Vect(MH) in these coordinates as

ξ̃ = ξ̃µ
∂

∂ζ̃µ
= ξ̃0 ∂

∂t
+ ξ̃i

∂

∂ζi
= ξ̃0 ∂

∂t
+ ξ. (2.53)

Then,

ξ̃ ∈ ker ρH =⇒ 0 = iξ̃ρH = iξρ− (iξdH) dt+ ξ̃0dH. (2.54)

Using the equation of motion idHρ = −dH, we get

0 = iξρ+ (iξidHρ) dt− ξ̃0idHρ =
(
iξ − ξ̃0 idH

)
ρ+ ρ (ξ, dH) dt. (2.55)

Since ρ does not contain a dt, both terms must vanish individually. The obvious solution is ξ̃0 = 1 and

ξ = dH, which must be unique, since ρH has only one null vector. Thus, given H, the associated trajectory

is simply the null vector of the associated contact structure MH . The equation of motion can be written as

id̃HρH = 0, (2.56)

where for extended phase space, we have defined the suspension of dH ∈ Vect(M) as d̃H = ∂
∂t + π

H∗dH.

Generalization to time-dependent systems

Given the Liouville 1-form η such that dη = ρ, we can define the a 1-form ηH = η − Hdt on MH such

that ρH = dηH . This provides the most straightforward route to the generalization to time-dependent

cases: given MH = R×M and a time-dependent Liouville 1-form η (not necessarily globally defined), we

can define the corresponding generalized Liouville form as ηH = η −Hdt. The generalized symplectic form
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is then simply

ρH = dηH = dη − dH ∧ dt = ρ−
(
dH − ∂η

∂t

)
∧ dt, (2.57)

where ρ(t), containing contains dζi, would be the symplectic form on the t-slice of MH . The equation of

motion is simply given by eq. (2.56), with the suspension again defined as earlier, except that dH is now

time-dependent, owing to the time-dependence of H.

Thus, the extended phase space formalism expresses time-dependent Hamiltonian dynamics compactly

as iξ̃HρH = 0. In order to unpack this result, given coordinates (t, ζ) on MH , we ‘define’ the Hamiltonian

vector field as ξ̃H = ∂
∂t + ζ̇i ∂

∂ζi . Substituting in the equation of motion, we get

0 = iξ̃H

[
ρ−

(
dH − ∂η

∂t

)
∧ dt

]
= iξ̃H

[
1

2
ρijdζ

i ∧ dζj −
(
∂H

∂ζi
− ∂ηi

∂t

)
dζi ∧ dt

]
= − ρij ζ̇j dζi −

(
∂H

∂ζi
− ∂ηi

∂t

)(
ζ̇idt− dζi

)
=

(
−ρij ζ̇j +

∂H

∂ζi
− ∂ηi

∂t

)
dζi − ζ̇i

(
∂H

∂ζi
− ∂ηi

∂t

)
dt (2.58)

The coefficients of dζi are the equations of motion

ρij ζ̇
j =

∂H

∂ζi
− ∂ηi

∂t
=⇒ ζ̇i =

(
ρ−1

)ij (∂H
∂ζi
− ∂ηi

∂t

)
, (2.59)

which is the generalization of eq. (2.18) to time-dependent H and η. The coefficient of dt does not give us

anything new, since

ζ̇i
(
∂H

∂ζi
− ∂ηi

∂t

)
= ζ̇iρij ζ̇

j = 0. (2.60)

Finally, the contact manifolds also admit “canonical” coordinates as a generalization[27] of Darboux’s the-

orem, which states that any contact structure (MH , ρH) is locally isomorphic to (R2m+1, ρ0) with coordinates

(T,X1, . . . Xm, P1, . . . Pm), so that ρ0 = dη0, where η0 = Pi ∧ dXi + dT .

Action principle

Following the symplectic case, the extended phase space formalism can be recast as an action principle; the

action being simply a line integral of ηH . Given coordinates (t, ζ), this becomes

S =

∫
C
ηH =

∫
C

[
ηidζ

i −Hdt
]
, (2.61)

24



where C is now a curve on MH , parametrized by τ such that ṫ = 1. Extremizing the action,

0 = δ

∫ t1

t0

(
ηi(ζ)ζ̇i −H

)
dτ

=

∫ t1

t0

[(
∂ηi
∂t
δt+

∂ηi
∂ζj

δζj
)
ζ̇i + ηi(ζ)δζ̇i −

(
∂H

∂ζi
δζi +

∂H

∂t
δt

)]
dτ

=

∫ t1

t0

{
ζ̇i
[
∂ηj
∂ζi

ζ̇j − dηi
dτ
− ∂H

∂ζi
δζi
]

+ δt

[
∂ηi
∂t
− ∂H

∂t

]}
dτ

=

∫ t1

t0

{
δζi
[(

∂ηj
∂ζi
− dηi
dζj

)
ζ̇j − ∂H

∂ζi
− ∂ηi

∂t

]
+ δt

[
∂ηi
∂t
− ∂H

∂t

]}
dτ, (2.62)

which needs to be true for any variation (δt(τ), δζ(τ)). We recover the equations of motion, as expected.

Example: Charged particle in an electromagnetic field

In this section, we illustrate some of the formal ideas developed in this section by applying them to derive

the classical dynamics (Lorentz force) for a charged point particle in an external electromagnetic field. The

underlying configuration space is Rd, so that the phase space becomes M = T ∗Rd ∼= R2d, and the extended

phase space is MH = R× R2d.

In classical mechanics, the interaction with the electromagnetic field is encoded by minimally coupling

the electromagnetic potential as pi → pi − qAi and ε → ε − qA0, where ε = |p|2 /2m is the kinetic energy.

Then, we can write the presymplectic form as

ηH = (pi + qAi)dx
i −
(
|p|2
2m
− qA0

)
dt = pidx

i +
|p|2
2m

dt+ qA, (2.63)

where we have defined the 1-form A = Aµdx
µ. Clearly, A, and hence ηH , may be time-dependent, so that

we need the extended phase space formalism. The generalized symplectic form becomes

η = dpi ∧ dxi −
pi

m
dpi ∧ dt+ qF, (2.64)

where F = dA = 1
2Fµνdx

µ ∧ dxν is the Maxwell curvature 2-form. Clearly, ρH is not of the Darboux form,

so that (t,x,p) are not the canonical coordinates on MH .

We can compute the equations of motion as

iξ̃ρH = 0, ξ̃ = ẋµ
∂

∂xµ
+ ṗi

∂

∂pi
, (2.65)
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where the trajectories are parametrized by τ , ḟ = df
dτ and ṫ = ẋ0 = 1. Substituting eq. (2.64), this becomes

0 = ṗidx
i − ẋidpi −

pi

m
(ṗidt− dpi) + qFµν ẋ

µdxν

=
(
ṗi − qFi0 − qFij ẋj

)
dxi +

(
−ẋi +

pi

m

)
dpi +

(
−piṗi
m

+ qFi0ẋ
i

)
dt (2.66)

From the coefficients of dx’s and dp’s, the equation of motion becomes

ẋi =
pi

m
, ṗi = q

(
Fi0 + Fij ẋ

j
)
. (2.67)

For d = 3, we define the electric and magnetic field 3-vectors as Fi0 = Ei and Fij = εijkB
k. The equations

of motion become

ẋ =
p

m
, ṗ = q (E + ẋ×B) , (2.68)

which simply describes the dynamics of a charged massive point particle in presence of a Lorentz force[69].

To illustrate the noncanonical nature of the coordinates further, we consider a simplified case, viz, the

dynamics of a charged particle in a time-independent magnetic field B = Bez, which can be described by the

conventional symplectic formulation, as described in Sec 2.2. Thus,M = R2d, equipped with the symplectic

form

ρ = dpi ∧ dxi +
1

2
qFijdx

i ∧ dxj

= dpx ∧ dx+ dpy ∧ dy + dpz ∧ dz + qB dx ∧ dy. (2.69)

We now compute the Poisson bracket {x, y}, by first computing the corresponding Hamiltonian vector fields

using iξf ρ = −df for f = x, y, as

ξx =
∂

∂px
− 1

qB

∂

∂y
, ξy =

∂

∂py
+

1

qB

∂

∂x
. (2.70)

Thus,

{x, y} = ρ (ξx, ξy) =
1

qB
, (2.71)

so that the coordinates x, y fail to satisfy the usual Poisson bracket {x, y} = 0 in presence of a magnetic field

normal to the x-y plane. Physically, this is the setup for the Hall effect, so that we have simply obtained a

classical analogue of the noncanonical commutation relation [x̂, p̂] = − i~
qB associated with the lowest Landau

level problem in quantum Hall effect[74], which is a physical realization of noncommutative geometry.
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2.5 Kinetic theory

Kinetic theory is a framework to derive an effective description of the classical mechanics of a system

containing a large (∼ 1023) number of point particles, each following the classical equations of motion and

interacting with each other only weakly and at short ranges. The weak interaction implies that the motion of

the individual particles is uncorrelated, except during a collision, i.e, when they are close enough to interact8.

The formalism was originally developed by Maxwell and Boltzmann to describe gases at low pressures and

densities, where the molecules, being neutral, do not exert any forces on each other at large distances, while

at small distances, they interact via van der Walls forces[75].

In kinetic theory, instead of studying the motion of each individual particles, one studies the time-evolution

of a coarse-grained density of particles in the phase space. This can further be used to derive macroscopic

quantities such as currents, which are presumably accessible at macroscopic scales. For instance, in case

of gases, one is interested in deriving the macroscopic pressures and volumes, while for other systems, one

might be interested in various currents.

In this section, we formulate the conventional aspects of kinetic theory, viz, phase space volume, Liouville’s

theorem, Boltzmann equation and the derivation of macroscopic currents using the geometric formulation of

classical mechanics discussed so far in this chapter. This formulation shall form the basis of our computations

in Ch 5.

2.5.1 Phase space volume and Liouville’s theorem

In order to define a ‘density’ on the phase space, one needs a notion of ‘volume’, that is, in some sense,

invariant under Hamiltonian evolutions. For instance, in 1-dimensional classical mechanics, one defines a

measure on the phase space R2 simply as

Ω =
dp ∧ dx

h
=
dp ∧ dx

2π
, (2.72)

where we have normalized9 the conventional area form on R2 by h = 2π~, ~ = 1 to make it dimensionless.

8 More precisely, we have two time-scales in the system, viz, the collision time, tcoll and the relaxation time, trel. Kinetic
theory relies on the assumption that tcoll � trel.

9 This normalization can be motivated by the correspondence principle between classical and quantum mechanics, by
demanding that the quantum and classical counting of microstates give the same result. For instance, consider the harmonic
oscillator H = 1

2

(
p2 + x2

)
, and the quantum mechanical spectrum is given by εn =

(
n+ 1

2

)
~. Let a phase space volume

measure be defined as Ω = Ndp dx, N ∈ R, and count the number of states with ε ≤ ε0 � ~:

Nclassical = N
∫
S
dp dx = 2πN ε0, S = {(x, p) ∈ R2 |x2 + p2 < 2ε0},

and Nquantum =
⌊ ε0

~ −
1
2

⌋
≈ ε0

~ . Demanding Nclassical = Nquantum, we get N = (2π~)−1 = h−1.
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The symplectic manifolds are naturally equipped with a top form ρm, which can be used to define a

normalized volume form as

Ω =
1

(2π)mm!
ρm ≡ 1

(2π)mn!
ρ ∧ · · · ∧ ρ︸ ︷︷ ︸
n times

, (2.73)

We are interested in the variation of this volume form under the flow corresponding to an arbitrary vector

field ξ ∈ Vect(M). Taking a cue from eq. (2.23), we compute

LξΩ = (d iξ + iξ d)
ρm

(2π)mn!
=

1

(2π)m(m− 1)!
d
(
iξρ ∧ ρm−1

)
, (2.74)

where dΩ = 0, since Ω is a top form. But if ξ is a Hamiltonian vector field, i.e, ξ = dH for some Hamiltonian

H, then we can use the equations of motion to get

LdHΩ = − 1

(2π)m(n− 1)!
d
(
dH ∧ ρm−1

)
=

1

(2π)m(n− 2)!
dH ∧ dρ ∧ ρn−2 = 0, (2.75)

since ρ is closed. Thus, under a Hamiltonian evolution, the phase space volume is conserved. This is

simply the statement of Liouville’s theorem, which physically implies that under a Hamiltonian evolution,

the volume of a region in phase space remains unchanged, while its shape may change10. Thus, Liouville’s

theorem is a direct consequence of the fact that Hamiltonian flows are symplectomorphisms.

Explicitly, given coordinates ζ on M, the volume form can be explicitly computed as

Ω =
1

(2π)mm!

(
1

2
ρijdζ

i ∧ dζj
)m

=
1

(2π)m

 1

2mm!

∑
σ∈S2n

sgn (σ)

m∏
j=1

ρσ(2j−1),σ(2j)

 2m∧
i=1

dζi, (2.76)

where we have used the fact that each nonzero term in the expansion will contain all dζi’s exactly once,

the volume form being a top form, and the sign of the term depends on the number of exchanges to get

the product of differential forms in the correct order, i.e, to the form dζ1 ∧ · · · ∧ dζ2m. The sum over terms

in the square brackets is the definition of the Pfaffian11 of ρ, which we shall, with slight abuse of notation,

denote as
√
ρ =

√
det(ρ). Thus, concisely, (2π)mΩ =

√
ρ d2mζ is the invariant (under symplectomorphisms)

volume measure onM. Using dΩ = 0 and idHdζ
j = ζ̇j , we get Liouville’s theorem can be written using the

10 There are further restrictions on how drastically the ‘shape’ can change, known as Gromov’s non-squeezing theorem. For
details, see Ref [71].

11 The determinant of an even dimensional skew symmetric matrix can always be written as squares of a polynomial in
its entries with integer coefficients. The Pfaffian is then defined as the square root of the determinant of the matrix. The
determinant of odd dimensional skew-symmetric matrices always vanishes.
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coordinates in its conventional form as

0 = ?LdHΩ = ?d idH

(
√
ρ

2m∧
i=1

dζi

)
= ?d

√ρ 2m∑
j=1

(−1)j ζ̇j
∧
i 6=j

dζi

 =

2m∑
j=1

∂

∂ζj

(√
ρζ̇j
)
, (2.77)

where ? denotes the Hodge dual12 and the (−1)j arises from the fact that both iξ and d are derivations13.

For the extended phase space, we can define a volume form ΩH = Ω ∧ dt. Explicitly,

ΩH =
1

(2π)mm!
ρm ∧ dt =

1

(2π)mm!
ρmH ∧ dt, (2.78)

where in the second equality, we can replace ρ with ρH = ρ − (dH − ∂ηH/∂t)dt as on expanding, we can

have only one dt which is the one outside ρm, hence ρmdt = ρmHdt.

Again, we can derive

Ld̃HΩH = (d id̃H + id̃H d)
1

(2π)mm!
ρmH ∧ dt

=
1

(2π)mm!
d
(
n (id̃HρH) ∧ ρm−1

H ∧ dt+ ρmH ∧ (id̃Hdt)
)

=
1

(2π)m(m− 1)!
dρH ∧ ρm−1

H = 0. (2.79)

This is the analogue of the Liouville’s theorem for extended phase space.

Again, given coordinates (t, ζ) on MH , the volume form on MH can be written as ΩH =
√
ρ d2m+1ζ,

where d2m+1ζ also includes dt and
√
ρ may now depend on t. The Liouville theorem can be written using

these coordinates as

0 = ?Ld̃HΩH =
∂

∂t

√
ρ+

2m∑
j=1

∂

∂ζj

(√
ρζ̇j
)
, (2.80)

since ṫ = 1. This is the form of Liouville’s theorem that we shall use in the rest of this paper. Another

convenient result is

? Ld̃H(ϕΩH) =
∂

∂t
(
√
ρϕ) +

2m∑
j=1

∂

∂ζj

(√
ρϕ ζ̇j

)
, (2.81)

where ϕ : MH → R. This denotes the time-evolution under Hamiltonian flow of a quantity ϕ associated with

the phase space.

12Recall that the coordinates (t, ζ) locally map MH to R1,2m, which has a Minkowski metric. We use this metric to define
the Hodge duals.

13 Given a p-form θ and q-form ϕ, a derivation D acts as D(θ ∧ ϕ) = (Dθ) ∧ ϕ+ (−1)pθ ∧ (Dϕ).
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2.5.2 Boltzmann equation

Consider a set of N particles, governed by Hamiltonian dynamics on a phase space M with Hamiltonian

H. At a given time t, the state of the system can then be completely described by a set of N phase space

coordinates ζi(t). We define a phase space density corresponding to this configuration as

f̃(t, ζ) =
1

N

N∑
i=1

δ (ζ − ζi(t)) , (2.82)

where f denotes the 1-particle probability distribution and δ(ζ) is the Dirac delta distribution in dim (M)

dimensions. The probability of finding a particle in a given phase space volume V ⊆ M at time t is given

by

P (t, V ) =

∫
V

f̃(t, ζ)Ω =

∫
V

dζ
√
ρ(ζ)f̃(t, ζ) =

∫
V

dX dP f(t,X,P), (2.83)

where Ω is the volume measure and (X,P) are local Darboux coordinates on V ⊆M, which may not always

exist. Integrating over the entire M, we simply get 1 =
∫
MΩ f(t, ζ) for any t.

As we are usually interested in the N → ∞ limit, we can “smooth out” f̃ to get a smooth 1-particle

density function f : R×M→ R. Physically, this smoothing involves a process of “coarse-graining”, i.e, we

forgo our exact knowledge of the positions of particles in favor of an average number of particles in a volume

element. Of course, we choose to look only at volume elements which are big enough to contain a statistically

significant number of particles, but they must also be small enough to count as an “infinitesimal” volume

element14. More precisely, we only demand that f̃ and f agree on volumes much larger than the volume

occupied by single particles. Formally, given a ε > 0,

∀V ⊆M,

∫
V

Ω > ε, ∃ δ such that

∣∣∣∣∫
V

(
f(t, ζ)− f̃(t, ζ)

)
Ω

∣∣∣∣ < δ. (2.84)

In kinetic theory, instead of tracking the trajectories of single particles, one is only interested in the time-

evolution of the phase space probability distribution. Since classical point particles can neither be created

nor be destroyed, the number of particles in a given volume can change either due to a flux of particles or

due to collisions. The former involves particles following Hamiltonian dynamics, which is encoded in the

Liouville’s theorem, while the latter is encoded in a collision integral C[f ], which can be computed using

14 This somewhat strange condition is actually quite natural for physical systems; for instance, for a gas under environmental
conditions with a particle density of ∼ 1024 m−3, one can choose the “infinitesimal” volume element as 1µm3, which contains
∼ 106 particles.
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the 2-body interactions of the Hamiltonian. Thus, we arrive at the Boltzmann equation15

∂

∂t
(
√
ρf) +

∂

∂ζi

(√
ρ f ζ̇i

)
= C[f ], (2.85)

where the probability of finding the particle in a given volume is the integral of
√
ρ f over the volume. If

the system is dilute, we can ignore the collisions and set C[f ] = 0, which we shall do from now on. The

collisionless Boltzmann equation can be written compactly using eq. (2.81) as

Ld̃H (f ΩH) = 0. (2.86)

But since Ld̃H (ΩH) = 0 by Liouville’s theorem, we can set Ld̃Hf = 0. Physically, this implies that f is

simply advected with the Hamiltonian flow. In terms of coordinates on MH , this gives us the conventional

form of Boltzmann equation

0 = ?Ld̃Hf =
∂f

∂t
+ ζ̇i

∂f

∂ζi
. (2.87)

From now on, we shall assume that the phase space density satisfies this equation.

2.5.3 Currents

The 1-particle probability distribution, which satisfy the continuity equations, can be used to compute the

averages of quantities of physical interest, viz, “densities” and “currents”. Given any function Q : M→ R,

we can compute the corresponding ”density” J0 and current Ji over V ⊆M as

J0 =

∫
V

Q(t, ζ) ΩH , J i =

∫
V

ζ̇iQ(t, ζ) ΩH . (2.88)

A special case of interest is when the spacetime is a submanifold of MH , so that one can integrate over the

remaining phase space variables to obtain the currents as a function of spacetime. Thus, set MH = Rn,1×M′,

with Rn,1 parametrized by t and ζi, 1 ≤ i ≤ n, whileM′ is parametrized by the remaining ζi, n+1 ≤ i ≤ 2m.

Then we define the current associated with Q, which is independent of the spacetime coordinate, as

J0 =

∫
M′

(Q√ρ)

2m∧
i=n+1

dζi, J i =

∫
M′

(
Q ζ̇i

) 2m∧
i=n+1

dζi. (2.89)

A few relevant examples are the number current(Q = f), the charge current(Q = q f , q being the charge of

a particle) and the energy-current(Q = εf , which typically depends on the momentum).

15 For a more careful derivation using the BBKGY hierarchy, see Ref [75].
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The spacetime gradient of the current defined in eq. (2.89) is

∂µJ
µ =

∫
M′
Q(t, ζ)

[
∂

∂t

√
ρ+

n∑
i=1

∂

∂ζi

(√
ρ ζ̇i
)] 2m∧

i=n+1

dζi

=

∫
M′
Q(t, ζ)

[
?Ld̃HΩH −

2m∑
i=n+1

∂

∂ζi

(√
ρ ζ̇i
)] 2m∧

i=n+1

dζi (2.90)

where we have used eq. (2.81). Integrating the second term on the RHS by parts and taking the Hodge dual

of both sides, we get

d ? J −
∫
M′

(
2m∑

i=n+1

ζ̇i
∂Q
∂ζi

)
ΩH =

∫
M′
QLd̃HΩH . (2.91)

In certain cases, this would turn out to be a covariant conservation law, as shown in Sec 5.3. For particle

number current, Q = f , and the conservation law simplifies to

d ? J =

∫
M′

f Ld̃HΩH . (2.92)

Using Liouville’s theorem Ld̃H(f ΩH) = 0, we deduce that J is conserved. In cases where Liouville’s theorem

breaks down, (See Ch 5) we can use eq. (2.91) to deduce the corresponding (non-)conservation laws.
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3 Gauge anomalies

Gauge anomalies imply a breakdown of the classical conservation laws. One particular example, anomalies

occur when a classical field theory of Weyl spinor fields coupled to nondynamical gauge/gravitational fields,

when the associated classical conservation law breaks down when the theory is quantized.

In this chapter, we shall attempt only a brief exposition of gauge theories and anomalies, to provide some

context to what we are trying to calculate in the rest of the thesis. A proper description of their origins

would demand forays into quantum field theory that are, for the most part, irrelevant to this thesis, and

so we cite the standard references for them. We shall spend considerably more time setting up anomalous

hydrodynamics, for which some of the relevant quantities are computed using the semiclassical techniques

in Ch 5.

3.1 Gauge theories

We begin with a brief description of classical field theories with a gauge symmetry. As classical field theory

is not particularly relevant to this dissertation, we shall primarily be interested in a description of the gauge

transformation and their geometric aspects.

Crudely put, ‘gauge’ refers to a redundancy in the description of the physical system. More precisely,

given a theory on a smooth manifold X with a degree of freedom in some other manifold T , a field is a

map φ : X 7→ T , and a ‘gauge’ can then be thought of as1 a choice of coordinates on T that depends on the

coordinates in X. A gauge transformation is then a continuous local coordinate transformation of T . These

transformations usually form a Lie group, which is referred to as the gauge group of the theory. Finally,

since the gauge freedom is unphysical, we demand that all physical theories be gauge invariant, which often

provides strong constraints on the theory.

In the first subsection, we shall take this slightly unconventional approach to introducing gauge, talking

only about gauge fields. Only in the next subsection shall we describe the usual origin of gauge symmetry

in classical field theory, which usually comes about when one “promote a global symmetry to a local one”.

1 A particularly clear and insightful introduction to this perspective is an article by Terence Tao[76].
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3.1.1 Fiber bundles

Fiber bundles are the most natural setup to study gauge theories. Formally, they are a trio of topological

spaces (F , L,M) and a continuous surjective map π : F →M such that ∀x ∈M , the preimage π−1(x) ⊂M

is homeomorphic to F . M is termed the base space, L the total space, π the projection and F the fiber of

the fiber bundle. A fundamental property of fiber bundles is local trivialization, i.e, on open sets of M , the

fiber bundle can be written as the product space M ×F with the projection simply projecting to the first

component.

Two fiber bundles shall be relevant for our purposes: the principle bundle and the associated bundle on a

smooth manifold M for a given group G. The former is simply a bundle P
π−→ M whose base space is M

and whose fibers are copies of G (or, more precisely, torsors of G). Its sections are the space of all possible

gauges. Given V , a vector space with a G-action, the associated bundle is formally defined as P ×G V . Its

sections are the wavefunctions of the problem, with the G-action on V describing the gauge transformations.

The relevant features of fiber bundles used in the following are the related notions of connections, covariant

derivatives and curvatures. In the following, we shall simply quote the needed results; for details we refer to

Sec 16.3.2 of Ref [70].

The connection on a fiber bundle can be defined using the notion of a parallel transport. For instance,

for the principle bundle, given a curve x(t) on the base space M and a point (x(0), g) ∈ π−1(x(0)), the

problem is to define a curve on L such that the tangent vector stays horizontal. Given a local trivialization

around x(0), the lift can then be written as (x(t), g(t)), where given x(t), we seek to derive g(t). One gets

a differential equation of the form

∂g

∂t
+
∂xi

∂t
Ai(x)g = 0, (3.1)

where Ai(x) is the connection on P , and the vector field along x is then called the covariant derivative on

the principle bundle P .

The connection on the principle bundle induces a connection A on the associated bundle, which is of more

interest to us. It can be used to define the covariant derivative D ≡ d− iA, which acts on the wavefunctions.

The curvature of the bundle is then defined as

Fij ≡ i[Di,Dj ]. (3.2)

The connection and curvature, being derivatives on G, are valued in the Lie algebra. The curvature 2-form

encodes the local triviality of the fiber bundle. More precisely, a bundle is trivial iff the curvature vanishes.
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3.1.2 Maxwell and Yang-Mills

Arguably, the earliest classical field theory with a gauge symmetry was the Maxwell’s theory of electromag-

netism, described in d+ 1 dimensions by the action

S[F ] =

∫
Rd,1

F ∧ ?F =
1

4

∫
Rd,1

dd+1xFµνF
µν , (3.3)

where F = 1
2Fµνdx

µ ∧ dxν is the Maxwell’s tensor, in whose dynamics the physical content of the theory

is encoded. The corresponding equation of motion, viz, the Maxwell equations, can be written compactly

using differential forms as

dF = 0, d ? F = 0. (3.4)

where J is a current 1-form, which can be thought of as an external source. In 3 + 1 dimensions, the

components of F are the electric and magnetic fields, defined as Ei = F0i and Bi = 1
2εijkF

jk. The

conventional Maxwell’s equations are written in terms of these fields, so that the physics of the system can

be entirely described in terms of these quantities.

In order to couple this to other fields, one uses Poincaré’s lemma to locally define a 1-form A = Aµdx
µ

such that F = dA. Clearly, this choice is not unique, since A 7→ A + dα leaves F invariant for any smooth

function α. Thus, if we think of Aµ’s as the degrees of freedom of the system, the description is redundant,

since A and A + dα describe precisely the same physical state. The redundancy is the additional gauge

freedom, under which the physical dynamics of the system must remain invariant. For instance, in presence

of external charge current described by a 1-form J = Jµdx
µ, where J0 is the charge density and Jµ the

charge current, the action becomes

S[A, J ] =

∫
Rd,1

(F ∧ ?F −A ∧ ?J) =

∫
Rd,1

dd+1x

(
1

4
FµνF

µν − JµAµ
)
, (3.5)

the equations of motion become

dF = 0, d ? F = ?J. (3.6)

Furthermore, setting A→ A+ dα and using the fact that F is invariant under this transformations, we get

S[A+ dα, J ]− S[A, J ] = −
∫
Rd,1

dα ∧ ?J =

∫
Rd,1

αd ? J, (3.7)
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which must hold true for any α : Rd,1 → R. Thus, the currents must satisfy

d ? J = 0 ⇐⇒ ∂µJµ = 0. (3.8)

This is the conservation law associated with electromagnetism, which we simply interpret as a continuity

equation, i.e, a local conservation of charge.

We seek to interpret the Maxwell connection A as the connection on an associated G-bundle, on which

the connection should be g-valued. But since the Maxwell connection is real valued, we seek a group G for

which g ∼= R. The commonly used group is G = U(1), as it is compact2. Thus, a natural generalization of

electromagnetism would be to consider arbitrary Lie group G, which we do next. Particular examples are

the classical Yang-Mills theories, where one takes G = SU(n), the Salam-Weinberg electroweak theory with

G = SU(2)×U(1) and the standard model of particle physics, with G = SU(3)× SU(2)×U(1).

Thus, we now consider the gauge connection A valued in g, for which the covariant derivative becomes

D = d− iA, so that using eq. (3.2), the curvature becomes

F = i[d− iA, d− iA] = dA− iA ∧A. (3.9)

Under a nonabelian gauge transformation,

A→ Ã = gAg−1 − i dg g−1, F → F̃ = gFg−1, (3.10)

where the latter can be explicitly derived as

F̃ = dÃ− iÃ ∧ Ã

=
(
dg ∧Ag−1 + g dAg−1 + gAg−1 ∧ dg g−1 − i dg g−1 ∧ dg g−1

)
− i
(
gAg−1 ∧ gAg−1 − i gAg−1 ∧ dg g−1 − i dg g−1 ∧ gAg−1 − dg g−1 ∧ dg g−1

)
= gFg−1 (3.11)

Given the Lie algebra g of G, for any g ∈ G which lies in the identity component of G, it can be written as

eiX for some X ∈ g. Choose a basis of the Lie algebra as λa, a = 1, . . .dim (g), whose commutators are given

by [λa, λb] = if cabλc, where f cab are a set of real structure constants of the Lie algebra. The gauge connection

and curvature are differential forms valued in the Lie algebra, so that we can expand them, given the bases

2 One could also choose G = R under addition, a a setup sometimes known as noncompact electrodynamics.
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of the underlying space and the Lie algebra, as A = Aaλa = Aaµdx
µλa. Then, explicitly, F = dA − iA ∧ A

can be written in the given coordinates as

1

2
F aµνλadx

µ ∧ dxν =
(
∂µA

a
νλa − iAbµAcν [λb, λc]

)
dxµ ∧ dxν

=
1

2

(
∂µA

a
νλa − ∂νAaµλa +AbµA

c
νf
a
bc

)
dxµ ∧ dxν , (3.12)

so that F aµν = ∂µA
a
ν − ∂νAaµ + f abcA

b
µA

c
ν .

3.1.3 Coupling to matter fields

We now come to one of the primary raison d’être of gauge theories: promoting global symmetries to local

ones3. Consider then arguably the simplest possible theory with a continuous global symmetry: a complex

scalar field in n + 1 spacetime dimensions. Mathematically, φ : Rn,1 → C, whose dynamics is governed by

the action functional

S[φ] =

∫
Rn,1

dn+1x
[
(∂µφ

∗)(∂µφ) + V (|φ|2)
]
, (3.13)

where V : R→ R is a smooth function. There is a natural action of U(1) on the field as φ(x) 7→ eiθφ(x), θ ∈

S1, under which the action is manifestly invariant. To ‘gauge’ this symmetry is to demand that the action

be invariant under φ(x) 7→ eiθ(x)φ(x), where θ : Rn,1 → S1. Clearly, the action is not invariant under such a

transformation, as ∂µφ will yield a term where the derivative acts on θ. The way around is to introduce a

covariant derivative, defined as Dµ ≡ ∂µ− iAµ, such that under the U(1) transform, Aµ 7→ Aµ + ∂µθ. Then,

under a gauge transformation,

Dµφ 7→ eiθ(x) (∂µφ+ iφ ∂µθ)− i(Aµ + ∂µθ)φ = Dµφ. (3.14)

Here, A is the gauge field. We can use covariant derivatives

S[φ,A] =

∫
Rn,1

dn+1x
[
(Dµφ∗)(Dµφ) + V (|φ|2)

]
, (3.15)

which is invariant under a gauge (or a local U(1)) transformation. In physical terms, this action, after

quantization, describes scalar QED.

A more useful field theory is one coupling a U(1) gauge field to spinor fields, which, when quantized,

can be used to describe fermions (for instance, electrons) interacting electromagnetically, in which case, the

3 The question of a reasonable apriori motivation to do this (barring post hoc allusions to their usefulness) is something
that has always eluded me.
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gauge field is interpreted as a photon. Explicitly, the QED action can be written as

S[ψ,A] =

∫
Rn,1

dn+1x
[
ψ(iγµDµ −m)ψ

]
, ψ = ψ†γ0, (3.16)

where ψ is a spinor, i.e, it transforms under the spinor representation of the Lorentz group SO(n, 1), and γµ

are the Dirac matrices, which satisfy [γµ, γν ]+ = ηµν , and thus form a representation of the Clifford algebra.

We now move on to gauge symmetries more complicated than U(1). Consider then a Lie group G with a

q-dimensional complex unitary representation R, i.e, to each g ∈ G we associate Rg : Cq → Cq. Then, we

can define an action invariant under this transformation as

S[ψ,A] =

∫
Rn,1

dn+1x
[
ψα(iγµ∂µ −m)ψα

]
=

∫
Rn,1

dn+1x
[
Ψ̄(iγµ∂µ −m)Ψ

]
, (3.17)

where Ψ is a q-component spinor, whose components transform as ψα 7→ [Rg]αβψβ , so that ψ̄α 7→ [R†g]αβψβ .

Since Rg is a unitary matrix, the action is invariant under this transformation. We again demand invariance

under a local version, viz, under Ψ 7→ Rg(x)Ψ, for which we need covariant derivatives Dµ = ∂µ− iAµ, where

Aµ is a nonabelian gauge field, which transforms as

Aµ 7→ Rg(x)

(
Aµ − iR−1

g(x)∂µRg(x)

)
R−1
g(x). (3.18)

Thus, under a gauge transformation,

DµΨ 7→ Rg(x)

[
∂µΨ +

(
R−1
g(x)∂µRg(x)

)
Ψ
]
− iRg(x)

(
Aµ − iR−1

g(x)∂µRg(x)

)
Ψ = Rg(x)DµΨ, (3.19)

so that the covariant derivative indeed transforms covariantly !

3.2 Anomalies

In the last section, we saw that one can define classical field theories invariant under a gauge transformations.

In quantum field theory, one seeks to quantize the theory. It was quite a surprise to have discovered that

the symmetries of the classical field theory do not necessarily imply that the corresponding quantum field

theory is also symmetric; this is known as an anomaly. Thus, generically, anomalies imply a breakdown of

the conservation law of the form derived in eq. (3.8), so that one can schematically write

d ? J = A[A,F ], (3.20)
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where J is a conserved current in the classical theory, and A[A,F ] is termed the anomaly polynomial.

One way to quantize a classical field theory is to use Feynman’s path integrals. Given an action S[φ],

where φ denotes the relevant dynamical field of the problem, one defines the path integral, which is physically

the amplitude to go from an initial configuration φ1(x) to a final configuration φ2(x) as

Z =

∫
[dφ]eiS[φ], (3.21)

where [dφ] is a measure that represents the “sums over all paths”. Precisely what this notion means is often

not entirely clear, so that the integration measure is not in general well defined. However, when it is defined,

a classical symmetry of the action, which leaves the action invariant, may not leave the measure invariant.

This origin of the anomaly from the variation of the path integral measure is generically termed a Fujikawa

calculation, after the original calculation of the U(1) anomaly using this method by Fujikawa[77].

An alternative is the canonical quantization, where one “upgrades” the classical fields to quantum field

operators, which are required to follow certain (anti-)commutation relations. The physical current is then

given by the expectation value of the current operator Ĵµ. However, the classical conservation law for J as

derived in eq. (3.8), leads to the vanishing of gradients of certain expectation value, a result known as a

Ward identity [9]. The anomaly manifests itself in the canonical formalism as an explicit violation of a Ward

identity, as one computes the relevant Feynman diagrams.

In the rest of this section, we simply list the commonly encountered examples of anomalies in 3 + 1

dimensions:

Adler-Bell-Jackiw(ABJ) anomaly corresponds to the violation of the conservation law for the axial

current in QED.Explicitly, one considers the fermionic action

S[ψ,A] =

∫
R3,1

dn+1x
[
ψ(iγµDµ −m)ψ

]
, (3.22)

which has the vector(V) and axial(A) currents explicitly defined as Jµ = iψγµψ and J5
µ = iψγµγ

5ψ,

respectively. The corresponding conservation laws in the quantum field theory (or more precisely, the

Ward identities) can be computed as the V-V-A vertex. At one-loop level, they computed the so-called

triangle diagram, to get

∂µJ5
µ =

1

16π2
εµνρλFµνFρλ, (3.23)
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which can be written more concisely as

d ? J5 =
1

(2π)22!
F ∧ F =

1

2!

(
F

2π

)2

. (3.24)

Nonabelian singlet anomaly is a direct generalization of the ABJ anomaly, when one replaces the gauge

group U(1) with some more general (and usually nonabelian) gauge group. Thus, setting A = Aaµλadx
µ,

the singlet anomaly becomes

d ? J5 =
1

(2π)22!
tr {F ∧ F} =

1

2!
tr

{(
F

2π

)2
}
. (3.25)

Nonabelian gauge anomaly is a violation of a covariant conservation law for a gauge current. It was

originally computed by Bardeen as

D ? Ja =
1

6π2
dtr

{
λa

(
A ∧ dA+

1

2
A3

)}
=

1

24π2
(3.26)

This is known as the consistent anomaly, since it satisfies the Wess-Zumino consistency conditions.

However, there also the covariant anomaly, which is usually written as

D ? Ja =
1

8π2
tr {λaF ∧ F} . (3.27)

Clearly, this is covariant because the anomaly polynomial consists entirely of the gauge-covariant

curvature 2-forms. These two expressions are equivalent upto the addition of a boundary term, which

can be thought of as an addition of a (Bardeen) counterterm[78] to the action. In the present case,

the two different forms of the gauge anomaly are different by

1

12π2
d tr

{
λa
(
A ∧ F + F ∧A−A3

)}
, (3.28)

which is indeed a boundary term. If original manifold R3,1 is thought of as the boundary of a manifold

in one higher dimension, then the Bardeen counterterm can also be interpreted as an anomaly inflow [79]

from the bulk, as described by the Callan-Harvey mechanism[80].

In higher dimensions, we have similar expressions for the anomaly polynomials, all of which turn out to

be the Chern characters. Thus, they can all be computed using the generating function etF/2π, which one

expands as a formal power series in F and picks out the coefficient of t2N in 2N spacetime dimensions.
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For manifolds which support a spin structure, integrating the anomaly polynomial gives the Chern numbers

associated with the gauge curvature, which can also be thought of as an instanton number. Furthermore,

the anomaly polynomials are also related to the index of the Dirac operator via the Atiyah-Singer index

theorem[6, 73]. Thus, anomalies can be thought of as an index density, which reveals their topological nature.

Coupling the fermionic theory to a nondynamical curved spacetime background (i.e, gravity in the GR

sense), we get the mixed gauge-gravitational anomaly. We shall not write out the polynomials explicitly,

instead we shall just write down the corresponding generating function, which defines the anomaly in 2N

spacetime dimensions in terms of the Â-genus and the Chern character as

d ? J = 2π

[
Â(R)ch

(
F

2π

)]
2N

= 2π

[
R/2

sinhR/2
e−F/2π

]
2N

, (3.29)

where F and R are the gauge and Riemann curvature 2-forms, and the subscript 2N denotes extracting the

2N -forms from the formal expansion in powers of F and R. This expression can be directly derived using

techniques from supersymmetric quantum mechanics[81, 82].

3.3 Anomalous Relativistic Hydrodynamics

Relativistic hydrodynamics is a description of fluid mechanics that includes the relativistic effects, which arise

when either the macroscopic velocities of the fluid or the ‘velocity’ of the microscopic particles constituting

the fluid is comparable to the speed of light. In general, a fluid is described by its velocity field uµ(x), and a

set of thermodynamic variables, viz, the temperature field T (x) and the chemical potential(s) µa(x). Here,

x ∈ Rn,1 is the spacetime coordinate[12], and the velocity is normalized as uµuµ = −1. We shall term these

fluid fields, and their time evolution is described by the equations of fluid mechanics.

A central assumption underlying all hydrodynamics is that the system always equilibrates locally over

a finite time-scale[12, 83]. Globally, the system can fluctuate from the equilibrium, so that the thermody-

namic variables are position dependent. Hydrodynamics is then useful in studying their long wavelength

fluctuations4, i.e, to study systems near equilibrium. A (local) form of the second law of thermodynamics

then demands that there exists an entropy current S, whose divergence is nondecreasing everywhere(so that

there are no “sinks” for the entropy current) under any fluid flow allowed by the theory. This, coupled

with the first law of thermodynamics, serve to constrain various coefficients appearing in the hydrodynamic

description.

4Long compared to some intrinsic length scale of the microscopic theory. If the underlying theory has well defined
(quasi-)particle excitations, then this would simply be their mean free path.
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The dynamical content of hydrodynamics is encoded in the local conservation laws of the system. Thus, in

order to construct a hydrodynamic description of a quantum field theory, in principle we only need a list of

currents (corresponding to continuous symmetries of the theory á la Noether) and their conservation laws,

which might be broken in the case of a theory with anomalies. One then needs to construct the constitutive

relations, which define the currents in terms of the dynamical fields, thereby reducing the conservation laws

to the equations of fluid mechanics.

In this section, we shall consider the hydrodynamic description of a QFT with a single anomalous U(1)

gauge symmetry in (2N +1)+1 dimensions. The Noether currents for the corresponding classical action are

simply the symmetric energy momentum tensor (“energy current”) T µν corresponding to the diffeomorphism

invariance and the particle current Jν corresponding to the global U(1) invariance. On quantization, these

current satisfy the anomalous conservation laws

∂µT µν = F νλJλ, ∂µJ
µ = A[F ], (3.30)

as described in Sec 3.2. We shall assume5 that the presence of anomaly in the theory does not generate any

entropy, in which case the anomalous currents can be derived completely using the second law constraint,

as shown by Loganayagam[15].

A word about notation: To simplify the clutter of indices, we shall often use the shorthands u · v = uµvµ,

∂ · u = ∂µu
µ and (u · ∂)vν = uµ∂µv

ν . We shall also use a particularly neat notation due to Loganayagam of

describing the hydrodynamic quantities using differential forms.

3.3.1 Constitutive relations and derivative expansion

A systematic way of generating the constitutive relations is provided by the derivative expansion6. The

central idea is to assume that all fields are slowly varying w.r.t the spacetime, so that their spacetime

derivatives are “small”. In practice, the fluid fields are defined to be at the zeroth order of the derivative

expansion, and the order of a given term is the total number of spacetime derivatives (∂µ’s) of the fluid fields.

The constitutive relations at a given order are then sums over all terms allowed by the symmetries upto that

order with arbitrary “transport” coefficients, and one uses the thermodynamic constraints to obtain these

transport coefficients. We now construct the constitutive relations for our U(1)-anomalous fluid.

5For a rationale of this assumption, see Footnote 9 of Ref [15].
6This is inspired from the construction of effective field theory, where one writes down all terms with a given number of

spacetime derivatives of fields, allowed by symmetries. The number of spacetime derivatives in a term then define the classical
scaling dimension of the operator, so that terms with more derivatives are increasingly irrelevant in an RG sense.
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Zeroth order

At the zeroth order in spacetime derivatives, there is only one vector7, viz, uµ, and there are only two

symmetric tensors, viz, ηµν and uµuν . Thus, at the zeroth order, we can write

T µν = αuµuν + βηµν , Jµ = γuµ, Sµ = ηuµ, (3.31)

where α, β, γ and η are arbitrary coefficients. Since the constitutive relations are defined in a Lorentz

invariant fashion, we consider the reference frame comoving with the fluid, in which uµ = (1, 0, · · · 0). Then,

we can define the volume density of energy ε, pressure p, particle number n and entropy s as

ε = T 00, p = T ii, n = J0, s = S0. (3.32)

These are “extrinsic” quantities, which can be expressed in a Lorentz invariant fashion as ε = uµuνT µν ,

uµJ
µ = −n, etc. They depend on the position only via T and µ, i.e, ε = ε(T (x), µ(x)) etc. Comparing with

the constitutive relations, we can identify

α = ε+ p, β = p, γ = n, η = s. (3.33)

Thus, at zeroth order, the constitutive relations are

T µν = (ε+ p)uµuν + pηµν , Jµ = nuµ, Sµ = suµ. (3.34)

Higher orders:

The zeroth order terms describe an ideal fluid; however, they cannot encode the anomalous conservation

laws of eq. (3.30). This can be deduced from a simple power counting: since A is at O(∂0) in the derivative

expansion, F ∼ O(∂) and the anomaly polynomial A[F ] ∼ FN+1 ∼ O(∂N+1). But since ∂J = A[F ], we

shall need to add a term at O(∂N ) to J . Finally, since ∂T ∼ FJ ∼ O(∂N+1), we shall also need to add a

term at O(∂N ) to the constitutive relation for T .

7We do not use Aµ as it is not gauge invariant. For any given point x, we can choose a gauge such that A(x) = 0. However,
its gauge invariant derivatives (F = dA) will be used at higher orders.
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Adding the anomalous contributions to the zeroth order constitutive relations, we set

T µν = (ε+ p)uµuν + pηµν + (qµuν + uµqν)

Jµ =nuµ + J µ,

Sµ = suµ + Sµ, (3.35)

where q,J , S contain one or more spacetime derivatives of uµ or Aµ. Since the energy, momentum and

number of particles are ‘physical’ quantities, we shall demand that eq. (3.32) still hold, so that

uµq
µ = uµj

µ = uµj
µ
S = 0. (3.36)

These expansions are by no means complete, as one could write down many more terms at different orders.

Most of these terms will describe some sort of dissipative effects. Even restricting to nondissipative terms,

there can potentially be other tensor corrections to T at O(∂N ), which cannot be written as qµuν + uµqν

for some vector qµ. We shall ignore those corrections since they cannot be constrained by the second law

of thermodynamics[15]. Thus, we essentially seek to add the minimal possible terms to the constitutive

relations which can describe the conservation laws of eq. (3.30) and describe some macroscopic effects of the

gauge anomaly in the microscopic.

Finally, there is the somewhat tricky issue of a frame choice, to address the fact that the velocity, tem-

perature and chemical potentials are not uniquely defined away from equilibrium. In practice, this means

that one can vary these fields and compensate for the variation by changing the anomalous contribution

accordingly. For instance, the constitutive relations are invariant under

uµ → uµ + δuµ, qµ → qµ − (ε+ p)δuµ, Jµ → Jµ − n δuµ. (3.37)

The origin of this ambiguity in relativistic hydrodynamics lies in the fact that unlike the nonrelativistic

case, one cannot distinguish between the ‘mass’ and the ‘energy’. One usually fixes this ambiguity by

putting additional constraints on the anomalous components, e.g, q = 0 (Landau frame) or J = 0 (Eckart

frame). We shall not choose a particular frame beforehand; rather, we shall simply derive our results for the

anomalous contribution and choose a frame in which they take simple forms.

The anomalous contributions are written explicitly in terms of derivatives of the fluid fields most compactly

using differential forms corresponding to the currents, as we now describe.
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Differential forms

Given a vector ξµ ∈ Vect(Rn,1), we can use the Minkowski metric to define a corresponding 1-form as ξ =

ξνdx
ν = ξµηµνdx

ν . Thus, we get 1-forms u, q,J ,S, corresponding to the velocity field uµ and the anomalous

currents qµ, J µ and Sµ, respectively. We also define their Hodge duals[70] ? : Ωp(Rn,1) → Ωn+1−p(Rn,1),

which we denote by an overbar as well as the usual ?, following Loganayagam[15]. Explicitly,

ū = uµ(?dxµ) =
1

(n+ 1)!
εµν1ν2...νnu

µ

(
n∧
i=1

dxνi

)
. (3.38)

Given 1-forms u and v, the inner product and gradient can be written as

? (vµu
µ) = v ∧ ū, ? (∂µu

µ) = dū, (3.39)

where ?1 = V, the Euclidean volume form on R2N+1,1. This is the dictionary to go between the differential

forms and vectors on R2N+1,1.

The fluid fields provide us with two 1-forms, viz, u and A. We define the corresponding “curvatures” as

Fµν = ∂µAν − ∂νAµ, Ωµν = ∂µuν − ∂νuµ. (3.40)

In a reference frame specified by u, the electric field is defined as Eµ = Fµνu
ν . Since the acceleration is

defined as aµ = uν∂νuµ, we can use uν∂µuν = 1
2∂µ (uνu

ν) = 0 to express it in terms of uν and Ωµν as

aµ = uν (∂νuµ − ∂µuν) = −Ωµνu
ν . (3.41)

Thus, we can decompose the curvatures into their “electric” and “magnetic” components, with the for-

mer being along and latter transverse to the velocity field uµ(x). In terms of differential forms, this

decomposition[15] simply becomes

F = dA = B + u ∧ E,

Ω = du = ω − u ∧ a, (3.42)

where B and ω are 2-forms. Clearly,

u ∧ F = u ∧B, u ∧ Ω = u ∧ ω. (3.43)
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The decompositions are particularly transparent in a frame where uµ = (1, 0, . . . 0), i.e, u ≡ uµdx
µ = −dt.

Then, E0 = 0, Ei = Fi0 and a0 = 0, ai = −Ωi0 = ∂tui, so that

F = B − Fi0 dt ∧ dxi =⇒ B =
1

2
Fijdx

i ∧ dxj ,

Ω = ω − Ωi0 dt ∧ dxi =⇒ ω =
1

2
Ωijdx

i ∧ dxj = ∂iujdx
i ∧ dxj .

In order to expose the mathematical symmetry between these decompositions, we have followed the tradi-

tional fluid mechanics convention [11] in defining the vorticity ω, so that ~ω = ∇×~u in 3+1 dimensions. This

is in contrast to the angular velocity, ~ωA = 1
2∇× ~u = 1

2ω, which is sometimes referred to as the “vorticity”

in relativistic hydrodynamics (for instance, Refs [12, 15]).

The most general anomalous contributions to the constitutive relations in eq. (3.35) can be succinctly

written as

q̄ = u ∧

N−1∑
k=1

γ
(q)
k F ∧ · · · ∧ F︸ ︷︷ ︸

k

∧Ω ∧ · · · ∧ Ω︸ ︷︷ ︸
N−1−k

 , (3.44)

and similar expressions for J̄ and S̄, where γ’s are the transport coefficients. The task of hydrodynamics is

then to constrain these transport coefficients using general principles such as those of thermodynamics.

3.3.2 Conservation laws and thermodynamic constraints

We next use the anomalous conservation laws (eq. (3.30)) and the constitutive relations constructed so far

to derive the equations of fluid dynamics.

Ideal fluid

We begin with a description of ideal fluid, for which the conservation laws are

∂µT µν0 = 0, ∂µJ
µ
0 = 0, ∂µS

µ
0 ≥ 0, (3.45)

and the constitutive relations terminate at the zeroth order. The equations of motion can be obtained by

simply substituting the the constitutive relations in the conservation laws. We start off with the conservation

of the U(1) current:

0 = ∂µJ
µ
0 = (u · ∂)n+ n∂ · u. (3.46)

This is simply the continuity (Bernoulli’s) equation, since it indicates that the variation in n(x) can happen

only in presence of a source/sink for u(x).
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The conservation of the energy-momentum tensor becomes

0 = ∂µT µν0 = uνuµ∂µ(ε+ p) + (ε+ p) (uν∂µu
µ + uµ∂µu

ν) + ηµν∂µp

= uν(u · ∂)(ε+ p) + (ε+ p) (uν(∂ · u) + aν) + ∂νp, (3.47)

which can be recast as

uν(∂ · u) + aν = − 1

ε+ p
[∂νp+ uν(u · ∂)(ε+ p)] (3.48)

This is the relativistic version of the Euler’s equation for the fluid flow, since the LHS is simply a relativistic

version of (∂t + v · ∇) v. (See Ref [84] for details). Furthermore,

0 = uν∂µT µν0 = −(u · ∂)ε− (ε+ p) (∂ · u) , (3.49)

since uµa
µ = 1

2u
ν∂ν(uµu

µ) = 0.

Finally, the nonnegative divergence of the entropy current is

0 ≤ ∂µSµ0 = (u · ∂)s+ s ∂ · u. (3.50)

We can express the divergence of the entropy current in terms of the other two currents using the first law

of thermodynamics, which reads

ε = −p+ µn+ Ts, dε = µdn+ sdT. (3.51)

Adding eqns 3.49, 3.46 and 3.50, we get

T∂µS
µ
0 = T∂µS

µ
0 + µ∂µJ

µ
0 + uν∂µT µν0

= (Ts+ µn− ε− p)(∂ · u) + u · (T∂s+ µ∂n− ∂ε) = 0, (3.52)

where the last line follows from the first law of thermodynamics. We deduce that an ideal fluid does not

produce entropy, as expected. This is the general strategy to use the second law of thermodynamics: we

add scalars which vanish from conservation laws at each order to obtained a simplified expression for T∂ ·S,

which we demand to be nonnegative.
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Anomalous fluids

We can again compute the equations of fluid dynamics analogous to the zeroth order case. These are not very

enlightening by themselves, as they do not correspond to any known equations of classical fluid dynamics.

However, we can use them to derive the second law constraint for the anomalous fluid, viz, ∂ · S = 0. The

(non-)conservation of energy-momentum tensor leads to,

0 = ∂µT µν − F νλJλ

= [∂µT µν0 + uν(∂ · q) + (q · ∂)uν + (u · ∂)qν + qν(∂ · u)]− F νλ [nuλ + Jλ] . (3.53)

from which it again follows that

0 = uν
(
∂µT µν − F νλJλ

)
= uν∂µT µν0 − (∂ + a) · q − EλJλ, (3.54)

where we have used the fact that uνF
νλuλ = 0 by antisymmetry of F , uνF

νλJλ = EλJλ by definition, and

uν [uν(∂ · q) + (q · ∂)uν + (u · ∂)qν + qν(∂ · u)]

= − ∂ · q +
1

2
(q · ∂)(uνu

ν) + uνu
µ∂µq

ν + (u · q)(∂ · u)

= − ∂ · q + uµ∂µ(uνq
ν)− qνuµ∂µuν

= − (∂ + a) · q, (3.55)

since u · q = 0. The charge and entropy currents satisfy

0 = ∂µJ
µ −A[F ] = ∂µJ

µ
0 + ∂µJ µ −A[F ] (3.56)

and

0 = ∂µS
µ = ∂µS

µ
0 + ∂µSµ. (3.57)

Again, adding eqns 3.54, 3.56 and 3.57, we get

T∂µS
µ = T∂µS

µ + µ (∂µJ
µ −A) + uν

(
∂µT µν0 − F νλJλ

)
= [T∂µS

µ
0 + µ∂µJ

µ
0 + uν∂µT µν0 ] + [T∂ · S + µ(∂ · J − A)− (∂ + a) · q − E · J ] . (3.58)
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Using eq. (3.52) and setting T∂µS
µ
0 = 0, we get the second law constraint involving only the anomalous

contributions, as

T ∂ · S + µ(∂ · J − A)− (∂ + a) · q + E · J = 0. (3.59)

Solutions and Replacement rules

We begin by taking Hodge dual of the second law constraint to express it in terms of differential forms as

T dS̄ + µdJ̄ − dq̄ − a ∧ q̄ + E ∧ J̄ = µĀ. (3.60)

This equation was solved in general in [15], which we do not discuss in any details here. More intriguingly,

Loganayagam and Surówka[16] showed that one can define a grand potential8 current Ḡ from which q̄, J̄

and S̄ can be derived as

Ḡ = q̄ − µJ̄ − T S̄; J̄ = −∂Ḡ
∂µ

, S̄ = −∂Ḡ
∂T

. (3.61)

Next, they propose an ansatz for Ḡ as

Ḡ =

∫ ∞
0

dε

2π
g(ε)J̄G , g(ε) = −T ln

(
1 + e−β(ε−µ)

)
, (3.62)

where g(ε) is the fermionic single particle grand potential(See Appendix C.1). This can be motivated by

kinetic theory (Sec 2.5), where we would have written Gµ as an integral of g(ε)ẋµ over all the phase space

coordinates except xµ. Thus, J̄G can be thought of as the integral of g(ε)ẋµ over all phase coordinates

except xµ and |p| = ε.

Using eqns (C.3) and (C.4) from Appendix C.1, the anomalous contributions to the constitutive relations

can be explicitly written as

J̄ =

∫ ∞
0

dε

2π
f(ε)J̄G , S̄ =

∫ ∞
0

dε

2π
h(ε)J̄G , q̄ =

∫ ∞
0

dε

2π
εf(ε)J̄G , (3.63)

where f(ε) and h(ε) are the Fermi-Dirac distribution and the 1-particle entropy, respectively. In terms of

8In Ref [16], G is referred to as the “Gibbs free energy current”. However, as the Gibbs free energy (per unit volume) is
G = ε+ p− Ts = µn, a Gibbs free energy current would more naturally be µJ .
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these, the second law constraint becomes

µĀ =

∫ ∞
0

dε

2π

[
(Th(ε) + µf(ε)− εf(ε)) dJ̄G + f(ε) (E − εa) ∧ J̄G

]
=

∫ ∞
0

dε

2π

[
g(ε) dJ̄G +

∂g(ε)

∂ε
J̄ EG
]
,

= g(ε)J̄ EG
∣∣∣∞
ε=0

+

∫ ∞
0

dε

2π
g(ε)

[
dJ̄G −

∂

∂ε
J̄ EG
]
, (3.64)

where J̄ EG = (E − εa) ∧ J̄G and we have used eqns (C.3) and (C.4) again. The anomaly be accounted for

by the ε = 0 limit of the boundary term, i.e, g(ε)J̄ EG (ε)|ε=0 = −Ā. The physical interpretation is a spectral

flow argument, that the anomalous contributions are simply injected at ε = 0, the Weyl point, and then

convected along the fluid flow. The term inside the integral vanishes using the continuity equation in the

phase space.

In Ref [16], the equation for J̄ EG (ε) and hence J̄G(ε) is derived for all ε using its boundary value and the

phase space continuity equation. Their final result is

J̄G =
u

2πN !
∧
(
B + εω

2π

)N
=⇒ Ḡ2N+2 =

u

2πN !
∧
∫ ∞

0

dε

2π
g(ε)

(
B + εω

2π

)N
. (3.65)

It is convenient to define a generating function for Ḡ as

Ḡτ =

∞∑
N=0

Ḡ2N+2τ
N =

u

2π
∧
∫ ∞

0

dε

2π
g(ε)e

τ
2π (B+εω) (3.66)

We perform this integral explicitly in Sec 5.4. The result is

Ḡτ = −u ∧ e τqB2π
2π

(ωτ)2

 ωτ
2β

sin
(
ωτ
2β

)eµωτ2π −
(

1 +
µ

2π
ωτ
) , (3.67)

In order to obtain the anomalous currents in 2N + 2 spacetime dimensions, we expand Ḡτ in a power series

in τ and pick out the coefficient of τN , and then use eq. (3.61).

The generating function for Ḡ remarkable because it is strongly reminiscent of the Â-genus and Chern

character generating function for gauge and gravitational anomaly polynomials from eq. (3.29):

Â(R) ch(F ) =
∏
i

xi/2

sinh(xi/2)

∑
j

eyj , (3.68)

where xi and yj are i/2π times the form-valued formal eigenvalues of the Riemann curvature 2-form R and
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the gauge field two form F , respectively. Thus, G in 2N +2 dimensions can be obtained by the replacements

F → µ and tr
{
R2n

}
→ 2(2πT )2n ∀n ∈ Z+ in the anomaly polynomial in 2N + 4 dimensions. These are the

replacement rules, which is conjectured to hold even for theories with interaction, mirroring the fact that

the anomalies are unaffected by addition of interactions.
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4 Berry phase

In 1984, Michael Berry[85] pointed out that a nondegenerate quantum mechanical state subject to a cyclic

adiabatic[86] process picks up an additional phase besides the dynamical phase from the Hamiltonian evo-

lution. If the cyclic process is described as traversing a loop in a parameter space, where the Hamiltonian

depends on the parameter, then the Berry’s phase can be written as a line integral of a Berry connection

1-form over the path in the parameter space, or a surface integral of a Berry curvature 2-form over a region

enclosed by the loop. It is this dependence on only the path, and not on the rate of traversal, that makes

the Berry phase geometric in nature.

It is curious that the notion of Berry’s phase was indirectly glimpsed many times in various context before

Michael Berry’s 1984 paper. Probably the earliest example(1956) is the Pancharatnam phase[87], acquired by

polarized light beams passing through crystals. Around the same time, in trying to explain anomalous Hall

effect, Karplus, Luttinger and Kohn[23, 24, 25] noted that the semiclassical equations of motion for electrons

in a Bloch band include an anomalous velocity, proportional to a quantity which we now know[88, 89, 22, 90]

as the Berry curvature.

Subsequently, Berry’s original analysis has been analyzed and generalized in various directions. Almost

contemporary to the original paper, Barry Simon[44] showed that Berry’s phase is simply a holonomy on

the line bundle of the eigenstates on the parameter space. Wilczek and Zee[91] removed the nondegen-

eracy condition, and thereby derived a nonabelian analogue of the Berry curvature. Finally, Aharonov

and Anandan[92] lifted the adiabaticity condition on the cyclic process, which can then be interpreted as

holonomies on the Hilbert space itself, thought of as a fiber bundle over the projective Hilbert space, i.e, the

space of density matrices.

The Berry phase, owing to its geometric nature, is often a crucial ingredient of the topological invariants in

condensed matter systems, a prime example being the TKNN invariant[43], which is geometrically the first

Chern character of the Berry curvature over the Brillouin zone. It is also indispensable for a semiclassical

description of Weyl fermions[26], where it encodes the gauge anomaly. In Ch 5, we shall see the corresponding

nonabelian generalizations encode guage anomalies in all even dimensions.

In this chapter, we introduce the Berry’s phase and its nonabelian generalization and compute the Berry
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curvature and Chern numbers associated with various systems of interest in this thesis. We also describe

the semiclassical dynamics of electrons in Bloch bands including the anomalous velocity term, and the

interpretation of the equation of motion in the symplectic formalism discussed in Ch 2.

4.1 Basics

We start off with a derivation of the Berry phase[85] and its nonabelian generalization by Wilczek and Zee[91],

using the language of differential forms. We also discuss their computation using projection operators.

4.1.1 Definition of Berry phase

Consider a quantum mechanical system with Hamiltonian H(λ), dependent on a parameter λ ∈M , where

M is a smooth manifold. The corresponding eigenvalue problem is H(λ)|n(λ)〉 = εn(λ)|n(λ)〉. Consider

tuning the Hamiltonian adiabatically1 along a closed curve λ : R→M . Since λ(0) = λ(T ) for some T > 0,

the cyclic evolution must return an eigenstate to itself, upto an overall phase. If a given nondegenerate

eigenstate |n〉 were independent of the parameter λ, it would simply pick up the dynamical phase, given

by e−i
∫ T
0
dt εn(λ(t)), where εn(λ) is the corresponding eigenvalue. However, when |n〉 does depend on λ, the

system picks up an extra “geometric phase” eiγn , termed the Berry phase. Crudely speaking, the Berry

phase is “geometric” because it depends only on the path traversed in M and not on the time taken, unlike

the time-dependent dynamical phase.

To compute the Berry phase explicitly for |n〉, a nondegenerate normalized eigenstate of H, we begin by

setting |nt〉 = e−i
∫ t
0
dt′ εn(λ(t′))eiγn(t)|n0〉, where we have defined |nt〉 = |n(λ(t))〉 to simplify the notation.

The time-dependent Schrödinger equation, i∂t|nt〉 = H(λ(t))|nt〉, then becomes

εn(λ(t))|nt〉 − γ̇n(t)|nt〉+ i|∂tnt〉 = εn(λ(t))|nt〉. (4.1)

Thus, taking inner product with |nt〉, we get

γ̇n(t) = i〈nt|∂tnt〉 =⇒ γn(T ) = i

∫ T

0

dt 〈nt|∂tnt〉. (4.2)

1 The change being adiabatic simply means that the associated time scale is much larger than that associated with the
energy gap to other eigenstates of the Hamiltonian. This ensures that one does not transition to a different state during the
variation of the parameter.
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But since |nt〉 depends on t only through λ,

γn(T ) = i

∫ T

0

dt 〈nt|∂tnt〉 ·
dλ

dt
= i

∮
C
dλ · 〈n(λ)|∂λn(λ)〉. (4.3)

Thus, the Berry phase simply depends on an integral around the loop on the parameter space M , independent

of the time taken to traverse the loop. It is real by definition, since

〈n(λ)|n(λ)〉 = 1 =⇒ 〈∂λn(λ)|n(λ)〉 = −〈n(λ)|∂λn(λ)〉, (4.4)

so that

γ∗n = −i
∮
C
dλ · 〈n(λ)|∂λn(λ)〉∗ = i

∮
C
dλ · 〈∂λn(λ)|n(λ)〉 = γn. (4.5)

If C is contractible, we can use Stokes theorem to write the Berry phase associated with C as an integral

over an area S whose boundary is C, as

γn(C) =

∮
C
an =

∫
S
Fn, (4.6)

where we have defined2 the Berry connection an, which is a 1-form on M , and the corresponding Berry

curvature3 for the eigenstate |n〉 as

an = i〈n|dn〉, Fn = dan = i〈dn| ∧ |dn〉. (4.7)

The Berry connection computed above is defined only up to a choice of the phase of |n(λ)〉. To wit, if

redefined our our eigenstates for H(λ) as |n(λ)〉 = eiα(λ)|ñ(λ)〉 and computed the Berry connection using

the new eigenstates, we get

ãn = i〈ñ|dñ〉 = i
(
〈n|eiα

)
d
(
e−iα|n〉

)
= an + dα. (4.8)

However, both γn(C) and Fn are well defined, the former because
∮
dα = 0 around any closed curve, and

the latter because d2 = 0.

2 We use the sign convention conventionally used in condensed matter literature, which is opposite the one used by Michael
Berry[85], who defines it as a = −i〈n|dn〉.

3 The terminology of connections and curvatures comes from the theory of fiber bundles, introduced in Sec 3.1. We discuss
these geometric ideas in the context of Berry phase in Sec 4.2.1.
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4.1.2 Nonabelian generalization

We now remove the nondegeneracy requirement, and consider an eigenvalue εn(λ) of H, whose eigenspace

is r-fold degenerate throughout the loop C. An adiabatic transport can now lead to rotation within this

degenerate eigenspace. Let be {|nα(λ)〉}rα=1 be an orthonormal basis for this eigenspace, which is related

to any other basis |ñα(λ)〉 by a unitary transform. Again, we set |nα,t〉 = e−i
∫ t
0
dt′ εn(λ(t′))eiγn,αβ(t)|nβ,0〉,

where eiγn(t) is now a r × r unitary matrix, so that γn(t) is a Hermitian matrix.

Like the abelian case, the Schrödinger equation leads to

γ̇n,αβ(t)|nβ,t〉 = i|∂tnα,t〉 =⇒ γ̇n,αβ(t) = i〈nα,t|∂tnβ,t〉, (4.9)

and the nonabelian Berry phase becomes

γn,αβ(T ) = i

∫ T

0

dt 〈nα,t|∂tnβ,t〉 = i

∮
C
dλ · 〈nα(λ)|∂λnβ(λ)〉. (4.10)

We can again check that γn is Hermitian by definition, since

[
γ†n(T )

]
αβ

= γ∗n,βα(T ) = −i
∮
C
dλ · 〈nβ(λ)|∂λnα(λ)〉∗ = i

∮
C
dλ · 〈nα(λ)|∂λnβ(λ)〉 = [γn(T )]αβ (4.11)

We can again define a Berry connection as an,αβ = i〈nα|dnβ〉, which is a matrix valued 1-form. This

matrix-valued Berry connection was first introduced by Wilczek and Zee[91].

Strictly speaking, the total “phase” picked up under the adiabatic transport should be eiγn = P exp
(∮
C an

)
,

where P denotes the path ordering. This was not an issue in the abelian case, but is crucial here since the

matrices a for different points λ ∈ M do not commute. This path ordering makes a straightforward defi-

nition of Berry curvature using Stokes’ theorem much trickier, so we shall use an alternative approach, viz,

the identification of an as a nonabelian guage field.

Recall that the Berry connection for the abelian case had a gauge dependence with a gauge group U(1),

due to the nonuniqueness in the definition of the eigenstate upto a phase. To compute the nonabelian Berry

phase, we had a nonunique choice of basis for the degenerate eigenspace corresponding to the eigenvalue εn.

Using a unitary transform, defining a new basis as4

|ñ〉 = U∗|n〉 =⇒ |ñα〉 = U∗αβ |nβ〉, 〈ñα| = Uαβ〈nβ |, (4.12)

4 This choice of unitary matrix is to derive a gauge variation that conforms with the definitions of Sec 3.1.
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the new Berry connection becomes

ãn,ab = iUαγ〈nγ |dnδ〉U†δβ + iUαγδγδ dU†δβ =
[
Uan U−1 − i dU U−1

]
αβ
, (4.13)

where we have used UdU† = −dU U† in the last step, since UU† = 1. We have simply recovered eq. (3.10) for

a nonabelian gauge transformation, so that we identify an as a nonabelian gauge field with the gauge group

U(r). In Sec 3.1, we show that the corresponding nonabelian curvature is defined as Fn = dan − ian ∧ an,

which follows from demanding that the curvature transform covariantly (F 7→ U FU−1) under a nonabelian

gauge transformation.

4.1.3 Computation strategies

In practice, we are usually interested in computing the Berry curvature, which, unlike the Berry connection,

is a gauge covariant quantity. We now discuss two strategies that would prove useful in explicitly computing

the Berry curvature for the systems of interest.

The first approach involves replacing the differential of states with a differential on the Hamiltonian.

Explicitly,

H|n〉 = εn|n〉 =⇒ dH |n〉+H|dn〉 = dεn|n〉+ εn|dn〉. (4.14)

Taking inner product with |m〉 which satisfies H|m〉 = εm|m〉 and using 〈m|n〉 = δmn, we get

(εn − εm)〈m|dn〉 = 〈m|dH|n〉 − δmndεn. (4.15)

Since the Hamiltonian H is Hermitian by definition, its eigenvectors span the Hilbert space, so that we can

expand |dn〉 in the eigenbasis of H as |dn〉 =
∑
m〈m|dn〉. If |n〉 is nondegenerate, then εm 6= εn for any

m 6= n. Using eq. (4.15) with m 6= n, we can compute the abelian Berry curvature as

Fn = i〈dn| ∧ |dn〉 = i
∑
mm′

〈m′|m〉〈dn|m′〉 ∧ 〈m|dn〉 = i
∑
m

〈m|dn〉∗ ∧ 〈m|dn〉

= i
∑
m 6=n

〈m|dH|n〉∗
εn − εm

∧ 〈m|dH|n〉
εn − εm

+ i〈n|dn〉∗ ∧ 〈n|dn〉

= i
∑
m 6=n

〈n|dH|m〉 ∧ 〈m|dH|n〉
(εn − εm)2

, (4.16)

where 〈n|dn〉∗ ∧ 〈n|dn〉 = an ∧ an = 0, since an is an abelian 1-form. Clearly, the Berry curvature diverges

if εn becomes degenerate with any other εm at some point in the parameter space M.
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This expression for Berry curvature in eq. (4.16) is strongly reminiscent of the second order perturbation

theory correction to the energy εn, if dH could be thought of as the ‘perturbation’. Thus, the Berry curvature

can be thought of as encoding the effect of all the virtual transitions to other eigenstates of the system.

The second approach defines the Berry curvature in terms of projectors. Consider the eigenspace of the

Hamiltonian with eigenvalue εn(λ) and degeneracy r, and define the projector Pn(λ) to the eigenspace as

Pn =

r∑
α=1

|nα〉〈nα|, P 2
n = Pn. (4.17)

Then,

dPn ∧ dPn =
∑
αβ

(
|dnα〉〈nα|+ |nα〉〈dnα|

)
∧
(
|dnβ〉〈nβ |+ |nβ〉〈dnβ |

)
. (4.18)

To reduce this down to the nonabelian Berry connection form, we shall need to contract |dnα〉 with some

〈nγ |. We can multiply with Pn on left and 1 =
∑
m |m〉〈m| on the right to get

PndPn ∧ dPn1 =
∑
γ,m

|nγ〉 〈nγ |dPn ∧ dPn|m〉 〈m|

=
∑
αβγm

|nγ〉
[
〈nγ |dnα〉 ∧ 〈nα|dnβ〉〈nβ |m〉+ 〈nγ |dnα〉 ∧ 〈nα|nβ〉〈dnβ |m〉

+ 〈nγ |nα〉〈dnα| ∧ |dnβ〉〈nβ |m〉+ 〈nγ |nα〉〈dnα|nβ〉 ∧ 〈dnβ |m〉
]
〈m| (4.19)

The second and fourth terms cancel out using the orthogonality 〈nα|nβ〉 = δαβ , as

∑
αγ,m

〈nγ |dnα〉 ∧ 〈dnα|m〉+
∑
αβ,m

〈dnα|nβ〉 ∧ 〈dnβ |m〉 =
∑
αβ,m

d〈nα|nβ〉 ∧ 〈dnβ |m〉 = 0. (4.20)

Using the fact that 〈nβ |m〉 = 1 iff nβ = m and zero otherwise to sum over m, we are left with

PndPn ∧ dPn =
∑
αβγ

|nγ〉
[
〈nγ |dnα〉 ∧ 〈nα|dnβ〉+ δαγ〈dnα| ∧ |dnβ〉

]
〈nβ |

=
∑
αβγ

|nγ〉
[
(−ian,γα) ∧ (−ian,αβ) + δαγd(−ian,αβ)

]
〈nβ | (4.21)

Thus,

iPndPn ∧ dPn =
∑
βγ

|nγ〉
[
dan,γβ − i

∑
α

an,γα ∧ ian,αβ
]
〈nβ | =

∑
βγ

|nγ〉Fn,γβ 〈nβ |. (4.22)

This expression can be used to compute the Berry curvature 2-form using the eigenspace projectors.
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4.2 Berry curvature and Chern numbers

The Berry phase introduced in the last section is naturally associated with geometric and topological con-

structions. In the first subsection, we discuss its geometric formulation in the language of holonomies on

complex vector bundles, initially proposed by Barry Simon[44] at the same time as Michael Berry’s paper.

We also discuss the associated topological invariants, viz, the Chern character. In the next three subsections,

we shall used the ideas introduced in this and the previous sections to compute the Berry curvature and the

associated Chern numbers for various quantum mechanical systems relevant to this dissertation.

4.2.1 Geometrical interpretation

The gauge theories are most naturally described in terms of connections and curvatures of fiber bundles,

as discussed in Sec 3.1. We now discuss the fiber bundles associated with the eigenstates of a Hamiltonian

H : H → H dependent on parameters λ ∈ M , the associated connection and curvature being a and

F, respectively. In this language, Berry phase is simply the holonomy of the Berry connection[44]. More

explicitly, a closed loop on the base space M , when lifted to the total space (i.e, the fiber bundle), may not

close anymore; this failure to close, i.e, failure to return to the original state after traversing a loop in the

parameter space, is precisely the Berry phase.

Given the Hilbert space H and the parameter space M , the space of all possible states in the theory is

simply M ×H , which can be thought of as a (trivial) complex vector bundle C = M ×H
π−→M , where

π(λ, |ψ〉) 7→ λ is the projection to the base space. Given a basis |ei〉 of H , we can define Ψ: M → Cn

as [Ψ(λ)]i = 〈ei|ψ(λ)〉. To parallel transport vectors |ψ〉 on this space, we define two vectors as “parallel”

if their projection along each of the basis vectors |ei〉 is equal. Then, |ψ(λ)〉 is a parallel transport of

(λ0, |ψ0〉 ∈ C if 〈ei|ψ(λ)〉 = 〈ei|ψ(λ′)〉 ∀ i,λ,λ′.

Equivalently, the parallel transport can be stated as DΨ = 0, where D = d in this case. The corresponding

curvature is given by F = D2, which vanishes since d2 = 0. Thus, the connection is flat, which is expected

to be the case as C is trivial. The covariant derivative D can also be thought of as acting on functions, i.e,

local smooth section Ψ: U → Cr, where U ∈ M is an open set on which Cn is trivialized. With a slight

abuse of notation, we shall hereafter denote the condition for parallel transport simply as d|ψ〉 = 0.

Consider the eigenspace of H(λ) corresponding to energy εn(λ) which is r-fold degenerate for all λ ∈M ,

and define the corresponding projector Pn(λ), as in eq. (4.17). We construct a rank-r subbundle of Cn ⊂ C

by simply projecting applying the projectors Pn(λ) on each fiber π−1(λ). The new fiber bundle, Cn
πn−→M ,

has fibers π−1
n (λ) ∼= Cr. The connection on C defined above induces a connection on Cn, which, in general,
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is not flat. This is precisely the (nonabelian, in general) Berry connection D = d − ia. The corresponding

curvature is given by

iD2 = i (d− ia) ∧ (d− ia) = da− ia ∧ a = F. (4.23)

Given the curvature 2-form F, one could integrate Fn over M ′ ⊂M , a nontrivial 2n-dimensional cycle of M ,

to get a number. These are the Chern numbers, which turn out to be integers and are topological invariants

of the bundle. A nonzero Chern number is an obstruction to the definition of a flat connection for the given

curvature. If that is the case, then a parallel transport of any vector along a closed loop would lead to a

nontrivial holonomy, i.e, a Berry phase. Explicitly, for M ′ ∈ Z2n(M ), the Chern character for subbundle

corresponding to energy εn is defined as

Cn =

∫
M ′

tr

{(
F

2π

)n}
. (4.24)

In the next sections, we shall compute the Berry curvature for the given examples.

By definition, if a bundle supports a flat connection, then F = 0, so that the associated Chern character

is zero. Thus, the Chern number of the original bundle C = M ×H is zero, since C is trivial. However,

C can be written as a direct sum of subbundles corresponding to all eigenspaces of a Hamiltonian, and the

Chern characters simply add under this direct sum. Thus, we arrive at the important result that the sum

of Chern numbers for all eigenspaces must vanish.

4.2.2 Two band models

The simplest situation where we can get a Berry curvature is a 2-dimensional Hilbert space H ∼= C2. The

Hamiltonian H : H →H is then a Hermitian operator, which can be written as a 2× 2 matrix

H =

(
α β

γ δ

)
, α, δ ∈ R, β∗ = γ. (4.25)

The Hamiltonian is conveniently parametrized using the Pauli matrices as

H = h012 + h · σ, σ [H] = h0 ± |h| , (4.26)

where we have set h0 = 1
2 (α+ δ), h1 = Re[β], h2 = Im[β] and h3 = 1

2 (α− δ), which depend on a parameter

λ ∈ M . Since there are only two bands, the sum of their curvatures must vanish, so that we shall only

compute the curvature associated with |ψ〉, the eigenstate with eigenvalue ε+ = h0 + |h|. We shall find it
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convenient to write h : M → R3 in spherical polar coordinates as

h = |h| (sin θ cosφ, sin θ sinφ, cos θ) ⇐⇒ tan θ =

√
h2

1 + h2
2

h3
, tanφ =

h1

h2
, (4.27)

where (θ, φ) : M → S2. The Hamiltonian can explicitly be written as

H =

(
h0 + h3 h1 − ih2

h1 + ih2 h0 − h3

)
= h012 + |h|

(
cos θ sin θ e−iφ

sin θ eiφ − cos θ

)
. (4.28)

In this case, we can compute the Berry curvature directly from its definition. Setting (H− h0 − |h|) |ψ〉 = 0,

the normalized eigenvector is given by

|ψ〉 =
1√

sin2 θ + (1− cos θ)2

(
sin θ e−iφ

1− cos θ

)
=

(
cos θ2 e

−iφ

sin θ
2

)
. (4.29)

Thus,

|dψ〉 =
1

2

(
− sin θ

2 e
−iφ

cos θ2

)
dθ − i

(
cos θ2 e

−iφ

0

)
dφ, (4.30)

and the Berry connection and curvature becomes

a+ = i〈ψ|dψ〉 =
i

2

(
− cos

θ

2
sin

θ

2
+ sin

θ

2
cos

θ

2

)
dθ + cos2 θ

2
dφ =

1

2
(1 + cos θ) dφ,

F+ = da+ = −1

2
sin θ dθ ∧ dφ = −1

2
Ω(S2), (4.31)

where Ω(S2) is the volume form on S2. To rewrite this in terms of the components of H, we use the definition

of the polar coordinates from eq. (4.27) to get

dθ = cos2 θ d(tan θ) =
h2

3

|h|2
d

(√
h2

1 + h2
2

h3

)
,

dφ = cos2 φd(tanφ) =
h2

1

|h|2 − h2
3

d

(
h2

h1

)
, (4.32)

with |h|2 = h2
1 + h2

2 + h2
3. The Berry connection and curvature become

a+ =
h2

1

2 |h| (|h|+ h3)
d

(
h2

h1

)
=
h1dh2 − h2dh1

2 |h| (|h|+ h3)
,

F+ = − 1

2 |h|3
(h1dh2 ∧ dh3 + h2dh3 ∧ dh1 + h3dh1 ∧ dh2) , (4.33)

where the latter is again (−1/2 times) the area form for a 2-sphere in Cartesian coordinates.
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If M is 2-dimensional, the (first) Chern number associated with F is given by

C1 =
1

2π

∫
M

F = − 1

4π

∫
M

ϕ∗Ω(S2), (4.34)

where ϕ : M → S2 : λ 7→ (θ, φ). Thus, geometrically, the Berry curvature is the pullback of half the volume

form on S2 under ϕ, and the Chern number is simply the Brouwer degree (“winding number”) of this map,

which must be an integer[70].

4.2.3 Weyl fermions

The Weyl Hamiltonian in (2N + 1) + 1 dimensions are described by the Hamiltonian

H(p) = χpiΓ
i, σ [H] = {± |p|}, (4.35)

where χ = ±1 is the chirality and Γi ∈ Mat(2N ,C) are a set of anticommuting traceless matrices. Here,

Γi, i = 1, . . . 2N can be taken as the Dirac matrices in 2N spacetime dimensions, while Γ2N+1 ≡ (−i)N ∏2N
i=1 ΓN

is the analogue of “γ5”. The Hilbert space is H = C2N , so that for N > 1, each state is 2N−1-fold degenerate.

Furthermore, the two bands touch at p = 0, where the Berry curvature diverges.

Physically, the Weyl Hamiltonian describes the dynamics of a fermion whose spin is locked to its mo-

mentum. This is particularly transparent for the N = 1, i.e, the 3 + 1 dimensional case, where the Weyl

Hamiltonian becomes H = p · σ = 2p · S, where S is the spin operator. Thus, restricting to the positive

energy subspace is equivalent to demanding that S be “parallel to” p. Then, as the momentum unit vector

p̂ traces a closed curve on S2, the spin precesses along with it, thereby acquiring a phase, which is precisely

the Berry’s phase. We also deduce that the gauge group must be the space of phases, i.e, U(1).

For N > 1, the situation is more complicated, as in principle, the gauge group should be U(2N−1), the

space of all possible choices of basis for the degenerate subspace, but in practice, a parallel transport does

not explore the entirety of that space. Instead, since the wavefunctions of the Weyl Hamiltonian are spinors,

under a parallel transport of p they can only transform under some representation of Spin(2N) ⊂ U(2N−1).

A more physical interpretation is to notice that R2N+1 is invariant under SO(2N + 1), and fixing a “spin

vector” along a specific p̂ direction on S2N still leaves it invariant under SO(2N). Since the spinors transform

under Spin(2N), the double cover of SO(2N), that must be the gauge group of the nonabelian Berry

curvature for N > 1. We do not have this distinction for N = 1 owing to the accidental isomorphism

Spin(2) ∼= SO(2) ∼= U(1).
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The parameter space is R2N+1\{0}, which has a deformation retract to S2N . Thus, S2N (R) ∈ M , a

sphere of radius R centered at p = 0 ∈ R2N+1, is the only nontrivial 2-cycle in M on which we can integrate

FN to compute a Chern number. However, under a rescaling p → λp, λ ∈ R, the eigenvalues change as

χ |p| → λχ |p|, but the eigenstates stay constant, so that the Berry curvature, which only depends on the

geometry of the vector bundle of states on S2N (R), is independent of R. Thus, we shall compute the integral

of FN over the unit 2N -sphere.

For N = 1, i.e, in 3 + 1 dimensions, the Weyl Hamiltonian is simply χp · σ, which is a two band model.

Physically, the Hamiltonian describes the spin of the Weyl particle, which is locked parallel/antiparallel to

the momentum p, and thus rotates as we change the momentum. For this case, the Berry curvature 2-form

for positive energy band can be computed using the result for 2-band models, with h0 = 0, h(p) = χp, as

Fχ = − χ

4|p|2 εkij p̂
k dpidpj = −χ

4
εkij p̂

k dp̂idp̂j = −χ
2

Ω(S2), (4.36)

where we have used pj = |p| p̂j and the antisymmetry of the Levi-Civita tensor, and identified Ω(S2), the

area form for the 2-sphere, in the last step. Alternatively, since M = R3 is 3-dimensional, the Hodge dual

of F is a 1-form, which corresponds to a 3-vector bχ, defined as

Fχ =
1

2
Fχ,ijdp

i ∧ dpj =
1

2
εkijbχ,kdp

i ∧ dpj , bχ = −χ p̂

2|p|2 , (4.37)

which corresponds to the field of a monopole[85] of strength −1/2, centered at the origin in R3. We can

explicitly compute the Chern number associated with S2 as

C1 =

∫
S2

F

2π
= − 1

4π

∫
S2

Ω(S2) = −χ. (4.38)

For N > 1, the explicit computation of Berry curvature would be quite ugly; however, we can readily

compute the Chern number using the definition of the Berry curvature in terms of projectors Pχ to the

ε = χ |p| subspace, defined as

Pχ =

2N−1∑
α=1

|χ,p, α〉〈p, χ, α| = 1

2

(
1 + χp̂iΓi

)
. (4.39)

From eq. (4.22), the components of the Berry curvature are given by

iPχ dPχ ∧ dPχ =
∑
αβ

|p, χ, α〉Fαβ〈p, χ, β|, (4.40)
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from which we can directly compute

tr
{

(iPχ dPχ ∧ dPχ)
N
}

=
∑
χ′=±1

2N−1∑
γ=1

〈p, χ′γ| (iPχ dPχ ∧ dPχ)
N |p, χ′γ〉,

=

2N−1∑
αi,γ=1

Fχ,γα1
∧ Fχ,α1α2

∧ · · · ∧ Fχ,αN−1γ = tr
{
FNχ
}
. (4.41)

where we have used the orthogonality 〈p, χ, α|p, χ′, β〉 = δχχ′δαβ . We can use the properties of the Dirac

matrices to commute them across dPχ ∧ dPχ, since

dPχ Pχ = P−χ dPχ =⇒ dPχ ∧ dPχ Pχ = Pχ dPχ ∧ dPχ. (4.42)

Explicitly, this follow from

dPχ Pχ =
1

4
dp̂i Γi

(
1 + p̂jΓj

)
=

1

4

(
dp̂iΓi + ΓiΓj p̂

jdp̂i
)

=
1

4

(
dp̂iΓi + (2δij − ΓjΓi) p̂

jdp̂i
)
. (4.43)

since the Dirac matrices satisfy [ΓiΓj ]+ = 2δij , and δij p̂
jdp̂i = p̂idp̂

i = d |p̂|2 = 0. Thus, using P 2
χ = Pχ, we

get

tr
{
FNχ
}

= iN tr
{

(Pχ dPχ ∧ dPχ)
N
}

= iN tr
{
Pχ (dPχ ∧ dPχ)

N
}
. (4.44)

Substituting the explicit form of Pχ and using χ2 = 1, this becomes

tr
{
FNχ
}

= iN tr

{
1

2

(
1 + χ p̂iΓi

) [χ
4

Γjdp̂
j ∧ χ

4
Γkdp̂

k
]N}

=
1

2

(
i

4

)N [
tr

{
2N∏
`=1

Γi`

}
+ χ p̂i0tr

{
2N∏
`=0

Γi`

}]
2N∧
`=1

dp̂i` . (4.45)

The measure demands that Γi` be all different for ` = 1, . . . 2N , since dpi ∧ dpj = 0 if i = j. For a product

of 1 < k < 2N + 1 different Γ matrices, using their antisymmetry as well as the cyclic property of trace, we

get

Tk = tr {Γi1 Γ2 . . .Γik} = tr {Γ2 . . .ΓikΓi1} = (−1)k−1tr {Γi1 Γ2 . . .Γik} = (−1)k−1Tk, (4.46)

so that Tk = −Tk =⇒ Tk = 0 if k is even. Thus, the first trace in eq. (4.45) must vanish. For the second

trace, we must have one copy of each Γ matrix, and using

2N+1∏
i=1

Γi =

(
2N∏
i=1

Γi

)
Γ2N+1 =

(
2N∏
i=1

Γi

)
(−i)N

 2N∏
j=1

Γj

 = (−i)N (−1)N(2N−1)
2N∏
i=1

Γ2
i = iN12N , (4.47)
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we get

tr

{
2N∏
`=0

Γi`

}
= εi0i1...i2N tr

{
iN12N

}
= (2i)N εi0i1...i2N . (4.48)

Thus,

tr
{
FNχ
}

=
χ

2

(
i

4

)N
(2i)N εi0i1...i2N

2N∧
`=0

p̂i` = χ(−1)N
(2N)!

2N+1
Ω(S2N ), (4.49)

where we have identified the volume form on S2N , defined as

Ω(S2N ) =

2N+1∑
j=1

(−1)jdp̂j
∧
i6=j

dpi =
1

(2N)!
εi0i1...i2N p̂

i0 dp̂i1 ∧ · · · ∧ p̂i2N . (4.50)

Thus, the Chern number over M = S2N is given by

Cχ =
1

N !

∫
S2N

tr

{(
Fχ
2π

)N}
= χ

(−1)N

2

(2N)!

(4π)NN !
Vol(S2N ), (4.51)

But the volume of S2N is given by

Vol(S2N ) =
2πN+ 1

2

Γ
(
N + 1

2

) =
22N πN Γ(N)

Γ(2N)
= (4π)N

(N − 1)!

(2N − 1)!
= 2(4π)N

N !

(2N)!
(4.52)

where Γ(.) is the Euler’s gamma function, and we have used the duplication formula

Γ(z)Γ

(
z +

1

2

)
= 21−2z

√
πΓ(2z), (4.53)

Substituting eq. (4.52) in eq. (4.51), the Chern number becomes

Cχ =
1

N !

∫
S2N

tr

{(
Fχ
2π

)N}
= χ(−1)N . (4.54)

As expected, C+ +C− = 0, since the two subspaces add up to a trivial bundle over S2N , as discussed at the

end of Sec 4.2.1.

4.2.4 Circularly polarized light

As our last example, we compute the Berry connection and curvature for circularly polarized light in 3 + 1

dimensions, which can be thought of as a ‘classical’ geometric phase. For a wave propagating along the k̂
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direction, the complex electric field is given by

E(r, t) = êσeiωt−ik·r, êσ =
1√
2

(n̂1 + iσ n̂2), (4.55)

where σ = ±1 for right/left circular polarization, and {n̂1, n̂2, k̂} form a right-handed orthonormal basis

such that n̂1 × n̂2 = k̂. We seek to compute the Berry connection

aσσ
′

= iêσ∗ · dêσ′ =
i

2
(n̂1 − iσ n̂2) · (dn̂1 + iσ′ dn̂2)

=
1

2
(σn̂2 · dn̂1 − σ′n̂1 · dn̂2) +

i

2
(n̂1 · dn̂1 + σσ′n̂2 · dn̂2)

=
1

2
(σn̂2 · dn̂1 − σ′n̂1 · dn̂2) ,

where the last step follows from n̂i · n̂i = 1 =⇒ n̂i · dn̂i = 0. The Berry curvature becomes

Fσσ
′

= −σ + σ′

2
dn̂1 ∧ dn̂2 = −δσσ′σ dn̂1 ∧ dn̂2, [σ, σ′ = ±1] (4.56)

where we have a wedge product over the 1-forms (dki’s) as well as a dot product over n̂i’s. Clearly, Fσσ
′

is

diagonal in polarization. Henceforth we shall simply write Fσ = σ dn̂1 ∧ dn̂2.

To compute Fσ explicitly, using n̂i · dn̂i = 0, we can write

dn̂1 = (k̂ · dn̂1)k̂ + (n̂2 · dn̂1)n̂2

dn̂2 = (k̂ · dn̂2)k̂ + (n̂1 · dn̂2)n̂1,

But

n̂i · k̂ = 0 =⇒ k̂ · dn̂i = −n̂i · dk̂ = −n̂i · d
(

k

k

)
= −1

k
n̂i ·

(
dk− k · dk

k2
k

)
= −1

k
n̂i · dk, (4.57)

so that

Fσ = − σ (k̂ · dn̂1) ∧ (k̂ · dn̂2) = − σ

k2
(n̂1 · dk) ∧ (n̂2 · dk)

=− σ

k2
n1,in2,jdk

i ∧ dkj = − σ

2k2
εijk[n̂1 × n̂2]kdk

i ∧ dkj ,

= − σ

2k2
εkijk

kdki ∧ dkj = −σΩ(S2), (4.58)

which corresponds to the strength of a monopole field with the first Chern number C1 = 2σ. This corresponds
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to the fact that the Weyl fermions had spin 1/2, while the photon has spin 1. In presence of both clockwise

and counterclockwise polarization, the Chern numbers cancel, but we can still define a spin Chern number

C1 =
∑
σ=±1

Cσ1 = 0, C1,spin =
∑
σ=±1

σCσ1 = −4. (4.59)

4.3 Anomalous dynamics

In condensed matter systems, the Berry curvature, discussed for generic systems in the last section, is realized

in the electronic wavefunctions of crystalline solids. Thus, their band structures provide a useful platform

to investigate the effects of the Berry’s curvature on the physics of the system[22].

Berry curvature of Bloch bands

The quantum mechanical description of the electrons in a lattice in d-dimensions involves the Schrödinger

equation for electrons, with a periodic background potential arising from the positively charged ions. Ignoring

the electron-electron interactions, the 1-particle Schrödinger equation becomes

Hψ(x) =

(
− 1

2m
∇2

x + V (x)

)
ψ(x) = εψ(x), (4.60)

where the background potential is periodic, i.e, V (x + R) = V (x) for any lattice vector R. Thus, under a

translation by x → x + R, the Hamiltonian goes to itself, but the wavefunctions can change by a phase,

i.e, ψ(x + R) = eiγ(R)ψ(x). This follows from the Bloch(Floquet) theory for periodic differential equations.

The solutions can be written as Bloch waves ψn,k(x) = eik·xun,k(x), where n is the band index, k is the

(quasi-)momentum and un,k(x + R) = un,k(x). Under a lattice translations, the extra phase picked up is

eiγ(R) = eik·R, which is invariant under k → k + Q, where Q is a reciprocal lattice vector. Thus, k ∈ BZ,

the first Brillouin zone, which is simply a unit cell of the reciprocal lattice centered at k = 0.

Given the form of the Bloch waves, one defines the Bloch Hamiltonian

HB(k) = e−ik·xHeik·x =⇒ HB(k)un,k(k) = εn(k)un,k(k). (4.61)

Thus, we have defined a family of Hamiltonians, HB(k) parametrized by k ∈ BZ, which has a discrete

spectrum εn(k) for each k. Using the ideas from the last two sections and assuming nondegenerate bands,
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we can define the Berry connection 1-form as

an(k) = 〈un,k|
(
i
∂

∂ki

)
|un,k〉dki =

∫
Rd
dxu∗n,k(x)

(
i
∂

∂ki

)
un,k(x) dki, (4.62)

and the corresponding curvature is F = da.

Transport

A particular application of the Berry curvature in the physics of crystalline systems (in 3 space dimensions)

is the electron transport in presence of an external electromagnetic field.

One could define semiclassical equations of motion, governing the dynamics of electrons as the time

evolution of the expectation value of the position and momentum operators in various Bloch states. One

particularly useful choice is that of wavepackets[22, 89, 88], which are finite-sized in both position and

momentum, and can therefore be thought of as “classical” particles. This lets one use the classical kinetic

theory approach (Sec 2.5) to study transport in crystals. Conventionally, the equations of motion for such

electron wavepackets are described by the equations of motion5

ẋ = vg, k̇ = E + ẋ×B, (4.63)

where vg = −∇kεn(k) is the usual group velocity, and the second line is simply the classical Lorentz force.

These equations have been useful in describing the electronic physics of metal and semiconductors.

However, including the effect of interband coupling, one obtains an extra term in ẋ, and the equations of

motion become

ẋ = vg + k̇× b,

k̇ = E + ẋ×B, (4.64)

where b(k) is the Berry curvature of the band. The k̇ × b is termed the anomalous velocity. The invoking

of the Berry curvature in order to understand interband couplings can be motivated by eq. (4.16) and the

comment after that, where Berry curvature can be thought of as encoding the residual effects of the other

energy levels, which are inaccessible as one tunes k, owing to the adiabatic approximation.

5 As we shall restrict ourselves to dynamics in a single band, we shall omit explicit mention of the band index from now on.
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Symplectic structure

In Ref [93], the semiclassical equations of motion of eq. (4.64) are shown to violate Liouville’s theorem

for the conservation of phase space volume using the conventional volume form d3xd3k on the (x,k) phase

space. However, Liouville’s theorem is restored if one instead redefines the volume form as
√
ρ d3xd3k, where

√
ρ = 1 + b ·B. In [90], Duval and Horvathy show that this system can be described using the symplectic

formulation of classical mechanics; however, the symplectic form is not given by ρ = dki ∧ dxi. Thus, x and

k are not the canonical variables in the phase space.

To derive the symplectic form, they begin by writing the original equations of motion as

ẋi − εijkk̇jbk = vig, k̇i − εijkẋjBk = Ei. (4.65)

Defining F ij(x) = εijkBk and Fij(k) = εijkbk as 3× 3 antisymmetric matrices corresponding to the (spatial

part of) Maxwell and Berry curvature, and φ(x) as the Maxwell scalar potential, these become

δij ẋj − Fij k̇j =
∂

∂ki
ε, F ij ẋj − δij k̇j =

∂

∂xi
φ. (4.66)

These can finally be rewritten as

(
F −1
1 −F

)(
ẋ

k̇

)
=

(
∂
∂x
∂
∂k

)
H(x,k), (4.67)

where the Hamiltonian is defined as H(x,k) = ε(k) + φ(x). Defining ζ = (x,k) and comparing with eq.

(2.18), we identify the symplectic form as6

ρ =
1

2
ρijdζ

idζj , ρ =

(
F −13

13 −F

)
. (4.68)

The usual coordinates x and k are not canonical, since for canonical coordinates, the Hamilton’s equation

should simply have ρ = J−1 (see eq. (2.7)), which is not the case. The symplectic form can be written in a

more enlightening form as

ρ = dki ∧ dxi +
1

2
Fijdx

i ∧ dxj − 1

2
Fijdki ∧ dkj = dki ∧ dxi + F − F. (4.69)

The presence of this nontrivial symplectic form modifies the volume form and hence the Liouville’s theorem.

6Our expression for ρ is different from that of Horvathy et al[90] since our Berry and Maxwell curvatures have opposite signs
from theirs, the former by definition and the latter because we have set the electronic charge to +1.
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For traditional classical mechanics, the volume form on phase space is simply

Ω0 =
ω3

0

3!
=

1

3!
(dki ∧ dxi)3 = d3k d3x (4.70)

However, using the symplectic form of eq. (4.69), we can compute

Ω =
1

3!

(
dki ∧ dxi + F − F

)3
=

1

3!

(
(dki ∧ dxi)3 − 3 dki ∧ dxi ∧ F ∧ F

)
. (4.71)

But

F =
1

2
Fijdx

i ∧ dxj =
1

2
εijkB

k dxi ∧ dxj , F =
1

2
εijkbk dki ∧ dkj . (4.72)

Substituting and using εijkdx
i ∧ dxj ∧ dxk = 3! d3x etc, the volume form becomes

Ω =
1

3!

(
−3!− 3 εijkB

jεij`b`
)
d3k ∧ d3x = (1 + b ·B) d3x ∧ d3k, (4.73)

which is precisely the volume form proposed in Ref [93]. Finally, the new Poisson brackets are

{xi, xj} =
εijkbk

1 + b ·B , {xi, kj} =
δij +Bibj

1 + b ·B , {ki, kj} = − εijkB
k

1 + b ·B , (4.74)

which explicitly shows that (x,k) are not the canonical coordinates on the phase space anymore.
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5 Chiral Kinetic Theory

There has been much recent interest on the influence of Berry phases on the electronic property of solids,

a number of which provide fruitful analogies for relativistic field theories. An interesting example occurs

when there is a net flux of Berry curvature through a disconnected part of the Fermi surface, where an

analogue of abelian axial anomaly occurs, manifesting itself in the nonconservation of particle number in the

conservation band.

The axial anomaly is usually derived via sophisticated quantum field theory computation. However,

Stephanov and Yin[26] showed that it can also be derived from a classical Hamiltonian phase space dynamics,

with the quantum inputs being the ~ in the phase space volume and the Berry curvature effects (anomalous

velocity) in the equations of motion. In this chapter, we reformulate their calculation using the symplectic

formulation of classical mechanics as discussed in Ch 2, using which we generalize their calculation to

compute nonabelian singlet and gauge anomalies in arbitrary even spacetime dimensions. Finally, we use

semiclassical kinetic theory to explicitly compute the grand potential current, which determines all the

anomalous contributions to the relativistic hydrodynamic currents, as discussed in Sec 3.3.

5.1 U(1) anomaly in 3 + 1 dimensions

In Ref [26], Stephanov and Yin showed that in 3 + 1 dimensions, the positive energy, positive helicity Weyl

fermion with Hamiltonian H = σ · p can be described by the semiclassical action

S[x,p] =

∫
dt(p · ẋ + A · ẋ− |p| − φ− a · ṗ), (5.1)

where a and φ are the Maxwell scalar and vector potentials, respectively. The Berry connection, a, cor-

responds to a monopole of unit strength at origin, and the corresponding curvature is given by eq. (4.37)

as

b = ∇p × a = − p̂

2|p|2 =⇒ ∇p · b = −2πδ3(p). (5.2)
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5.1.1 Original calculation

The equations of motion can be obtained by a variation of the action w.r.t x and p, to get

0 =

∫
dt
(
δp · ẋ + p · δẋ + ẋ · (δx · ∇x)A + A · δẋ− p̂ · δp− δx · ∇xφ− ṗ · (δp · ∇p)a− a · δṗ

)
=

∫
dt
[
δxi
(
−ṗi −

∂φ

∂xi
− ∂Ai

∂t
− ẋj ∂Ai

∂xj
+ ẋj

∂Aj
∂xi

)
+ δpi

(
ẋi − p̂i − ṗj

∂aj

∂pi
+ ṗj

∂ai

∂pj

)]
. (5.3)

Defining the electric and magnetic field as E = −∇xφ − ∂tA, B = ∇x × A and the Berry curvature as

b = ∇p × a, the equations of motion become

ẋ = p̂ + ṗ× b, ṗ = E + ẋ×B. (5.4)

These equations are equivalent to eq. (4.64), which describes the semiclassical dynamics of electrons in

a Bloch band. The energy spectrum is simply given by the positive eigenvalue (ε = |p|) of the Weyl

Hamiltonian H = p · σ. In Sec 4.3, we showed that eq. (5.4) describes Hamiltonian flows on the phase

space R3×R3 with an unconventional symplectic structure, such that the invariant volume form is given by

√
ρ d3x d3p, with

√
ρ = 1 + b ·B.

Given a phase space distribution function f(t,x,p), the number of particles in an infinitesimal phase space

volume at time t is given by
√
ρ f(t,x,p)d3x d3p. The collisionless Boltzmann equation is

∂t (
√
ρf) +∇x · (

√
ρf ẋ) +∇p · (

√
ρf ṗ)

?
= 0. (5.5)

Let f is advected with the flow, i.e,

[∂t + ẋ · ∇x + ṗ · ∇p] f = 0. (5.6)

Then, Stephanov et al compute the remaining terms on the LHS of eq. (5.5) explicitly using the equations

of motion, which can be solved for ẋ and ṗ by substituting the latter in the former and using the vector

product identity

(ẋ×B)× b = (ẋ · b) B− (b ·B) ẋ

followed by (ṗ× b) · b = 0 in the first term, to get

ẋ = p̂ + E× b + (p̂ · b) B− (b ·B) ẋ. (5.7)
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The equation for p can be solved in a similar fashion. We get

√
ρ ẋ = p̂ + E× b + (b · p̂)B,

√
ρ ṗ = E + p̂×B + (E ·B)b. (5.8)

Substituting in the LHS of eq. (5.5),

∂t (
√
ρ) +∇x · (

√
ρ ẋ) +∇p · (

√
ρṗ)

= ∂t [1 + b ·B] +∇x · [p̂ + E× b + (b · p̂)B] +∇p · [E + p̂×B + (E ·B)b]

= b · (∂tB) +∇x · (E× b) + (b · p̂)(∇x ·B) +∇p · (p̂×B) + (E ·B)(∇p · b)

= b · (∂tB) + b · (∇x ×E) + B · (∇p × p̂) + (E ·B)(∇p · b)

= b · (∂tB +∇x ×E) + B · (∇p × p̂) + (E ·B)(∇p · b)

= (E ·B)(∇p · b) = −(E ·B) 2πδ3(p), (5.9)

where we have used the vector identity ∇ · (v × w) = w · (∇ × w) − v · (∇ × w), the Maxwell equations

∇ ·B = 0 and ∂tB = −∇ × E and the fact that ∇p × p̂ = 0, since p̂ is radial. Thus, Liouville’s theorem,

which demands that the LHS vanish, is violated at p = 0. However, strictly speaking, this semiclassical

description is invalid at the Dirac point p = 0, since the band gap for the Weyl Hamiltonian vanishes and

the adiabatic approximation needed to compute the Berry curvature breaks down. However, remarkably, the

U(1) anomaly is encoded in the symplectic structure, and can be recovered by considering the Boltzmann

equation far from the Dirac point.

Thus, the Boltzmann equation becomes

∂t (
√
ρf) +∇x · (

√
ρf ẋ) +∇p · (

√
ρf ṗ) = (E ·B) 2πf δ3(p). (5.10)

The charge density and current associated with the Weyl fermions is defined as (Sec 2.5)

ρ(x, t) =

∫
d3p

(2π)3

√
ρ f(x,p, t), J(x, t) =

∫
d3p

(2π)3

√
ρ ẋ f(x,p, t). (5.11)

Integrating eq. (5.10) over the entire momentum space , we get

∂t

∫
d3p

(2π)3

√
ρ f +∇x ·

∫
d3p

(2π)3

√
ρ f ẋ +

∫
d3p

(2π)3
∇p · (

√
ρf ṗ) = −(E ·B)

∫
d3p

(2π)2
f δ3(p). (5.12)
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The third integral vanishes, as it is a surface term. Substituting the expressions for the density and currents

leads to the anomalous conservation law

∂tρ+∇ · J = − 1

(2π)2
f(x,0, t)(E ·B). (5.13)

If the zero energy state is (at p = 0) is filled up, then f(x,0, t) = 1. This would be true, for instance, at

T = 0, if the Fermi level is positive. Then, we recover the expression for chiral anomaly in 3 + 1 dimensions

as1

∂µJ
µ = − 1

(2π)2
E ·B =

1

2! (2π)2
? (F ∧ F ) . (5.14)

Thus, the anomaly is a direct consequence of the breakdown of Liouville theorem in the presence of a Berry

monopole.

5.1.2 A symplectic formulation

We can conveniently reformulate the above calculation in terms of the extended phase space formalism,

discussed in Sec. 2.4. The relevant extended phase space is simply MH = R × R3 × R3, with coordinates

(t,x,p). The semiclassical action of eq. (5.1) can be written as

S[x,p] =

∫
ηH ; ηH = pidx

i − |p|dt+A− a, (5.15)

so that the (generalized) symplectic form becomes

ρH = dηH = dpi ∧ dxi − p̂idpi ∧ dt+ F − F, (5.16)

with

F =
1

2
Fµνdx

µ ∧ dxν , F =
1

2
Fijdp

i ∧ dpj . (5.17)

The Berry curvature is singular at p = 0, the band touching point. As a consequence,

dρH = dF − dF = −dF = −2πδ3(p) d3p, (5.18)

1 Note that on Rd,1 with Minkowski metric, ?dt ∧ ddx = −1.
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since dF = 0 as the electromagnetic field satisfies the Maxwell’s equations, while

dF =
1

2

∂Fjk
∂pi

dpidpjdpk =
∂

∂pi

(
1

2
εijkFjk

)
d3p = (∇p · b) d3p = 2πδ3(p) d3p. (5.19)

In Sec 2.5.3, we used the geometric formulation of Liouville’s theorem to define particle currents. Using

eq. (2.92), the conservation law of particle number current becomes

d ? J =

∫
R3

LdH(fΩH) =
1

(2π)32!

∫
R3

dρH ∧ ρ2
H , (5.20)

where we have used the last line of eq. (2.79) for the Lie derivative. Using eq. (5.18), the integrand becomes

dρH ∧ ρ2
H = −dF ∧ (dpi ∧ dxi − p̂idpi ∧ dt+ F − F)2 = −dF ∧ F 2, (5.21)

where F ∧ F is the only term possible in the expansion of ρ2
H , since dF contains all three dp’s. Substituting

in eq. (5.20), we get the U(1) anomaly as

d ? J = − 1

2(2π)3

(∫
R3

dF

)
F 2 =

1

2(2π)2

(∫
R3

δ3(p) d3p

)
F 2 =

1

2!

(
F

2π

)2

. (5.22)

Thus, the anomaly is encoded in the symplectic form via dρH 6= 0. We shall refer to such ρH as an anomalous

symplectic form.

An alternative approach to compute the momentum integral is to split it as

1

2π

∫
R3

dF =
1

2π

(∫
B3(ε)

+

∫
R3\B3(ε)

)
dF =

1

2π

∫
S2(ε)

F = −1, (5.23)

where B3(ε) is a ball of radius ε centered at p = 0 and S2(ε) = ∂B3(ε). The integral over R3\B3(ε) vanishes

since dF = 0 away from p = 0. In the last step, we have used Gauss’ law, since the integral is simply the

flux across a sphere which encloses a Berry monopole with unit charge, located at p = 0.

5.1.3 Discussion

The central idea of this computation of chiral anomaly using a semiclassical formalism is the interpretation

of the conservation of the U(1) current as a continuity equation, and hence the interpretation of the chiral

anomaly as a nonconservation of the number of Weyl fermion. Furthermore, the Dirac sea is incompressible,

as encoded in the validity of Liouville’s theorem far from the Dirac point, so that by simply following the
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particles at a given Fermi surface semiclassicaly, we can deduce the rate of production of the particles due

to the chiral anomaly.

In Sec 2.5, kinetic theory was introduced as a formalism to extract macroscopic (and hopefully observ-

able) dynamical variables given an ensemble of particles described by Hamiltonian dynamics. Since the

U(1) anomaly turns out to be encoded in the symplectic form, its macroscopic effects can be seen in the

currents[26]. For instance, the charge current can be explicitly written as

J(x, t) =

∫
d3p

(2π)3
f(t,x,p)

(
p̂ + E× p̂

2|p|2 +
1

2|p|2 B

)
(5.24)

The first two terms represent the conventional classical currents. The first term is the charge current due

to the motion of the particles, while the second term is the classical Hall effect, viz, a transverse current

in presence of an external electric field which leads to a sideways shift on the trajectory of Weyl particles.

Both of these are nonvanishing only if f(t,x,p) is spherically asymmetric. Thus, for a spherically symmetric

phase space distribution function, the current becomes

J =
1

(2π)3

∫ ∞
0

|p|2d|p|
∫
S2

dΩ2 f(|p|)
(

p̂ + E× p̂

2|p|2 +
1

2|p|2 B

)
=

1

4π2

(∫ ∞
0

d|p| f(|p|)
)

B. (5.25)

This current represents the chiral magnetic effect(CME), a current generated along the magnetic field, even

in the absence of an electric field. Given a phase space distribution function, one can explicitly compute

the CME coefficient using the chiral kinetic theory. For instance, given the zero temperature Fermi-Dirac

distribution with chemical potential µ > 0, we get

JCME =
1

4π2

(∫ ∞
0

d|p|Θ(µ− |p|)
)

B =
1

4π2
µB. (5.26)

This result has been proposed for quark-gluon plasmas[35] in a high energy physics as well as for Weyl

semimetals in the condensed matter physics[32].

An obvious objection to this calculation is the use of Hamiltonian dynamics, which treats time and space

differently and is hence not manifestly Lorentz invariant. Indeed, even a way to reformulate it in a Lorentz

covariant fashion is unclear, since the Berry curvature 2-form contains differentials of only the three spatial

components of the energy-momentum 4-vector. On the other hand, the quantum field theory for Weyl

fermions is manifestly Lorentz invariant, and any low energy effective theory describing the same physics

must inherit that symmetry. In Ref [39], the chiral kinetic theory is shown to be Lorentz invariant, albeit
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with the coordinates transforming under a boost β as

x 7→ x + β t+
1

2|p|β × p̂, p 7→ p + β ε+
1

2|p| (β × p̂)×B. (5.27)

Furthermore, for consistency, the dispersion relation for the Weyl fermions needs to include the magnetic

moment as ε = |p|−p̂·B/2|p|. This unusual representation of the Lorentz group arises from the fact that the

Weyl particles carry a nonzero angular momentum (spin), so that their ‘position’ becomes frame dependent.

Under a Lorentz transform, the ‘trajectory’ of the particle moves sideways by an amount proportional to

the spin, an effect known as Wigner translations. We investigate these aspects further in Ref [3].

5.2 Nonabelian guage fields

We shall next seek to generalize the calculations of the last section to include nonabelian gauge fields in

a semiclassical formalism. In Sec 3.1, we discussed that the coupling to a (in general nonabelian) guage

group G requires that the Weyl fermion then transforms under a nontrivial representation Λ of G, which is

the “charge” of the Weyl fermion. Thus, in order to describe these internal degrees of freedom, we need to

“dequantize” them2. In more practical terms, since the gauge fields are now matrix valued and the action

is required to be a c-number, we need an analogue of the minimal couplings p→ p−A and x→ x− a. In

this section, we describe such a dequantization procedure.

Dequantization

Given a symplectic manifold (M, ρ), let { , } be the induced Poisson algebra (defined by eq. (2.30)) on

C∞(M,R), the space of smooth functions on M. The problem of quantization is then to associate with

this setup a Hilbert space H and a Hermitian operator f̂ : H →H for each f ∈ C∞(M,R), such that the

operators satisfy the Dirac quantization condition

{f, g} = h =⇒ [f̂ , ĝ] = iĥ ∀ f, g, h. (5.28)

Thus, quantization maps the Poisson algebra of the functions on M to a Lie algebra of operators on H .

For dequantization, we seek to go the other way round, i.e, given a Hilbert space H and a set of operators,

we seek a symplectic manifold such that the corresponding Poisson algebra can be derived from the operator

2 We did not have this problem with U(1) since the Weyl fermions transform under the fundamental (defining) representations
of U(1) which simply changes the phase of the fermion field, and classical mechanics is oblivious to absolute phases of the
wavefunctions.
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algebra on H by using the Dirac quantization condition backwards. There is no solution to this problem in

general; however, we only seek a special case. Given a finite dimensional unitary irreducible representation

of a compact semisimple Lie group G on some complex Hilbert space H , we seek the corresponding finite

dimensional compact symplectic manifold.

Precisely such a correspondence was described in eq. (2.41) of Sec 2.3.2 for the regular coadjoint orbits

of G with the Kirillov form. The quantum mechanical system can be recovered from the coadjoint orbit

using geometric quantization[94, 95], which, for coadjoint orbits, turns out to be identical to the problem of

constructing the unitary irreducible representations of Lie groups. This connection, and the use of geometric

quantization to construct unitary irreps, is usually termed the orbit method and was developed by Kirillov[72],

Kostant and Souriau.

Quantum mechanics and symmetries

Consider a Hilbert space H , on which a representation Λ of G is defined. Let X̂ = iXaλ̂a be a generator

of a symmetry on H with Xa ∈ R, and define X = iXaλa ∈ g. Given a state |ψ〉 ∈ H , we can use it to

define a functional Fψ : g→ R as

Fψ : X 7→ −i〈ψ|X̂|ψ〉 = Xa〈ψ|λ̂a|ψ〉 ≡ Xaαψ,a, (5.29)

where αψ,a ∈ R since it is a diagonal element of a Hermitian matrix λ̂a. Since Fψ is linear, by definition,

Fψ ∈ g∗. Defining αψ = αψ,aλ
a ∈ g∗, where λa is a basis of g∗ dual to g, we can alternatively write

Fψ(X) = (α,X) = tr {αX}, where in the last step, we have used the Killing form.

Under an adjoint action of the group, X 7→ gXg−1, Fψ transforms under the coadjoint representation.

Explicitly, we can write the orbit as

X 7→ gXg−1 =⇒ Fψ(X) 7→ tr
{
αψXgXg

−1
}

= tr
{
g−1αψg X

}
= tr {QX} , (5.30)

where Q = g−1αψg defines coordinates on the coadjoint orbit Oαψ of αψ. Thus, symmetry transformations of

X as X 7→ gXg−1 can alternatively be thought of as a translation on Oψ under the group action Q 7→ g−1Qg.

This is a classical version of the original operator algebra, as given X,Y ∈ g, using eq. (2.41),

{X,Y } = XaY b{Qa, Qb} = XaY bf cabQc ←→ [X,Y ] = XaY b[λ̂a, λ̂b] = XaY bf cabλ̂c. (5.31)

We should be able to quantize it to obtain the representation Λ back; however, that does not work for any
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choice of |ψ〉. For a compact semisimple Lie groups, the unitary irreps are completely characterized by their

highest weights[72], and one needs to take the highest weight state, |Λ〉, in order to be able to recover Λ on

geometric quantization. Thus, hereafter, we set F (X) = Xa〈Λ|Λ∗(λa)|Λ〉, and the corresponding coadjoint

orbit is denoted by OΛ.

Recall that the regular coadjoint orbits of a compact semisimple Lie group G are equivalent to G/T , where

T ⊆ G is a maximal torus of G. A suitable set of coordinate on OΛ is defined as Q = g−1αΛg = Qaλa,

where g ∈ G, αΛ ∈ g, Qa ∈ R, λ’s are the generators of g and a = 1, 2, . . .dim (G).

Dequantizing nonabelian gauge fields

We shall use this construction to encode the nonabelian gauge fields which can be denoted by differential

forms valued in g, i.e, A ∈ Ω1(Rn,1)⊗ g. The corresponding curvature is defined as F = dA− iA ∧ A. The

classical version is defined on Rn,1×OΛ with coordinates (t,x, Q). Demanding that Q also transform under

a gauge transformation, we seek to construct gauge invariant combinations involving A and F . Using the

notation of Sec 3.1, under a nonabelian gauge transformation by h(t,x) ∈ G,

A 7→ h−1Ah+ ih−1dh, F 7→ h−1Fh, Q 7→ h−1Qh, (5.32)

so that A and F transform under the adjoint action by h−1 (instead of h). Then, F̃ = tr {QF} is invariant

under this gauge transformation. However, tr {QA} does not work, since we need to cancel off the h−1dh

term. However, including the Liouville form3 wR = dg g−1 for the coadjoint orbit, we get a gauge-invariant

1-form

tr
{
Q
(
A+ idg g−1

)}
7→ tr

{
h−1Qh

[
(h−1Ah+ ih−1dh) + id(h−1g)g−1h

]}
= tr

{
h−1Qh

[
h−1Ah+ ih−1dh− ih−1dh+ ih−1dg g−1h

]}
= tr

{
Q
(
A+ idg g−1

)}
. (5.33)

Thus, our dequantization prescription is to upgrade

M 7→M×OΛ, A 7→ tr{QA
(
A+ idg g−1

)
}, F 7→ tr{QF}, (5.34)

which encodes gauge transformations in the translations on OΛ by the coadjoint group action.

3 This is reminiscent of the right-invariant Maurer-Cartan form on G. This is not a coincidence; the Maurer-Cartan form
ΘR is simply the pullback of wR under the projection G→ G/T = OX .

78



Traces and integrals

In nonabelian gauge theories, one often encounters traces over the given representation of the gauge group

(Sec 3.1). We now seek the corresponding classical analogue, which should be integrals over the coadjoint

orbits. The symplectic form on OΛ can be written as ρ = dwR = wR ∧ wR, where we have used Cartan’s

structure equation. Using eq. (2.73), the volume measure on OΛ is then given by

dµΛ =
1

(2π)mΛmΛ!

[
−itr

{
Qw2

R

}]mΛ
, mΛ =

1

2
dim (OΛ) . (5.35)

Next, we seek the classical analogues of the traces of the form trΛ

{
λ̂a1

. . . λ̂ak

}
. The first guess would be

∫
OQ

dµΛQa1
. . . QaN = Str{λa1

. . . λaN }. (5.36)

However, this integral is only approximate, with an error that tends to zero as we increase the dimension

of the representation. For instance, the simplest such integral contains no Qa’s, which we expect to be the

correspondence between the dimension of the representation and the volume of the corresponding coadjoint

orbit

dim (Λ) = trΛ{1} ←→ vol (OΛ) =

∫
OΛ

dµΛ, (5.37)

However, to recover the dimension of Λ exactly, one needs to expand the coadjoint orbit slightly and integrate

OΛ+W instead of O, where we have shifted the highest weight vector Λ by the Weyl vector W (See Appendix

C of Ref. [2] for details). This “fudge factor” W can be thought of as a quantum correction, which also

improves the approximation for the remaining traces. Hereafter we shall assume that all integrals are over

the Weyl-shifted coadjoint orbits.

Example: SU(2)

To illustrate the dequantization, we again consider SU(2), for which we constructed the coadjoint orbits

explicitly in Sec 2.3.2. Recall that the unitary irreps of SU(2) are labeled by positive half-integers (spin)

j ∈ Z+/2, and are 2j + 1 dimensional. Given j, a complete basis of H = C2j+1 is then given by the

eigenstates of S3 = σ̂3, as

S3|j,m〉 = |j,m〉, −j ≤ m ≤ j. (5.38)

Here, the Cartan subalgebra is 1-dimensional, spanned by σ3. The only root is 1, so that the Weyl vector,

i.e. half the sum of roots, W = 1
2 . Also, m is the weight of a given state, and the highest weight state is
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simply |j, j〉. Thus,

〈j, j|Si|j, j〉 = jδi3 =⇒ αj = jσ3, (5.39)

so that the relevant coadjoint orbit4 is a 2-sphere of radius j, with the symplectic form jΩ(S2). Its volume

can be computed by

vol(Oj) =
j

2π

∫
S2

Ω(S2) =
j

2π

∫ π

0

dθ

∫ 2π

0

dθ sin θ = 2j, (5.40)

where we have parametrized S2 in polar coordinates as

(Q1, Q2, Q3) = j (sin θ cosφ, sin θ sinφ, cos θ) (5.41)

The volume of Oj is only an approximation to 2j + 1 = 2j(1 + j−1), with an error of order 1/j which tends

to zero as j →∞. To recover the dimension precisely, one needs to integrate over a sphere of radius j + 1
2 ,

which is precisely the Weyl shift j → j + W.

As an illustration of integrals containing more Q’s, we note that the integrals containing a single Qa

vanish, since the measure is symmetric under Qa → −Qa, while those of Q2
a can again be evaluated in polar

coordinates on S2. For instance, the integral of Q2
3 = j2 cos2 θ can be computed as

∫
Oj
dµjQ

2
3 =

j3

2π

∫ π

0

dθ

∫ 2π

0

dθ sin θ cos2 θ = −j3

∫ π

0

d(cos θ) cos2 θ = −j
3

3
cos3 θ

∣∣∣π
0

=
2j3

3
. (5.42)

The corresponding quantum traces can be computed using the basis of S3 as

tr
{
S2

3

}
=

j∑
m=−j

〈j,m|S2
3 |j,m〉 =

j∑
m=−j

m2, (5.43)

which can be computed using Feynman’s trick

tr
{
S2

3

}
=

1

4

∂2

∂α2

j∑
m=−j

e2αm

∣∣∣∣∣∣
α→0

=
1

4

∂2

∂α2

sinh(2j + 1)α

sinhα

∣∣∣∣
α→0

=
1

4
lim
α→0

[
(2j + 1)2 cosh(2j + 1)α

sinhα
− 2(2j + 1)

sinh(2j + 1)α coshα

sinh2 α
+

sinh(2j + 1)α

sinh3 α

(
1 + cosh2 α

)]
=
j

3

(
2j2 + 3j + 1

)
=

2j3

3

(
1 +

3

2j
+

1

2j2

)
, (5.44)

which again agrees with the integral upto errors of order j−1.

4 Recall that for SU(2), we showed that the coadjoint orbit for X · σ is simply a 2-sphere of radius |X|.
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5.3 Nonabelian anomaly in arbitrary even dimensions

The symplectic formulation of the chiral kinetic theory, as discussed in Sec 5.1.2, can be generalized in

two directions: coupling to nonabelian gauge fields[1], and considering dynamics in higher dimensions[2].

As Weyl fermions (and chiral anomaly) are defined only in even spacetime dimensions, we consider a Weyl

fermion on Rn,1, n = 2N+1, coupled to a nonabelian gauge field with gauge group G, which we assume to be

a compact semisimple Lie group. In Sec 4.2.3, we computed the Berry curvature for the Weyl Hamiltonian,

and showed that it has the gauge group Spin(2N), which is nonabelian for N > 1. Thus, the positive energy

wavefunction for the Weyl Hamiltonian transforms under a representation Λ of G, when parallel transported

along x, and under a representation Q of Spin(2N) when parallel transported along p. We now discuss the

computation of anomalies in a semiclassical setup, using the dequantization prescription of Sec 5.2 to couple

the nonabelian gauge fields to the classical particle.

5.3.1 Generalized symplectic form

We wish to upgrade the Liouville 1-form for the 3 + 1 dimensional abelian case

ηH = pidx
i − |p|dt+A− a (5.45)

to a more general case where A and a are both nonabelian. Following our prescription from eq. (5.34),

we define the extended phase space as MH = R × R2N+1 × R2N+1 × OΛ × OL, on which we propose the

presymplectic form

ηH = pidx
i − |p|dt+ tr {Q (A+ i wR)} − tr {Q (a + iwR)} , (5.46)

where Q and Q denote the coordinates on OΛ and OL, respectively, and wR and wR are the corresponding

Liouville 1-forms5. To compute ρH , we need the Cartan structure equation dwR = wR ∧ wR, and

dQ = d(gαg−1) = dgαg−1 − gαg−1dgg−1 = [dg g−1, Q] = −[Q,wR].

Thus, for a general matrix-valued r-form X, we can evaluate

d tr {QX} = tr {dQ ∧X +QdX} = tr {−[Q,wR] ∧X +QdX} = tr {Q (dX − [wR, X]χ)} , (5.47)

5 The Liouville 1-form is related to the Maurer-Cartan 1-form on the Lie group manifold. Explicitly, the pullback of wR
under the projection map G→ G/T = OΛ is simply the (right) Maurer-Cartan form on G.
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where χ = (−1)r+1. For X = A− iwR, we get

d tr {Q (A+ i wR)} = tr
{
Q
(
dA+ iw2

R − [wR, A]+ − i[wR, wR]+
)}

= tr {Q (dA− iA ∧A+ i(A ∧A+ iwR ∧A+ iA ∧ wR − wR ∧ wR)}

= tr
{
Q
(
F + i(A+ iwR)2

)}
, (5.48)

where F = dA− iA2. With a similar computation for d tr {Qa}, the generalized symplectic form becomes

ρH = dpi ∧ dxi − d|p| ∧ dt+ F̃ − F̃ + i tr
{
Q (A+ iwR)

2
}
− i tr

{
Q (a+ iwR)

2
}
, (5.49)

where we have defined F̃ = tr {QF} and F̃ = tr {QF}. Using the fact that the gauge curvatures transform

covariantly under gauge transformations, as well as eq. (5.33) for the last two terms, we deduce that all

terms in the symplectic form are gauge invariant under both G and Spin(2N).

Note that F̃ and F̃ can be thought of as analogues of F and F from the abelian case. They are closed

on MH(analogous to dF = dF = 0), which follows from dF − i[A,F ] = 0, the nonabelian generalization of

Maxwell’s equations. Explicitly, using eq. (5.47),

d tr
{
Q
(
F + i(A+ iwR)2

)}
= tr

{
Q
(
dF − i[A, dA] + [dA,wR] + [{A,wR}, wR]− [dA,wR] + [(wR)2, A]

)}
= tr

{
Q
(
dF − i[A, dA] + [dA,wR] + [{A,wR}, wR]− [dA,wR] + [(wR)2, A]

)}
= tr {Q (dF − i[A,F ])} = 0. (5.50)

Thus, we can schematically write dF̃ ∼ 2π δn(p)dnp, which again represents the Berry monopole at p = 0.

The extended phase space is endowed with the volume form

ΩH =
1

(2π)mm!
ρmH ∧ dt, (5.51)

where

m =
1

2
(dim (MH)− 1) = n+mΛ +mL, n = 2N + 1, ma =

1

2
dim (Oa) , (5.52)

Recall that for a given x ∈ R2N+1, the gauge field A(x) (but not its derivatives) can be set to zero by

gauge transformations. Thus, by suitable gauge transformations, at a given point on (t,x,p) ∈ R4N+3, the

last two terms of eq. (5.49) can be made into −itr {QwR ∧ wR} and itr {QwR ∧wR}, which are simply the

symplectic forms on OΛ and OL, respectively. Thus, we can factor out the volume forms on OΛ and OL to
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write the volume form ΩH as

ΩH =
1

(2N + 1)!

(
dpi ∧ dxi − d|p| ∧ dt+ F̃ − F̃

)2N+1

∧ dt ∧ µΛ ∧ µL, (5.53)

where µΛ and µL are the normalized invariant volume measures on OΛ and OL, respectively.

5.3.2 Anomaly calculation

We can now compute the nonabelian singlet and gauge anomaly, analogous to the abelian case of Sec 5.1.2.

We start with the singlet anomaly, i.e, the nonconservation of particle number current:

Jµ =

∫
P

f ẋµ ΩH (5.54)

where the integral is over P = R2N+1 × OΛ × OL. Using eq. (2.92) and assuming that the distribution

function, f , is advected with the flow, i.e, Ld̃Hf = 0, the conservation law for the particle number current

becomes

d ? J =

∫
P

Ld̃H(fΩH) =
1

(2π)m(m− 1)!

∫
P

f dρmH , (5.55)

where we have used eq. (2.79) for the Lie derivative. Using eq. (5.53), we are left with the integral

d ? J =
1

(2π)2N+1(2N + 1)!

∫
OΛ

µΛ

∫
OL

µL

∫
R2N+1

d
(
dpi ∧ dxi − d|p| ∧ dt+ F̃ − F̃

)2N+1

(5.56)

Since the RHS vanishes far from p = 0, we use the same trick as eq. (5.23) for the abelian case to write this

integral as a boundary integral over S2N (ε). To compute the integral over S2N (ε), define

IN =
1

(2N + 1)!

∫
S2N

(
dpi ∧ dxi − p̂idpi ∧ dt+ F̃ − F̃

)2N+1

. (5.57)

Since the integrand is a (4N + 2)-form, we need terms in its expansion containing exactly 2N dp’s and

(2N + 2) dx’s. All such terms are of the form

(
dpi ∧ dxi − d|p| ∧ dt

)2(N−k) ∧ F̃k ∧ F̃ k+1; 0 ≤ k ≤ N.

But since F̃ is globally defined and closed on S2N (ε), for k < N we can rewrite these terms as

d
[(
pidx

i − |p|dt
)
∧
(
dpi ∧ dxi − d|p| ∧ dt

)2(N−k)−1 ∧ F̃ k+1 ∧ F̃k
]

; 0 ≤ k < N.
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This is a boundary term and ∂S2N = 0, so that these terms integrate out to zero6. This trick does not work

for k = N , since [2(N − k)− 1]k=N = −1. Thus, only the term with k = N can potentially integrate to a

nonzero value over S2N , and we are left with

IN =
1

(2N + 1)!

(
2N + 1

N + 1

)∫
S2N

F̃N+1 ∧
(
−F̃
)N

=
1

(N + 1)!
F̃N+1

∫
S2N

1

N !

(
−F̃
)N

. (5.58)

The conservation law becomes

d ? J =

 1

(N + 1)!

∫
OΛ

µΛ

(
F̃

2π

)N+1
 ·
 (−1)N

N !

∫
S2N (ε)

∫
OL

µL

(
F̃

2π

)N . (5.59)

The integral over S2N ×OL can be computed using the integral over the coadjoint orbit(eq. (5.36)) as

∫
OL

F̃NdµL = Fa1 . . .FaN
∫
OL

dµΛQa1 . . .QaN = Fa1 . . .FaNStr{λa1 . . . λaN } = StrL
(
FN
)
, (5.60)

where StrL( . ) denotes the symmetrized trace over the representation Q. Thus,

(−1)N

N !

∫
S2N (ε)

∫
OL

µL

(
F̃

2π

)N
=

(−1)N

N !

∫
S2N (ε)

StrL

(
F̃

2π

)N
= 1, (5.61)

where we identify the last integral as the Chern character of F, and use eq. (4.54) to set C+ = (−1)N for

the positive helicity Weyl fermion. Similarly,

∫
OΛ

F̃N+1dµΛ = StrΛ

(
FN+1

)
. (5.62)

Substituting eqns (5.61) and (5.62) in eq. (5.59),

d ? J =
1

(N + 1)!
StrΛ

(
F̃

2π

)N+1

, (5.63)

which is the nonabelian singlet anomaly for the particle number current.

Similarly, to compute the gauge anomaly, we define the gauge current as

Jµa =

∫
P

f Qaẋ
µ ΩH . (5.64)

6 Alternatively, we can use the homology Hk
(
S2N ,Z

)
= Z, k = 0, 2N and 0 otherwise[73, 70] to infer that S2N has no

nontrivial cycles in any dimensions except 0 and 2N , so that the only closed-but-not-exact forms that can integrate to a nonzero
value are top forms on S2N .
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Using eq. (2.91), the conservation law for the gauge current becomes

d ? Ja −
∫

P

(
2m∑

i=n+1

ζ̇i
∂Qa
∂ζi

)
︸ ︷︷ ︸

= Q̇a

f ΩH =

∫
P

QaLd̃H(fΩH). (5.65)

Using Q̇a = f cabA
b
µẋ

µQc, the second term on the LHS becomes fcabA
b
µJ

µ
c . Thus,

D ? J ≡ d ? Ja + ?
[
f cabA

b
µẋ

µQc
]

=
1

(N + 1)!
StrΛ

(
λa

F̃

2π

)N+1

, (5.66)

which is the expression for the nonabelian gauge anomaly in 2N + 2 spacetime dimensions.

5.3.3 Under the hood

In this section, we expand out the general but somewhat formal computation of nonabelian gauge anomaly

from the last section to the more familiar form for the case of 3 + 1 dimensions. This calculation is a direct

generalization of the abelian anomaly calculation by Stephanov and Yin, as described in Sec 5.1.1. It further

exposes the connection between the ‘classical’ coordinates Q on the coadjoint orbit and its quantum analogue.

The fundamental reason why this calculation is tractable in 3 + 1 dimensions is that in 3 dimensions, the

exterior product of two 1-forms is dual to another 1-form, or, in more plebeian terms, that we have ‘vector

product identities’.

In 3 + 1 dimensions, our proposed semiclassical action for Weyl fermions becomes

S[x,p, g] =

∫
dt
[
p · ẋ + tr

{
Q
(
Aµẋ

µ + iġg−1
)}
− |p| − a · ṗ

]
. (5.67)

The Berry phase is abelian, as was the case in Sec 5.1.1, and Aµẋ
µ = A0 + A · ẋ, as ẋ0 = ṫ = 1. By

varying the action w.r.t x(t), p(t) and g(t), or alternatively, by expanding out i
d̃H
ρH = 0, we can express

the equations of motion in a forms similar to eq. (5.4) as

ẋ =p̂ + ṗ× b,

ṗ =tr {QE}+ ẋ× tr {QB} ,

Q̇ =− i[Q,A0 + A · ẋ], (5.68)
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where we have defined the matrix-valued electric and magnetic components of the Maxwell tensor as

Ei = Fi0, Bi =
1

2
εijkFjk; Fµν = ∂µAν − ∂µAν − i[Aµ, Aν ]. (5.69)

The nonabelian version of Maxwell’s equation is dF − i[A,F ] = 0, which can be written in coordinates as

∂[µFνλ] − i[A[µ, Fνλ]] = 0, (5.70)

where the square brackets in the subscript denotes cyclic permutation over indices. For all spacelike indices,

we get

εijk∂iFjk = iεijk[Ai, Fjk] =⇒ ∂iB
i = i[Ai, B

i], (5.71)

while setting λ = 0 and µ, ν to be spacelike, we get

∂iFj0 + ∂jF0i + ∂tFij = i ([Ai, Fj0] + [Aj , F0i] + [A0, Fij ]) , (5.72)

which, on multiplication by 1
2ε
ijk, gives

1

2
εijk (∂iEj − ∂jEi) =

1

2
εijk (−∂tFij + i[Ai, Ej ]− i[Aj , Ei] + [A0, Fij ])

=⇒ εkij∂iEj = −∂tBk + i[A0, B
k] + iεkij [Ai, Ej ]. (5.73)

These are the nonabelian analogues of Maxwell equations derived from dF = 0. In vector notation, these

can be written as

∇ ·B = i(A ·B−B ·A)

∇×E =− ∂tB + i(A0B−BA0) + i(A×E + E×A). (5.74)

The gauge anomaly arises from a breakdown of Liouville’s theorem, L
d̃H

ΩH = 0. Thus, we need to

compute

? L
d̃H

ΩH =
∂

∂t
(
√
ρH) +

∂

∂xi
(√
ρH ẋ

i
)

+
∂

∂pi
(√
ρH ṗ

i
)

+
∂

∂Qa

(√
ρH Q̇

a
)
, (5.75)

where we now have an extra term corresponding to the coadjoint orbit coordinate. But Q = Qaλa satisfies

Q̇ = Q̇aλa = −iQb(A0 + A · ẋ)c[λb, λc]⇒ Q̇a = f abcQ
b(Ac0 + Ac · ẋ) = f abcQ

bAcµẋ
µ, (5.76)
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so that

∂

∂Qa

(√
ρH Q̇

a
)

=
∂

∂Qa
[√
ρH f abcQ

b(Acµẋ
µ)
]

= f abcA
c
µ

[√
ρH ẋ

µδba +Qb
∂

∂Qa
(
√
ρH ẋ

µ)

]
= f abcQ

bA0
µ

∂

∂Qa
(
√
ρH) + f abcQ

b Ac · ∂

∂Qa
(
√
ρH ẋ) , (5.77)

where we have used the antisymmetry of the structure constants to set f abc δ
b
a = 0. Substituting in eq. (5.75),

? L
d̃H

ΩH =

(
∂

∂t
+ f cabQ

aAb0
∂

∂Qc

)√
ρH +

(
∂

∂xi
+ f cabQ

aAbi
∂

∂Qc

)(√
ρH ẋ

i
)

+
∂

∂pi
(√
ρH ṗ

i
)
. (5.78)

Comparing with eq. (5.5), we note that including the coadjoint orbit has essentially replaced the partial

derivatives with classical analogues of the (gauge) covariant derivatives! Similarly, the assumption that f be

advected with the flow can be written explicitly as

[(
∂

∂t
+ f cabQ

aAb0
∂

∂Qc

)
+ ẋi

(
∂

∂xi
+ f cabQ

aAbi
∂

∂Qc

)
+ ṗi

∂

∂pi

]
f = 0. (5.79)

The equations of motion can be solved for ẋ and ṗ as

√
ρH ẋ = p̂ + tr {QE} × b + (b · p̂) tr {QB} ,
√
ρH ṗ = tr {QE}+ p̂× tr {QB}+ (tr {QE} · tr {QB}) b, (5.80)

with
√
ρH = 1 + b · tr {QB}. Thus,

(
∂

∂t
+ f cabQ

aAb0
∂

∂Qc

)√
ρH = b · tr

{
Q(Ḃ− i[A0,B])

}
(

∂

∂xi
+ f cabQ

aAbi
∂

∂Qc

)(√
ρH ẋ

i
)

= b · tr {Q(∇×E− i(A×E + E×A))}

+ (p̂ · b)tr {Q(∇ ·B− i[A,B])}
∂

∂pi
(√
ρH ṗ

i
)

= tr {QE} · tr {QB}∇ · b. (5.81)

Substituting in eq. (5.78) and using the nonabelian Maxwell’s equations, we are again left with only the

∇ · b term. Hence, combining these terms with the Boltzmann equation, we get

(
∂

∂t
+ f cabQ

aAb0
∂

∂Qc

)
(
√
ρH f) +

(
∂

∂xi
+ f cabQ

aAbi
∂

∂Qc

)(√
ρH f ẋ

i
)

+
∂

∂pi
(√
ρH f ṗ

i
)

= −f(Q,x,p) tr {QE} · tr {QB} (∇ · b) (5.82)
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Integrating over the momentum space and setting f(Q,x,0) = 0 yields

− 1

(2π)2
tr {QE} · tr {QB} =

∫
d3p

(2π)3

(
∂

∂t
+ f cabQ

aAb0
∂

∂Qc

)
(
√
ρH f) +

(
∂

∂xi
+ f cabQ

aAbi
∂

∂Qc

)(√
ρH f ẋ

i
)

= ∂µ

[∫
d3p

(2π)3

√
ρH f ẋ

µ

]
+

∂

∂Qc

[
f cabQ

aAbµ

∫
d3p

(2π)3

√
ρH f ẋ

µ

]
, (5.83)

where in the last step, we have taken AbµQc inside the Q-derivative, since A is independent of Q and fcabδ
a
c = 0.

To compute the anomalies, we define the particle number and the gauge 4-currents as

Jµ(x, t) =

∫
d3p

(2π)3
µΛ f(Q,x,p)

√
ρH ẋ

µ,

Jµa (x, t) =

∫
d3p

(2π)3
µΛQa f(Q,x,p)

√
ρH ẋ

µ, (5.84)

where µΛ is the invariant measure over OΛ. For the singlet anomaly, we simply need to integrate eq. (5.83)

over OΛ and use the fact that ∂OΛ = 0 to get

∂µJ
µ = − 1

(2π)2
Ea ·Bb

∫
OΛ

µΛQaQb = − 1

(2π)2
Ea ·Bb Str{λaλb} = − 1

(2π)2
Str{E ·B}. (5.85)

On the other hand, for the conservation law of the gauge current, we need to multiply eq. (5.83) by Qa and

then integrate over OΛ. Here, Qa is merely a weight in the integral and does not parametrize the trajectory,

so that Q̇a = 0. Thus, the first term of the integral is simply ∂µJ
µ
a , while the second term, on integration

by parts, becomes

∫
OΛ

µΛQa
∂

∂Qc

[
f cebQ

eAbµ

∫
d3p

(2π)3

√
ρH f ẋ

µ

]
= −

∫
OΛ

µΛ δac

[
f cebQ

eAbµ

∫
d3p

(2π)3

√
ρH f ẋ

µ

]
= f cabA

b
µJ

µ
c .

where we have used the antisymmetry of f cab in the last step. Thus,

∂µJ
µ
a + fcabA

b
µJ

µ
c = − 1

(2π)2
Eb ·Bc

(∫
OΛ

µΛQaQbQc

)
= − 1

(2π)2
Eb ·Bc Str {λaλbλc} , (5.86)

which is the covariant form of the nonabelian gauge anomaly.

Thus, using vector product identities (and some tedious algebra), we recover the expressions for the

nonabelian anomalies in 3 + 1 dimensions. The central point of this calculation is the intricate fashion in

which the terms depending on Q assemble to form covariant derivative of ẋµ instead of the usual partial

derivative.
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5.4 Anomalous hydrodynamics using chiral kinetic theory

In this section, we construct a hydrodynamic description for positive chirality Weyl fermions in 2N + 2

spacetime dimensions coupled to a U(1) gauge field using a semiclassical description and compare it to the

results derived from thermodynamic considerations in Sec 3.3. This involves using kinetic theory to construct

the macroscopic currents using the equations of motion and a phase space density, as described in Sec 2.5.

Extended phase space

In Sec 5.3, we discussed the semiclassical Hamiltonian description of Weyl fermions in an inertial reference

frame. However, for hydrodynamics, it is more natural to consider the co-moving frame, defined by the

given velocity field uµ(x). As the frame may in general possess a nonzero acceleration as well as vorticity

(Ω = du 6= 0), we need a way to include the inertial forces in our formalism. In Appendix C.2, we derive

the generalized symplectic form in a noninertial reference frame, and show that for massless particles, it is

reasonable to include the inertial forces in the symplectic form as ρH → ρH + εΩ (accurate upto the linear

order in Ω). This is reminiscent of the minimal coupling to the electromagnetic field, with the energy ε

serving as the “charge”.

The relevant extended phase space is given by MH = Rn × R × OL, n = 2N + 1, where OL is the

coadjoint orbit corresponding to the dequantization of the nonabelian Berry phase, and we do not need the

corresponding coadjoint orbit since the gauge group is U(1). The phase space is 2M + 1 dimensional, with

M = n + 1
2dim (OL) ≡ n + mΛ. The Weyl fermions, in a reference frame comoving with a fluid of velocity

u such that Ω = dū, is then described by the generalized symplectic form

ρH ≡ dηH = dpi ∧ dxi − dε ∧ dt+ F + εΩ− F̃− i tr
{
Q (wR − ia)

2
}
, (5.87)

where we have locally set uµ = (1, 0, . . . 0) by a suitable Lorentz transform, so that −dt = u. We shall need

both positive and negative energy sectors here, so that ε = c|p|, c = ±1.

Grand potential current

In Sec 3.3, we showed that the anomalous contribution to macroscopic currents can all be derived from a

grand potential current Ḡ. To derive this current from the microscopic description, we assume that the

Weyl fermions are in equilibrium(and hence described the the Fermi-Dirac statistics) with respect to the

reference frame in which the generalized symplectic form is given by eq. (5.87). Then Gµ is simply the
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current associated with the 1-particle grand potential g(ε) = −T ln
(
1 + e−β(ε−µ)

)
(See Appendix C.1 for

details), so that using eq. (2.89), we can write Gµ as the phase space integral

Gµ =

∫
P

dnp

(2π)n
dµΛ
√
ρH g(ε) ẋµ, (5.88)

where P = Rn × OL. To compute this, in principle, one next needs to solve the equation of motion

(i
d̃H
ρH = 0) for

√
ρH ẋ

i, which can then be integrated over the momentum space and the co-adjoint orbit.

In 3+1 dimensions, this is straightforward[26], and one gets

√
ρH ẋ = c p̂ + b×E + (p̂ · b) (B + c|p|ω) , bi =

1

2
εijkFjk. (5.89)

However, the task is much more complicated in spacetime dimensions greater than 4. Thus, we follow an

alternative approach using the symplectic formulation of classical mechanics, which lets us compute such

currents without computing
√
ρH ẋ

i explicitly.

Taking the Hodge dual of eq. (5.88), we get

Ḡ =
1

(2π)n

∫
P

g(ε)
√
ρH

(
n∑
i=1

(−1)idx1 ∧ . . . dxi−1 ∧ ẋidxi+1 ∧ . . . dxn
)

dnp

(2π)n
∧ dt ∧ dµΛ, (5.90)

where we have used overbars for Hodge duals, a notation introduced in eq. (3.38). The differential form in

the parenthesis is simply

i
d̃H

(dnx) = i
d̃H

(
n∧
i=1

dxi

)
=

n∑
i=1

(−1)idx1 ∧ . . . dxi−1 ∧ ẋidxi+1 ∧ . . . dxn,

so that the integration measure of eq. (5.90) can readily be obtained as an antiderivation of the symplectic

volume form, with only one term at O(dn−1x):

i
d̃H

ΩH = i
d̃H

(
√
ρH d

nx ∧ dnp ∧ dt ∧ dµΛ)

=
√
ρH
[
i
d̃H

(dnx) ∧ dnp ∧ dt ∧ dµΛ + terms involving dnx
]
. (5.91)

Thus, to compute Ḡ, we simply need to integrate i
d̃H

ΩH terms over P = R2N+1×OL
∼= R+×S2N×OL, where

R+ denotes the radial |p| axis. This automatically picks out the relevant terms, as any terms containing all
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dx’s will not be a top form on P. Using the equation of motion i
d̃H
ρH = 0, we get

i
d̃H

ΩH = i
d̃H

(
1

m!
ρmH ∧ dt

)
=

1

m!
ρmH , (5.92)

so that

Ḡ =
1

(2π)mm!

∫
P

g(ε)ρmH

=
1

(2π)nn!

∫ ∞
0

d|p| g(ε)

∫
OL

µL

∫
S2N

(
dpi ∧ dxi − dε ∧ dt+ F + εΩ− F̃

)n
∧ (−dt), (5.93)

where we have peeled off one (−dε ∧ dt) from ρmH to get the measure on R+. Except for the integral over ε,

this is identical to the expression for the conservation law in eq. (5.56). As in Sec 5.3, eq. (5.61) , we can

perform the integral over OL × S2N to get

Ḡ =
c2

N !
(−dt) ∧

∫ ∞
0

d|p|
2π

g(ε)

(
F + εΩ

2π

)N
. (5.94)

Finally, substituting u = −dt, c2 = 1 and using eq. (3.43),

Ḡc =
u

N !
∧
∫ ∞

0

d|p|
2π

g(c|p|)
(
qB + c|p|ω

2π

)N
, (5.95)

where the subscript c = s ± 1 denotes the positive/negative energy sector. This is precisely obtained eq.

(3.65), which was derived in Ref [16] using thermodynamic arguments.

At finite temperatures, there will be excitations from both positive and negative energy sectors of the

positive chirality Weyl cone. In order to derive physically meaningful expressions at a finite temperature,

we must include both of them, and define

Ḡ = Ḡ+ + Ḡ−

=
u

N !
∧
[∫ ∞

0

d|p|
2π

g(|p|)
(
B + |p|ω

2π

)N
+

∫ ∞
0

d|p|
2π

g(−|p|)
(
B − |p|ω

2π

)N]
. (5.96)

Substituting |p| = ε in the first integral and |p| = −ε in the second, we get

Ḡ =
u

N !
∧
∫ ∞
−∞

dε

2π
g(ε)

(
B + εω

2π

)N
. (5.97)

This integral is clearly divergent, as g(ε) ∼ (ε−µ) for ε→ −∞. This is expected, as we are integrating over
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an infinitely deep Dirac sea. In order to regularize this integral, we need to subtract off the zero temperature

vacuum contribution, where we define the “vacuum” as the many-body state where all 1-particle states with

ε < 0 (i.e, below the Weyl node) are filled up. Since at T = 0, g(ε) = (ε− µ)Θ(µ− ε), where µ > 0, define

the regularized grand potential current as

Ḡreg =
u

N !
∧
∫ ∞
−∞

dε

2π
[g(ε)− (ε− µ)Θ(−ε)]

(
B + εω

2π

)N
. (5.98)

Using the explicit form of g(ε), we next need to compute this integral explicitly. We use a standard trick:

Generating function

As in Sec 3.3, we define a generating function for Ḡ as

Ḡregτ = u ∧
∫ ∞
−∞

dε

2π
[g(ε)− (ε− µ)Θ(−ε)]

∞∑
N=0

τN

N !

(
B + εω

2π

)N
= u ∧ e τqB2π

∫ ∞
−∞

dε

2π
[g(ε)− (ε− µ)Θ(−ε)] e τεω2π , (5.99)

where the sum should be thought of as a formal sum, i.e, we treat ω and B as c-numbers instead of differential

forms. The integral so obtained is simply a generating function for a Sommerfeld expansion. To evaluate

the integral, consider

I(σ) =

∫ ∞
−∞

dε

2π
[g(ε)− (ε− µ)Θ(−ε)] eσε. (5.100)

The Heaviside integral part is easily evaluated using Feynman’s trick:

∫ 0

−∞

dε

2π
(ε− µ)eσε =

(
∂

∂σ
− µ

)∫ 0

−∞

dε

2π
eσε =

(
∂

∂σ
− µ

)
1

2πσ
= −1 + µσ

2πσ2
. (5.101)

For the remaining integral, substitute s = eβ(ε−µ) and integrate by parts:

∫ ∞
−∞

dε

2π
g(ε)eσε = − 1

2πβ

∫ ∞
0

ds

βs
ln

(
1 +

1

s

)(
s eβµ

)σ
β

= − eµσ

2πβ2

∫ ∞
0

ds s
σ
β−1 ln

(
1 +

1

s

)
= − eµσ

2πβ2

[
β

σ
s
σ
β ln

(
1 +

1

s

)∣∣∣∣∞
0

− β

σ

∫ ∞
0

ds s
σ
β

(
− 1

s(s+ 1)

)]
= − eµσ

2πσβ

∫ ∞
0

ds
s
σ
β−1

s+ 1
= − eµσ

2σβ sin (πσ/β)
, (5.102)
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where in the last line, assuming σ < β, we have used the integral

∫ ∞
0

ds
sα−1

1 + s
=

π

sin(πα)
, 0 < α < 1. (5.103)

From eq. (5.102) and eq. (5.101), we get

I(σ) = − 1

2πσ2

 πσ
β

sin
(
πσ
β

)eµσ − (1 + µσ)

 . (5.104)

We also note that

1

2πσ2

πσ
β

sin
(
πσ
β

)eµσ =
1

2πσ2
+

µ

2πσ
+

(
µ2

4π
+

π

12β2

)
σ +O(σ2), (5.105)

so that the integral of the ‘regulator’ (ε−µ)Θ(−ε)eσε precisely subtracts off the singularities of the divergent

integral of g(ε)eσε.

Substituting the integral in eq. (5.99), the generator of the regularized grand potential current becomes

Ḡregτ = −u ∧ e τqB2π
2π

(ωτ)2

 ωτ
2β

sin
(
ωτ
2β

)eµωτ2π −
(

1 +
µ

2π
ωτ
) , (5.106)

which is identical to the expression obtained7 in Ref. [16], as discussed at the end of Sec 3.3. Thus, we

get the magical similarity between the generating function for the grand potential function and that for the

mixed anomaly for Weyl fermions, which essentially follows from the fact that the Sommerfeld integral is

equal to the generating function for the Â-genus.

7After replacing ω → 2ωA, as they defines their vorticity as the angular velocity, ωA.
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Part II

Transfer matrices
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6 Transfer matrices

Transfer matrices, also known as the monodromy matrix in dynamical systems literature[54, 55], arise

naturally in discrete calculus as an alternative representation of finite order linear homogeneous difference

equations (recurrence relation). Dividing the system into finite-sized blocks, they are linear operators that

implement a first order shift on a block. While containing the same information as the original differential

equation, for periodic systems, they are a useful tool to extract the global behavior of the solutions, since

their spectra determine the asymptotics of the solutions.

For noninteracting tight-binding models of condensed matter systems, the wavefunctions are solutions of

the Schrödinger equation, which can be recast as a linear homogeneous difference equation. The asymp-

totics of wavefunctions then determine the physical nature of the solutions, viz, the bulk and the boundary

eigenstates. Thus, transfer matrices have been used to study lattice models for topological phases of matter,

which exhibit a nontrivial bulk state topology as well as nontrivial edge states. However, the traditional

construction of transfer matrix for such systems fails when a certain “hopping” matrix is singular, which

happens to be the case for quite a few commonly encountered models (as we shall see in Ch 7).

In this chapter, we propose an alternative construction of transfer matrices which works even when the

hopping matrix is singular. We discuss various features of this construction, as well as the general formalism

to extract physically meaningful data, viz, the bulk and edge spectra, from the transfer matrix. These

somewhat formal analyses are substantiated by explicit computations for an assortment of models of common

interest in Ch 7.

6.1 Transfer matrix preliminaries

We begin by illustrating the idea of a transfer matrix using a simple example. Consider then the homogeneous

linear difference equation

zn =

R∑
`=1

An,` zn−`; n > 0, (6.1)
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where z : Z → CN , An,m ∈ Mat(N,C) and the initial condition zn = z0
n for −R < n ≤ 0. Then, this

difference equation can easily be recast as


zn

zn−1

...

xn−R


︸ ︷︷ ︸

Φn

=


An,1 An,2 . . . An,R−1 An,R

1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0


︸ ︷︷ ︸

Tn


zn−1

zn−2

...

xn−R−1


︸ ︷︷ ︸

Φn−1

. (6.2)

This reduces the problem to the form Φn = TnΦn−1, i.e, a first order difference equation for Φ: Z→ CRN ,

where Tn are the transfer matrices. We can “solve” the system by setting

Φn = TnTn−1 . . . T1Φ0; Φ0 =
(

z0
0 z0

−1 . . . z0
−R+1

)T

. (6.3)

Furthermore, if the system were periodic, i.e, if An,` is independent of n for any `, then the solution can

simply be written as Φn = TnΦ0.

Thus, in general, given a linear homogeneous discrete equation with solution Φ: Z → CN , the transfer

matrices are a set of linear operators Tn : CN → CN , n ∈ Z such that we can write Φn = TnΦn−1. In

the following analysis, we shall always assume our difference equation to be translation invariant, so that

Tn = T . Given the initial condition Φ0 = ϕ, the solution can then be computed explicitly as Tnϕ for n > 0,

(and also for n < 0 if T is invertible). More importantly, however, the transfer matrix is an excellent tool

to extract the asymptotic behavior of the solutions, which is our primary interest. We shall next show that

the information about the asymptotics is encoded in σ [T ], the spectrum of T .

To begin with, if Φ0 = ϕ is an eigenstate of T with eigenvalue ρ, then

Φn = Tnϕ = ρnϕ, (6.4)

so that the solution grows exponentially with base ρ. Thus, for n → ∞, the solution grows exponentially

for |ρ| > 1, decays exponentially for |ρ| < 1 and stays finite for |ρ| = 1. For arbitrary ϕ, let | . | be a vector

norm on CN and |ϕ| be finite. Then,

lim
n→∞

|Φn| = lim
n→∞

|Tnϕ| ≤ |ϕ| lim
n→∞

‖Tn‖ ; ‖Tn‖ = sup
|Φ|=1

|TnΦ| , (6.5)

where ‖ . ‖ is the matrix norm on Mat(N ,C). If T is a normal matrix1, it can be written as T = U ·Θ ·U†,
1Recall that a complex square matrix X is termed normal if it commutes with its adjoint, i.e, if X · X† = X† · X. The

96



where U ∈ U(N), so that

lim
n→∞

|Φn| ≤ |ϕ| lim
n→∞

∥∥U ·Θn · U†
∥∥ ≤ |ϕ| lim

n→∞
‖Θn‖ ≤ |ϕ| lim

n→∞
‖Θ‖n , (6.6)

since ‖U‖ = 1. Furthermore, since Θ = diag{ρ1, ρ2, . . . ρN }, with the ρi ∈ σ [T ] indexed in an increasing

order of magnitude, i.e, |ρ1| ≤ |ρ2| ≤ · · · ≤ |ρN |, its matrix norm can be explicitly computed to be |ρN |.

This provides an upper bound on the growth rates of the solutions for arbitrary initial values ϕ. Thus, for

a normal T ,

σ [T ] ⊂ B2 =⇒ All solutions decay as n→∞, (6.7)

where B2 ≡ {z ∈ C | |z| < 1} is the open unit disk in the complex plane,

For a normal T , we can further refine our analysis by defining projectors Ps : CN → CN to the eigenspace

of T corresponding to the eigenvalue ρs. Explicitly, if ρs has multipliticy k, its eigenvalue problem Tϕs,i =

ρsϕs,i, i = 1, . . . k define the projectors explicitly as Ps =
∑k
i=1 ϕs,iϕ

†
s,i. The diagonalization of T is

equivalent to writing it as

T =
∑
s

ρsPs, PsPs′ = Ps′Ps = δss′Ps, (6.8)

with ρs ∈ σ [T ]. Using these projectors, we define

P< ≡
∑
|ρs|<1

Ps, P> ≡
∑
|ρs|>1

Ps, P= ≡
∑
|ρs|=1

Ps, (6.9)

which satisfy P< + P> + P= = 1. Defining

T< = TP< =
∑

s,s′,|ρs|<1

ρs′Ps′Ps =
∑

s,s′,|ρ′s|<1

ρs′δss′Ps =
∑
|ρs|<1

ρsPs, (6.10)

we by definition have σ [T<] ⊂ B2. Thus, from eq. (6.7), a sufficient condition for ϕ ∈ CN to decay for

n→∞ is simply P<ϕ = ϕ.

We finally show that the last statement, with suitable definitions of projectors, holds even when T is not

normal. Consider the most general case when T may not be diagonalizable at all, i.e, including cases when

rank (T ) < dim (T ), so that the set of eigenvectors of T do not span CN ; however, the set of generalized

eigenvectors of T does span CN . Given ρ ∈ σ [T ], such that its geometric multiplicity is less than its

algebraic multiplicity k, we define a set of left(ϕ) and right(φ) generalized eigenvectors, which satisfy the

matrix X is diagonalizable by a unitary matrix iff it is normal[96].
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generalized eigenvalue equations

(T − ρ1)kϕ = 0, φ†(T − ρ1)k = 0. (6.11)

The generalized eigenvectors define a basis of CN , in which T can be expressed in an “almost diagonal”

form, which is the so-called Jordan canonical form[97]:

T =
∑
s

[ρsPs +Ds], PsP ′s = δss′Ps, Ps′Ds = DsPs′ = Dsδss′ , (6.12)

where ρs ∈ σ [T ] and Ds are nilpotent operators of order equal to the algebraic multiplicity of ρs. We can

again define the projectors as in eq. (6.9), and construct

T< ≡ TP< =
∑

s,s′,|ρs|<1

[ρs′Ps′ +Ds′ ]Ps =
∑
|ρs|<1

[ρsPs +Ds] (6.13)

which satisfies σ [T<] ⊂ B2 by the spectral radius formula[98]. Thus, from eq. (6.7), a sufficient condition

for ϕ ∈ CN to decay for n→∞ is simply P<ϕ = ϕ.

Finally, note that if T is nonsingular, a given Φ0 can also be propagated backwards, i.e, for n < 0. Then

we can also study the asymptotic behavior for n → −∞, which is identical to the n → ∞ behavior with T

replaced by T−1, i.e,

lim
n→−∞

|Φn| = lim
n→−∞

|Tnϕ| ≤ |ϕ| lim
n→−∞

∥∥∥T−|n|∥∥∥ ≤ |ϕ| lim
n→−∞

∥∥T−1
∥∥n . (6.14)

Thus, for a normal T , the growth rate for n→ −∞ is bounded by |ρ1|, the smallest eigenvalue (in magnitude),

while that for n→∞ is bounded by |ρN |, the largest eigenvalue (in magnitude).

6.2 Tight-binding lattice models

Given a tight-binding Hamiltonian on a lattice, the Schrödinger equation (i.e, the eigenvalue problem of the

Hamiltonian) can be written as a complex linear homogeneous difference equation, which could be represented

using transfer matrices. Conventionally, one needs to invert a hopping matrix to reduce it to the form of eq.

(6.1), after which the transfer matrix can be constructed as in eq. (6.2). However, the construction breaks

down if the hopping matrix turns out to be singular, which, as we show in Ch 7, happens for many systems

of common interest. In this section, we present an alternative construction of transfer matrices, which works

98



equally well for both singular and nonsingular hopping matrices.

6.2.1 The fermionic Hilbert space

We begin with a formal (and somewhat unconventional2) exposition of tight-binding models and the as-

sociated mathematical objects, and construct the many-body Hilbert space. As we are using only the

single-particle sector of this general construction and hence do not necessarily need fermionic statistics, this

subsection can be skipped without a loss of continuity.

Tight-binding models are defined on a lattice graph Λ whose sites are indexed by n = (n1, n2, . . . nN ) ∈ ZN .

Physically, the lattice is embedded in the real space Rd, with a set of “lattice vectors” ai ∈ Rd, i = 1, . . . N ,

so that the position of site n is given by rn = niai ∈ Rn. To each lattice site, we associated a (single)

fermionic Fock space. Mathematically, to each n ∈ Λ we associate a two dimensional complex Hilbert

space3 Hn
∼= C2, spanned by orthonormal basis vectors |0n〉 and |1n〉. Physically, these vectors correspond

to the quantum states where the site contains either zero or one electron, following Pauli’s exclusion principle

for fermions.

Two linear operators, cn (“annihilation operator”) and c†n(“creation operator”) on Hn, can be defined on

Hn, which act on the basis elements as

cn|1n〉 = |0n〉, cn|0n〉 = 0,

c†n|0n〉 = |1n〉, c†n|1n〉 = 0. (6.15)

The composition of these operators, n̂n = c†ncn : Hn → Hn, is a Hermitian operator with eigenstates |0n〉

and |1n〉, the corresponding eigenvalues being 0 and 1. Thus, n̂n “counts” the number of electrons at site

n. Explicitly, we can also check that

[cn, c
†
n]+ = cnc

†
n + c†ncn = 1n. (6.16)

The space of linear transformations Hn → Hn is isomorphic to Mat(2,C), the space of 2 × 2 complex

matrices, which is spanned by the set {c , c†, c†c , cc†}.
2 Conventionally, to derive a tight binding model for a given system, one starts with the continuum single electron Schrödinger

equation represented in suitable (Wannier) basis where the basis states are localized on lattice sites, and then performs second
quantization to represent states in the occupation number (Fock) basis. Thus, one first constructs H (1) and then uses it
to construct many-body Hilbert spaces. We instead start from Fock bases on each site, which is somewhat unphysical, but
conceptually cleaner, in my opinion.

3Strictly speaking, we only care about normalized wavefunctions, so this space should be CP1, the space of rays in C2.
However, we shall consider all vectors in C2 for now, and ‘normalize’ our wavefunctions only at the very end.
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The many body Hilbert space H is defined as the antisymmetric tensor product over the Hilbert spaces

Hn corresponding to single sites. The relevant operators on H are the fermionic creation and annihilation

operators, c†n and cn, which create and annihilate an electron at site n, respectively, and satisfy the fermionic

anticommutation relation

[cm, cn]+ = [c†m, c
†
n]+ = 0, [cm, c

†
n]+ = δmn, (6.17)

which encode the fermionic statistics, i.e, the antisymmetry of many body wavefunctions under the exchange

of two particles. The definition of these operators using tensor products of c’s and c†’s is quite nontrivial, so

we start with an illustration of the relevant ideas in the simplest possible case: a lattice with just two sites.

Set Λ = {1, 2}, with the corresponding Hilbert spaces Hi, i = 1, 2. Recall that tensor product is

noncommutative (A ⊗ B 6= B ⊗ A in general), so that we define a direct sum of all possible orderings, viz,

H̃ = (H1 ⊗H2) ⊕ (H2 ⊗H1). The fermionic Hilbert space is then a subspace of H̃ , which consists of

only the antisymmetric linear combinations. Explicitly, given |ψi〉 ∈Hi, we define the elements of H as the

antisymmetrized tensors

|ψ1〉 ∧ |ψ2〉 =
1

2
(|ψ1〉 ⊗ |ψ2〉 − |ψ2〉 ⊗ |ψ1〉) . (6.18)

A suitable basis for H is {|01〉 ∧ |02〉, |11〉 ∧ |02〉, |01〉 ∧ |12〉, |11〉 ∧ |12〉}. Next, we need to define the

creation/annihilation operators as tensor products of ci’s and 1i’s. Let us try

c†1 = c†1 ⊗ 12 + 12 ⊗ c†1 ≡ S
[
c†1 ⊗ 12

]
, (6.19)

where S [ . ] denotes symmetrization. The action on the basis vectors of H is

c†1|01〉 ∧ |e2〉 = |11〉 ∧ |e2〉, c†1|11〉 ∧ |e2〉 = 0; e ∈ {0, 1} (6.20)

However, we cannot define c†2 in an identical fashion, since we need [c†1, c
†
2] = 0. More explicitly, let us define

c†1|e1〉 ∧ |02〉 = λe|e1〉 ∧ |02〉, c†1|e1〉 ∧ |12〉 = 0; |λe| = 1. (6.21)

Since the only state on which c†1c
†
2 gives a nonzero answer is |Ω〉 = |01〉 ∧ |02〉, consider

0 = [c†1, c
†
2]+|Ω〉 = λ0c

†
1|01〉 ∧ |12〉+ c†2|11〉 ∧ |02〉 = (λ0 + λ1) |11〉 ∧ |12〉, (6.22)

so that λ1 = −λ0. Thus, the action of c†2 on a state must depend on the occupancy of site 1. The way out
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is to define the operators as

c1 = S
[
c1 ⊗ 12

]
, c†1 = S

[
c†1 ⊗ 12

]
, c2 = S

[
(−1)n̂1 ⊗ c2

]
, c†2 = S

[
(−1)n̂1 ⊗ c†2

]
, (6.23)

so that λ0 = 1 and λ1 = −1. These satisfy the canonical anticommutation relations by construction.

We can now generalize to arbitrary lattices based on the 2-site case. We begin by choosing a total ordering4

of Λ as n1 < n2 < . . . , and defining H̃ analogous to the 2-site case as

H̃ =
⊕
σ∈SΛ

[
Hσ(n1) ⊗Hσ(n2) ⊗ . . .

]
, (6.24)

where SΛ is the permutation group on Λ. The many-body Hilbert space H is simply defined as the set of

antisymmetric tensors in H̃ ,

H =
∧

n∈Λ

Hn = span

{∧
n∈Λ

|ein,n〉
}
, ei,n ∈ {0, 1}. (6.25)

where the ∧-product is defined as in eq. (6.21). The 1-particle creation/annihilation operators can then be

constructed as

c†n = S
[(⊗

m<n

(−1)n̂m

)
⊗ c†n ⊗

(⊗
m>n

1m

)]
, (6.26)

and a similar definition of cn. Note that these operators are highly nonlocal, owing to the (potentially

infinitely long) string5 of (−1)n̂m needed to ensure the fermionic statistics. Thus, in order to satisfy the

canonical anticommutation relations, the fermions are required to be nonlocal objects, as this construction

shows.

The total number operator n̂ is n̂ =
∑

n∈Λ c
†
ncn, and σ [n̂] consists of positive integers. The vacuum state

|Ω〉 =
∧

n∈Λ |0n〉 can be alternatively defined using these operators either as |Ω〉 ∈ ker n̂, which is unique

upto the choice of a phase, or as the state which satisfies cn|Ω〉 = 0 ∀n ∈ Λ. All other states in H can then

be obtained by application of c†n’s on |Ω〉. This lets us partition H into different particle number sectors as

H =

∞⊕
n=0

H (n), H (n) ≡ {|Ψ〉 ∈H ; n̂|Ψ〉 = n|Ψ〉} . (6.27)

The zero particle sector of H is 1-dimensional, and spanned by |Ω〉. In the rest of this chapter, we shall

4 The fact that such a total order exists for any Λ follows from Zorn’s lemma.
5 This issue appears when one tries to represent a fermionic model as a spin model, as we are tacitly doing by associating

C2 to each site, which is also the Hilbert space for the spin 1/2 representation of SU(2). In that context, the string of operators
is known as a Jordan string.

101



only be interested in the 1-particle section H (1), which is spanned by the states c†n|Ω〉, which correspond to

an electron localized at site n. Thus, a generic wavefunction |ψ〉 ∈H (1) can be expressed as

|ψ〉 =
∑
n∈Λ

ψnc
†
n|Ω〉; ψn ∈ C. (6.28)

The inner product on H can be defined using the pairing to the dual space H ∗, whose vacuum state

is denoted by 〈Ω| and whose states can be constructed by applying cn’s it. Explicitly, the dual vector to

|ψ〉 = c†n1
. . . c†nk |Ω〉 ∈ H is 〈Ω|cnk . . . cn1

∈ H ∗. The inner product on H can then be defined using the

pairing H ∗ ×H → R. Operationally, the inner product of |ψ〉 and |φ〉 can be computed by writing out

〈ψ|φ〉, using the anticommutation relations to reorder the operators, and finally use 〈Ω|Ω〉 = 1 and cn|Ω〉 = 0.

For instance, given |ψ〉, |φ〉 ∈H (1),

〈ϕ|ψ〉 =
∑
nn′

ϕ∗n′ψn〈Ω|cn′c†n|Ω〉 =
∑
nn′

ϕ∗n′ψn〈Ω|δnn′ − c†ncn′ |Ω〉 =
∑
n

ϕ∗nψn. (6.29)

To restrict to the set of physically distinct states, we consider only the normalized states, i,e, |ψ〉 ∈ H (1)

such that 〈ψ|ψ〉 = 1, and identify states that differ only by a global phase, i.e, |ψ〉 ∼ eiϕ|ψ〉. Thus, the

physical states live in the projective space PH (1), which is the space of (complex) rays in H (1).

This picture is often generalized by associating q quantum states with each site n ∈ Λ, so that Hn
∼= C2q.

Physically, these internal states may correspond to spin/orbital/sublattices degrees of freedom. The total

Hilbert space on the lattice Λ is then given by H =
⊗

n∈Λ Cq, and the corresponding 1-particle sector is

given by H (1) = span
(
c†n,α|Ω〉

)
, where n ∈ Λ and α ∈ {1, 2, . . . q}, so that a generic wavefunction becomes

|ψ〉 =
∑
n,α

ψn,αc
†
n,α|Ω〉. (6.30)

The inner product is similar to the previous case, with a summation over α.

6.2.2 Schrödinger equation and recursion relations

A quantum mechanical description of electrons in a crystal involves a Hamiltonian describing the dynamics

of electrons in a lattice formed by the positive ions/nuclei. In order to study the system, one intends to solve

the eigenvalue problem for the Hamiltonian operator (i.e, the Schrödinger equation) in a convenient basis.

Two common choices are the plane wave basis, consisting of a set of orthonormal states delocalized over the

entire system, and the Wannier basis, consisting of a set of states localized at individual sites.
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For tight-binding models, we represent the Hamiltonian in the Wannier basis, where the dynamics is

generated by the tunneling between different sites. The tunneling between sites n and n′ is then encoded

in the Hermitian operators of the form c†n+m,αtn,m,αβcn,β + h.c, where α, β = 1, . . . d and m ∈ ZN . The

tight-binding Hamiltonian H : H (1) → H (1) is generically a sum of such terms. The lattice translation

invariance (or equivalently, periodicity) dictates that the hopping parameter t be a function only of the

separation m, independent of n. Furthermore, we shall demand that the hoppings be finite range, i.e, that

∃R ∈ R+ such that tm,αβ = 0 ∀m such that |m| > R. Thus, generically, we shall be interested in 1-particle

Hamiltonians of the form

H =
∑

m,n∈Λ

q∑
α,β=1

[
c†n+m,α tm,αβ cn,β + h.c.

]
. (6.31)

where h.c. denotes the Hermitian conjugate of the first term. We can expand it out and relabel the indices

(n→ n + m and α↔ β) to get

H =
∑
m,n

∑
α,β

[
c†n+m,α tm,αβ cn,β + c†n−m,α t

∗
m,βα cn,β

]
. (6.32)

We next seek to solve the Schrödinger equation to obtain the spectrum σ [H]. Acting on the wavefunction

of eq. (6.30), we get

H|ψ〉 =
∑
m,n

∑
α,β

[
c†n+m,α tm,αβ cn,β + c†n−m,α t

∗
m,βα cn,β

] ∑
n′,α′

ψn′,α′c
†
n′,α′ |Ω〉

=
∑

m,n,n′

∑
α,β,α′

ψn′,α′

[
c†n+m,α tm,αβ + c†n−m,α t

∗
m,βα

] (
δn,n′δβα′1− c†n′,α′cn,β

)
|Ω〉

=
∑
m,n

∑
α,β

ψn,β

[
c†n+m,α tm,αβ + c†n−m,α t

∗
m,βα

]
|Ω〉, (6.33)

using the fermionic anticommutation relations and the definition of vacuum cn,α|Ω〉 = 0. Relabeling the

indices, the the Schrödinger equation, H|ψ〉 = ε|ψ〉, becomes

∑
n,α

∑
m,β

[
tm,αβψn−m,β + t∗m,βαψn+m,β

]
− εψn,α

 c†n,α|Ω〉 = 0. (6.34)

As the states c†n,α|Ω〉 are linearly independent, all their coefficients must vanish individually, so that we get

the recursion relation ∑
m,β

[
tm,αβψn−m,β + t∗m,βαψn+m,β

]
− εψn,α = 0. (6.35)

103



Defining ψn =
{
ψn,α

}q
α=1

and tm =
{
tm,αβ

}q
α,β=1

, we get

∑
m,β

[
tmψn−m + t†mψn+m

]
− εψn = 0. (6.36)

This is a representation of Schrödinger’s equation for generic tight-binding models as a recursion relation.

Consider now the case of a d = N = 1, i.e, Λ ∼= Z embedded in R, so that the n ∈ Z corresponds to the

point r = na ∈ R, where a is the lattice constant. The difference equation becomes

R∑
`=0

(
t`ψn+` + t†`ψn−`

)
= εψn, (6.37)

supplanted by suitable boundary conditions. We shall seek to solve this difference equation by using an ansatz

of the form ψn = λnψ0. However, the boundary conditions put additional constraints on the parameter λ.

Two commonly used boundary conditions are:

1. Periodic boundary conditions: The wavefunction is periodic with period equal to the system size,

L ∈ aZ, i.e, ψn+L/a = ψn. Thus, λL/a = 1 =⇒ λ = eika; k ∈ 2π
L Z.

2. Infinite system: On physical grounds, we are only interested in solutions ψn that stay finite for

n→ ±∞, i.e, limn→±∞ |ψn| <∞. Thus, |λ| = 1 =⇒ λ = eika; k ∈ R.

For both of these cases, substituting ψn = eika nψ0 = eikrψ0 and collecting coefficients of eikr, we get

0 =

[
R∑
`=0

(
t`e

ika ` + t†`e
−ika `

)
− ε1q

]
ψ0 ≡

[
HB(k)− ε1q

]
ψ0, (6.38)

which yields a nontrivial solution for ψ0 iff, following Cramers’ rule, ε satisfies

det [HB(k)− ε1q] = 0, (6.39)

i.e, ε is an eigenvalue of the operator HB . This is defined as the Bloch Hamiltonian of the system. Given an

eigenvector ψ0(k) of the Bloch Hamiltonian with eigenvalue ε(k), the corresponding wavefunction is given

by ψn,k = eikrψ0(k).

In condensed matter terminology, we have simply recovered the common knowledge that for infinite

systems or periodic boundary conditions, we can diagonalize the tight-binding Hamiltonian in the plane

wave basis {eikrψ0(k)}, where the parameter k is simply the (quasi-)momentum. Now, for a d-dimensional

system (on Rd), if the system is infinite or periodic along d′ ≤ d directions, then we can expand in the
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plane wave basis along those directions, thereby reducing the problem to one on Rd−d′ parametrized by

the quasimomentum k⊥ = (k1, k2, . . . kd′) ∈ Td
′
. In quantum mechanical language, this works because the

system is translation invariant, so that the (quasi-)momentum k⊥ is a good quantum number [45, 46].

6.2.3 The conventional transfer matrix

For systems with topologically nontrivial bulk bands, we are particularly interested in the boundary states,

where the translation symmetry is naturally broken in the direction normal to the edge, as the system

is finite in that direction. We consider the simplest situation where such states could exist, viz, a slab

geometry. Explicitly, given a lattice Λ embedded in Rd, we shall consider a tight binding system with

open (Dirichlet) boundary conditions(OBC) along one direction, which we can choose on will, and periodic

boundary conditions(PBC) along d′ = d − 1 remaining directions parallel to the edge. By choosing the

direction with OBC, we can explore the presence of surface states along different surfaces.

Thus, we are starting with a family of 1D tight-binding models parametrized by k⊥ ∈ Td−1, which can

be written in the position space as

H =

N∑
n=0

q∑
α,β=1

R∑
`=0

[
c†n+`,αt`,αβcn,β + h.c.

]
=

N∑
n=0

R∑
`=0

[
c†n+`t`cn + h.c.

]
, (6.40)

where R is the range of the hopping (which we have assumed to be finite), and we have suppressed the

explicit dependence on k⊥ to avoid notational clutter; however, all parameters should be assumed to depend

on k⊥, unless stated otherwise. The corresponding recursion relation (eq. (6.36)) becomes

R∑
`=0

(
t`ψn+` + t†`ψn−`

)
= εψn. (6.41)

We can group the wavefunctions ψ` into blocks to reduce this to a first order difference equation6. Physically

speaking, we are constructing blocks consisting of these sites, so that the system is periodic in these blocks

and the hopping between such blocks is restricted to nearest neighbor[49], as shown in Fig. 6.1). These

blocks, hereafter referred to as supercells, can be thought of as sites of a superlattice Λ̃. In terms of these

supercells, each containing N = qR degrees of freedom, the recursion relation can be written as

JΨn+1 +MΨn + J†Ψn−1 = εΨn. (6.42)

6This is always possible as the hopping has a finite range, hence we can always choose a supercell consisting of R sites.
Clearly, this grouping is not unique; however, it will not affect the size and spectral properties of our transfer matrix. We give
a more detailed argument towards the end of this section.
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Here, J is the hopping matrix connecting nearest neighbor supercells and M is the on-site matrix, which

encodes the hopping between degrees of freedom inside the supercell as well as the on-site energies. The

wavefunction for a supercell, Ψn, can be explicitly written as

Ψn =


ψn

ψn+1

...

ψn+R−1

 ∈ CN . (6.43)

For a nonsingular J , the conventional transfer matrix construction works by noticing that[50]

Ψn+1 = J−1(ε1−M)Ψn − J−1J†Ψn−1 (6.44)

can be rewritten as

(
Ψn+1

Ψn

)
=

(
J−1(ε1−M) −J−1J†

1 0

)(
Ψn

Ψn−1

)
≡ T

(
Ψn

Ψn−1

)
, (6.45)

which is a matrix analogue of eq. (6.2).

6.3 The generalized transfer matrix

The conventional transfer matrix construction breaks down when the hopping matrix (J) is singular. Such

cases have been studied in various context in an ad-hoc fashion; however, a unified treatment has so far

been missing. In this section, we describe the construction of a generalized transfer matrix, which is well

defined even for case with singular hopping matrices, and thus provides a general unified framework to

discuss transfer matrices.

6.3.1 Diagonstics

We begin by further analyzing the reason for the breakdown of the conventional transfer matrix construction,

viz, the singularity of J , which means that r = rank (J) < dim (J). But rank (J) is the number of linearly

independent rows in J , and hence the ‘dimension’ of the recursion relation in eq. (6.42). A more physical

way to visualize rank (J) is to think of the N degrees of freedom inside each supercell as N sites7. Then,

rank (J) denotes the number of bonds between adjacent supercells, and singularity of J implies that there are

7This is the opposite of the traditional way of doing things, where sites inside a supercell are effectively treated as orbitals.
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β4
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0

Figure 6.1: (a) A schematic depiction of the recursion relation, with q internal degrees of freedom, range
of interaction R = 2 and Dirichlet boundary conditions at the left edge. We can form blocks (supercells) of
such sites with 2 sites each, so the there is only nearest neighbor hopping between them. (b) A simplified
depiction of the reduced recursion relation, with α, β, γ corresponding to the coefficients of V , W and X
subspaces(introduced in Sec 6.3), respectively. (c) We club together βn with αn−1 to obtain Φn, which is
translated by one step using the transfer matrix.

sites in the supercell from which one cannot hop directly to a site in another supercell. We seek to compute a

transfer matrix for singular J , where we, in some sense, mod out the redundant degrees of freedom, thereby

inverting J on a reduced subspace to get a reduced transfer matrix. We will see that the corresponding

transfer matrix8 will be 2r × 2r.

Next, we note that G = (ε1−M)−1 is the resolvent (or the Green’s function) of a single supercell. Clearly,

the matrix ε1−M is singular when ε is an eigenvalue of M . Physically, consider a system with uncoupled

supercells, each with N -degrees-of-freedom, obtaining by setting J = 0 in eq. (6.46). The corresponding

spectrum consists of N degenerate levels, which broaden into bands as we turn J on. The eigenvalues of

M can be interpreted as the centers of these bands. Since we are primarily concerned with the band gaps

and the edge states therein, we can take ε1−M to be nonsingular as far as we do not venture deep inside

the bulk bands9.

Besides the finite-range hoppings, we shall make one more assumption, viz

J2 = 0, so that r <
N

2
.

This might seem quite stringent, but recall that we are at liberty to choose our supercells, so that this

condition can always be satisfied by choosing a large enough supercell. Physically, for N > 2, this simply

8Indeed, if J had full rank, then we could have inverted it to get a 2N × 2N transfer matrix, as computed in Sec 6.2.1.
9This breaks down if the bandwidth turns out to be zero, i.e, when the band pinches to a point(for instance, in case of

graphene, or Chern insulator with m = 1). However, we can get around that using the well known trick of adding a small
imaginary part to the Green’s function in order to move the poles off the real line.
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means that in a given supercell, the nodes in a supercell that are connected to the right neighboring supercell

and the left neighboring supercell are not directly connected to each other.

6.3.2 Construction

We start off with the recursion relation

JΨn+1 + J†Ψn−1 = (ε1−M)Ψn, (6.46)

where rank (J) = r, and perform a reduced singular value decomposition[96] (SVD) of J ,

J = V · Ξ ·W †, (6.47)

where the matrices satisfy

V † · V = W † ·W = 1, V † ·W = 0. (6.48)

The first two expressions follow from the definition of SVD, while J2 = 0 implies the third. Hence, J2 = 0

is required to ensure that the V and W subspaces are orthogonal and the corresponding coefficients can be

extracted by taking suitable inner products. The SVD can equivalently be written as

J =

r∑
i=1

ξivi ⊗wi (6.49)

with

〈vi,vj〉 = 〈wi,wj〉 = δij , 〈vi,wj〉 = 0, (6.50)

where

V = (v1, . . .vr)N ×r , W = (w1, . . .wr)N ×r , Ξ = diag{ξ1, . . . , ξr}r×r. (6.51)

We shall hereby refer to these vector pairs (vi,wi) as channels. As we can still change the phases of v and

w without violating the orthonormality, we choose their phases such that all the singular values (ξi) are

positive. Thus, Ξ† = Ξ.

Morally speaking, the only directions in CN relevant for the problem are vi’s and wi’s, i.e, span{V } and

span{W}. Take a basis of CN as {vi,wi,xj}, where i = 1, . . . r, j = 1, . . .N − 2r, and expand Ψn as

Ψn =

r∑
i=1

(αn,ivi + βn,iwi) +

N −2∑
j=1

γn,jxj , (6.52)
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with αn,i, βn,i, γn,i ∈ C, or, equivalently,

Ψn = Vαn +Wβn +Xγn, (6.53)

with αn,βn ∈ Cr, γn ∈ CN −2r. We have defined X analogous to V and W , so that

V † ·X = W † ·X = 0, X† ·X = 1. (6.54)

Also, αn = (αn,1, αn,2, . . . αn,r), with βn and γn defined in a similar fashion.

We start by rewriting the recursion relation in eq. (6.46), in terms of the Green’s function G = (ε1−M)−1,

as

Ψn = G · J Ψn+1 + G · J† Ψn−1. (6.55)

But

JΨn = V · Ξ βn, J†Ψn = W · Ξ αn, (6.56)

which follows from the SVD, eq. (6.48) and eq. (6.54). We can now premultiply eq. (6.55) by V †, W † and

X† to extract the coefficients αn, βn and γn, respectively. In order to simplify notation, we denote the

restriction of G to V and W subspaces by Gvv = V † · G · V , Gvw = W † · G · V , etc10. Thus, the recursion

relation reduces to

αn = Gvv · Ξ βn+1 + Gwv · Ξ αn−1,

βn = Gvw · Ξ βn+1 + Gww · Ξ αn−1,

γn = Gvx · Ξ βn+1 + Gwx · Ξ αn−1, (6.57)

where the Gab, a, b ∈ {v, w} is a r × r matrix.

As Gab are simply restrictions of the Green’s functions, they are propagators connecting the a and b degrees

of freedom for each supercell, while Ξ can be interpreted as encoding the relative strength of each channel,

or the corresponding tunneling probabilities. The recursion equation in terms of α and β (eq. (6.57)) has

a simple diagrammatic interpretation as superpositions of possible nearest neighbor hopping processes, as

illustrated in Fig. 6.2.

10Note that the order of V and W in subscript is opposite to that in the expression.
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(a)

βn αnβn−1 αn−1 βn+1 αn+1

Ξ

ΞGvv

Gwv Ξ

Ξ(b) Gww

Gvw

βn αnβn−1 αn−1 βn+1 αn+1

Figure 6.2: Diagrammatic representation of the recursion relations (eq. (6.57)) for (a) αn and (b) βn.
Notice that the Green’s functions Gab express the propagation within a block, while Ξ expresses the tunneling
probabilities between blocks.

To construct the transfer matrix, the first two equations of eq. (6.57) can be rewritten as

(
Gvv Ξ −1
Gvw Ξ 0

)(
βn+1

αn

)
= −

(
0 Gwv Ξ

−1 Gww Ξ

)(
βn

αn−1

)
, (6.58)

which reduces to

Φn+1 = TΦn, Φn ≡
(

βn

αn−1

)
, (6.59)

where

T = −
(
Gvv Ξ −1
Gvw Ξ 0

)−1(
0 Gwv Ξ

−1 Gww Ξ

)
. (6.60)

To proceed further, we need to invert the 2×2 block matrix. Using the block matrix identities from Appendix

B.1, we proceed as

(
Gvv Ξ −1
Gvw Ξ 0

)−1

=

[(
Gvv Ξ 0

Gvw Ξ 1

)(
1 −Ξ−1 G−1

vv

0 Gvw G−1
vv

)]−1

=

(
1 −Ξ−1 G−1

vv

0 Gvw G−1
vv

)−1(
Gvv Ξ 0

Gvw Ξ 1

)−1

=

(
1 Ξ−1 G−1

vw

0 Gvv G−1
vw

)(
Ξ−1 G−1

vv 0

−Gvw G−1
vv 1

)

=

(
0 Ξ−1 G−1

vw

−1 Gvv G−1
vw

)
(6.61)

Thus,

T = −
(

0 Ξ−1 G−1
vw

−1 Gvv G−1
vw

)(
0 Gwv Ξ

−1 Gww Ξ

)
=

(
Ξ−1 G−1

vw −Ξ−1 G−1
vw Gww Ξ

Gvv G−1
vw

(
Gwv − Gvv G−1

vw Gww
)

Ξ

)
. (6.62)

Hence, we have managed to construct a closed form expression for a 2r×2r transfer matrix T (ε,k⊥) explicitly

for the given recursion relation. This is one of our central results.
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Defining Gab = Gab Ξ, we can also express this result as

T =

(
G−1
vw G−1

vw Gww

Gvv G−1
vw Gwv − Gvv G−1

vw Gww

)
. (6.63)

This expression is somewhat cleaner, but it obscures the different physical significance associated with G

and Ξ as depicted in Fig 6.2, as well as properties of G, which we now state. As the Green’s function is

Hermitian, i.e, G† = G, we have

G†vv = Gvv, G†ww = Gww, G†vw = Gwv. (6.64)

Using these properties and eq. (B.4), we can compute

det(T ) = det
[
Ξ−1 G−1

vw

]
det
[(
Gwv − Gvv G−1

vw Gww
)

Ξ− Gvv G−1
vw Gvw Ξ

(
−Ξ−1 G−1

vw Gww Ξ
)]

= det
(
Ξ−1

)
det
(
G−1
vw

)
det
(
Gwv − Gvv G−1

vw Gww + Gvv G−1
vw Gww

)
det (Ξ)

= det
(
G−1
vw

)
det (Gwv) =

(detGvw)
∗

detGvw
= e−2iθ, (6.65)

where θ = arg (detGvw). We can gauge this phase away by redefining

Φn → einθ/rΦn, T → eiθ/rT. (6.66)

In the following, whenever we refer to the transfer matrix, we shall assume that we have gauged away the

phase of the determinant of T so that detT = 1. Thus, our final expression for the transfer matrix would be

T = e
i
r arg(detGvw)

(
Ξ−1 G−1

vw −Ξ−1 G−1
vw Gww Ξ

Gvv G−1
vw

(
Gwv − Gvv G−1

vw Gww
)

Ξ

)
, (6.67)

Thus, we have constructed a transfer matrix in a basis independent fashion, as we have never referred to the

explicit form of the J and M matrices. It reduces the computation of transfer matrix for a system to the

identification of the J and M matrices, as everything else can be mechanized. We shall illustrate that with

a plethora of examples in Chapter 7.

6.3.3 Properties

In the theory of discrete flows, there is a special place for symplectic monodromy (transfer) matrices, as

they correspond to discrete versions of Hamiltonian flows. Recall that a matrix T is J -unitary or complex-
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symplectic (T ∈ Sp(2r,C)) if it satisfies T †J T = J , where J is a nonsingular antisymmetric matrix.

Furthermore, it is symplectic (T ∈ Sp(2r,R))) if it is also real.

We seek the corresponding condition for our construction. For the conventional choice of J , using the

properties of Gab, a, b ∈ {v, w} and setting

S = Gwv − Gvv G−1
vw Gww =⇒ S† = G†wv − G†ww

(
G†vw

)−1 G†vv = Gvw − Gww G−1
wv Gvv,

we begin by computing

T †J T =

( (
Ξ† G†vw

)−1 (
G†vw

)−1 G†vv
−Ξ† G†ww

(
G†vw

)−1 (
Ξ†
)−1

Ξ† S†

)(
0 1

−1 0

)(
Ξ−1 G−1

vw −Ξ−1 G−1
vw Gww Ξ

Gvv G−1
vw S Ξ

)

=

(
G−1
wv Ξ−1 G−1

wv Gvv
−ΞGww G−1

wv Ξ−1 ΞS†

)(
Gvv G−1

vw S Ξ

−Ξ−1 G−1
vw Ξ−1 G−1

vw Gww Ξ

)

=

(
G−1
wv

(
Ξ−1 Gvv − Gvv Ξ−1

)
G−1
vw G−1

wv

(
Ξ−1 S + GvvΞ−1 G−1

vw Gww
)

Ξ

−Ξ
(
Gww G−1

wv Ξ−1 Gvv + S† Ξ−1
)
G−1
vw Ξ

(
−Gww G−1

wv Ξ−1 S + S†Ξ−1 G−1
vw Gwws

)
Ξ

)

= J +

(
G−1
wv [Ξ−1,Gvv]G−1

vw

Ξ[Ξ−1,Gvw]G−1
vw − Ξ GwwG−1

wv [Ξ−1,Gvv]G−1
vw

G−1
wv [Ξ−1,Gwv]Ξ− G−1

wv [Ξ−1,Gvv]G−1
vwGwwΞ

Ξ
{

[Ξ−1,Gww]− [Ξ−1,Gvw]G−1
vwGww − GwwG−1

wv [Ξ−1,Gwv] + GwwG−1
wv [Ξ−1,Gvv]G−1

vwGww
}

Ξ

)
.

To satisfy T † J T = J , we demand that all the commutators in this expression vanish. Thus,

[Gab,Ξ] = 0 ∀ a, b ∈ {v, w} =⇒ T ∈ Sp(2r,C). (6.68)

Physically, this condition implies that the various channels that connect the nearest neighbor supercells are

independent, so that the order of tunneling (Ξ) and propagation (G) is irrelevant. The spectral properties

of J -unitary operators has been studied in great detail in the mathematics literature[99].

Furthermore, in the discussion on bulk bands, we show that if the transfer matrix is symplectic, it can

effectively be decomposed into a set of chains, one corresponding to each channel. The conditions on Gab
obtained above can be thought of as physical manifestations of that fact. As Ξ is, by definition, a diagonal

matrix, in order for it to commute with another matrix A, A, in general, must also be diagonal11. Hence,

for T to be symplectic, Gvv and Gvw must also be diagonal.

Finally, we show that the size and spectral properties of our transfer matrix are independent of a choice

of supercell. More precisely, we shall consider supercells which are m ∈ Z+ times a minimal supercell, where

11 This breaks down if two or more diagonal entries of Ξ are equal, as Ξ then becomes proportional to identity in that
subspace, so that the restriction of A to that subspace can be arbitrary.
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we define the minimal supercell as one containing the minimum number of sites so that the hopping between

the supercells is nearest neighbor and the corresponding hopping matrix is nilpotent. Consider m copies of

the recursion relation of eq. (6.42) for n = nm, nm− 1, . . . nm−m+ 1, and define

Ψ̃n = (Ψmn,Ψmn−1, . . .Ψmn−m+1)
T
. (6.69)

Then, Ψ̃n follows the recursion relation

J̃Ψ̃n+1 + J̃†Ψ̃n−1 =
(
ε1− M̃

)
Ψ̃n, (6.70)

where J̃ and M̃ can be written in terms of J and M as

J̃ =


0 0 . . . J

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

 , M̃ =


M J† . . . 0

J M . . . 0
...

...
. . .

...

0 0 . . . M

 . (6.71)

Clearly, rank
(
J̃
)

= rank (J) = r, and the reduced SVD of J̃ is given by

J̃ = Ṽ · Ξ · W̃ †; Ṽ =


V
...

0


N m×r

, W̃ =


0
...

W


N m×r

, (6.72)

where the singular values of J̃ are same as those of J . Following the calculation in Sec 6.3, we compute the

recursion relations for α̃n and β̃n, the coefficients of Ψ̃n along Ṽ and W̃ , and construct a 2r × 2r transfer

matrix T̃ , so that

Φ̃n+1 = T̃ Φ̃n, Φ̃n ≡
(

β̃n

α̃n−1

)
. (6.73)

But using the definition of Ψ̃n, we get

α̃n = Ṽ †Ψ̃n = V †Ψnm = αnm,

β̃n = W̃ †Ψ̃n = W †Ψnm−m+1 = β(n−1)m+1, (6.74)

so that

Φ̃n =

(
β(n−1)m+1

α(n−1)m

)
= Φ(n−1)m+1. (6.75)
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Using the old transfer matrix, T , we also have

Φ̃n+1 = Φnm+1 = TmΦ(n−1)m+1 = TmΦ̃n, (6.76)

so that the action of T̃ is identical to the action of Tm on all wavefunction. We conclude that T̃ = Tm.

Thus, we have shown that if we take a supercell m ∈ Z+ times the minimal supercell, the effective transfer

matrix is simply T → Tm, where dim (T ) = 2 rank (J) stays invariant under this operation. As we are only

concerned with the behavior of Tn for large n(See Sec 6.4), the band structure, as expected, stays invariant

under such a transformation. Hence, we can always make the supercell bigger than the minimal supercell,

while leaving the bands and edge states invariant.

6.4 Using the transfer matrix

Given a tight-binding model in d ≥ 1 dimensions, we have represented the Schrödinger equation as a recursion

relation, and hence a transfer matrix equation with T (ε,k⊥), with ε ∈ R and k⊥ ∈ Td−1 for d > 1. We now

apply the ideas of Sec 6.1 to a family of transfer matrices, parametrized by (ε,k⊥), to formally study their

bulk and edge spectra. We shall illustrate them with explicit computations in Ch 7.

6.4.1 Bulk bands

The “bulk” states of a tight-binding model are the states that stay finite, and hence normalizable to a delta

function, in the infinite system size limit. In a transfer matrix formalism, with Φn = TnΦ0, a solution Φn

corresponds to a “bulk band” iff |Φn| stays finite as n → ±∞. Specifically, if ϕ = Φ0 is an eigenvector of

the transfer matrix with eigenvalue ρ ∈ C, then |Φn| = |ρ|n |ϕ|, so that Φn is a bulk state iff |ρ| = 1, i.e, the

ρ lies on the unit circle S1 ≡ {z ∈ C | |z| = 1} in the complex plane. Hence, a given (ε,k⊥) ∈ R × Td−1

lies in the bulk band if and only if all eigenvalues of T (ε,k⊥) lie on the unit circle. At the other extreme, a

given (ε,k⊥) lies in the bulk gap if and only if all eigenvalues of T (ε,k⊥) lie off the unit circle.

More formally, we define the bulk band, B ⊂ R× Td−1, as

B =
{

(ε,k⊥) |σ [T (ε,k⊥)] ⊂ S1
}
, (6.77)

and the bulk gap as

G =
{

(ε,k⊥) |σ [T (ε,k⊥)] ⊂ C\S1
}
. (6.78)
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For r > 1, the possibility exists that there can be points (ε,k⊥) for which some eigenvalues are on and some

off the unit circle. We shall term such points partial gaps, P, defined as

P =
(
R× Td−1

)
\ (G ∪B) . (6.79)

By construction, B ∪ G ∪P = R× Td−1, so that each (ε,k⊥) falls in one of these sets.

To compute the bulk bands, one needs to compute the eigenvalues of the transfer matrix as a function of

(ε,k⊥), which can always be done numerically. However, if the transfer matrix is symplectic (T ∈ Mat(2r,R)

and TTJ T = J ), its eigenvalues always occur in reciprocal pair. This is because given Tϕ = ρϕ, we also

have

Jϕ = TTJ Tϕ = TTJ (ρϕ) =⇒ TT (Jϕ) = ρ−1 (Jϕ) ,

and since the spectra of T and TT are identical, we conclude that if ρ is an eigenvalue of T , so is ρ−1.

Let us start off with r = 1, where T being symplectic implies that the product of eigenvalues, detT = 1.

The eigenvalues can be solved for as

∆ ≡ TrT = ρ+ ρ−1 =⇒ ρ =
1

2

[
∆±

√
∆2 − 4

]
. (6.80)

Hence, either both the eigenvalues lie on the real line (∆2 > 4) or they form a complex conjugate pair(∆2 < 4)

satisfying det T = ρ∗ρ = 1, i.e, they lie on the unit circle. Consequently, a given (ε,k⊥) either belongs to G

or B, so that P = ∅.

For r > 1, consider the characteristic polynomial of T

P (ρ) = det(ρ1−A) =

2r∑
n=0

anρ
n. (6.81)

The eigenvalues of A are the zeros of P (ρ). But P (ρ) = 0 =⇒ P (ρ−1) = 0, so that

0 = P (ρ−1) =

2r∑
n=0

anρ
−n = ρ−2r

(
2r∑
n=1

a2r−nρ
n

)
. (6.82)

As ρ 6= 0, we conclude that an = a2r−n, i.e, the characteristic polynomial is palindromic[59, 100], which can

be used to compute the eigenvalues. To wit, rewrite the eigenvalue condition as

0 = P (ρ) = ρr

(
ar +

r∑
n=1

ar−n
(
ρn + ρ−n

))
. (6.83)
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Defining ∆ = ρ+ ρ−1, we can express ρn + ρ−n as Chebyshev polynomials of the first kind in ∆. Explicitly,

for ρ = eiθ,

ρn + ρ−n = 2 cos(nθ) = 2Un(cos θ) = 2Un

(
∆

2

)
. (6.84)

The first few examples are

ρ2 + ρ−2 = ∆2 − 2, ρ3 + ρ−3 = ∆3 − 3∆, ρ4 + ρ−4 = ∆4 − 4∆2 + 2, etc.

Thus, the characteristic polynomial for T can be written as a polynomial of order r in ∆, as

ar + 2

r∑
n=1

ar−nUn

(
∆

2

)
= 0 (6.85)

The roots ∆1, . . .∆r ∈ C are generalized Floquet discriminants of T , which can be expressed in terms of

traces of powers of T . We can now solve for ρ ∈ σ [T ] as

ρ+ ρ−1 = ∆n =⇒ ρ =
1

2

[
∆n ±

√
∆2
n − 4

]
, (6.86)

where n = 1, 2 . . . r. Hence, if the transfer matrix is symplectic, we can essentially decompose it into a set

of independent r = 1 systems!

In the following, we work out the case of r = 2 explicitly. The eigenvalue condition becomes

a0(ρ2 + ρ−2) + a1(ρ+ ρ−1) + a2 = 0,

with

a0 = 1, a1 = −TrA, a2 =
1

2

(
(TrA)2 − TrA2

)
.

In terms of ∆, we get

a0(∆2 − 2) + a1∆ + a2 = 0,

which implies that

∆± =
1

2a0

[
−a1 ±

√
a2

1 − 4a0(a2 − 2a0)

]
.

Substituting an’s, we get the Floquet discriminants as

∆± =
1

2

[
TrA±

√
2TrA2 − (TrA)2 + 8

]
. (6.87)
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For the cases where the transfer matrix is symplectic, we can compute the band edges directly, without

having to diagonalize T for all possible (ε,k⊥), which one would need to do in general. This follows from

the fact that since the eigenvalues appear in reciprocal pairs, they either appear on the unit circle or on

the real line (See eqns (6.80) and (6.86)). Thus, as we move around in the (ε,k⊥) space, the only way to

go from a bulk band to a gap is to have a pair of eigenvalues collide at ±1 and go off the unit circle onto

the real line. The primary advantage of computing the Floquet discriminants is that it provides us with a

convenient condition for this eigenvalue collision: it happens when |∆i| = 2 for some i.

In conclusion, if the transfer matrix is symplectic, then for a rank r problem, the behavior of a state simply

depends on the r Floquet discriminants ∆i(ε,k⊥)’s. we have an oscillating (normalizable) state for |∆i| ≤ 2

and a growing/decaying state for |∆i| > 2. We can alternatively define the bulk band and the band-gap as

G = {(ε,k⊥) | |∆i(ε,k⊥)| > 2 ∀ i = 1, . . . r},

B = {(ε,k⊥) | |∆i(ε,k⊥)| ≤ 2 ∀ i = 1, . . . r}, (6.88)

with the band edges given by the conditions |∆i| = 2, i = 1, 2, . . . r. In practice, we can simply solve

this conditions for ε(k⊥), numerically if needed, to compute the band edges, without having to diagonalize

T (ε,k⊥) for all values of (ε,k⊥).

6.4.2 Edge states

For an infinite system, the only physically sensible states (i.e, normalizable to a delta function) are the bulk

states. However, for a system with an edge12, for instance, a system defined on a half-plane, additional

states may occur, most of whose weights are concentrated near the edge and which decay exponentially into

the bulk. Thus, in order to study the edge/surface modes, we need to restrict our Hamiltonian operator to

a half space, with a suitable (for instance, Dirichlet) boundary condition at the surface.

We “define” an edge state to be an eigenstate of the half-space Hamiltonian with the following two features:

1. The state must be normalizable, or equivalently, it must decay into the bulk away from the edge/surface.

2. The state must satisfy the given boundary conditions.

By definition, these states must reside outside the bulk band, i.e, only for (ε,k⊥) ∈ G ∪P. Typically, one

is interested in the existence of these states, and, should they exist, in the edge spectrum, i.e, the energy of

12 We use the term ‘edge’ more generally to mean a boundary of the system.
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the edge state, εedge(k⊥), as a function of the transverse momentum k⊥. In the subsequent analysis, given

a Φ ∈ C2r, we are interested in deriving the conditions on it corresponding to these constraints

For the former (decay) condition, note that given a Hamiltonian for a quasi-1D chain, we have two

inequivalent choices of half-spaces, viz, n < 0 and n > 0. Corresponding to these, we can define two kinds

of edges states: a Φ ∈ C2r forms a left edge state if |TnΦ| → 0 as n→∞, while it forms a right edge state

if |TnΦ| → 0 as n → −∞. These are related under T ↔ T−1. In Sec 6.1, we defined P<, the projector

to the decaying subspace, and showed that a necessary condition for a TnΦ to decay as n → ∞ is simply

P<Φ = Φ, and the equivalent condition for n→ −∞ is P>Φ = Φ. Thus, our decay conditions are simply

Left edge: P<Φ = Φ, Right edge: P>Φ = Φ. (6.89)

We next consider the boundary condition. Note that the edge spectrum can get modified quite drastically

by local terms at the boundary, an effect commonly known as edge reconstruction. In order to consider

the most general case, we should take a Hamiltonian H̃ = H + δH, where δH is an operator localized

at the edge, which can account for the edge reconstruction, for instance, due to an impurity[101] or lattice

deformation[102]. Such a boundary condition imposes additional conditions[49, 103, 104] on the eigenvectors

of the transfer matrix. Since in the present case, we only intend to expound the geometry and topology

associated with the band structure which is independent of such local deformations, we shall restrict ourselves

to open(Dirichlet) boundary conditions at sites n = 0 and N , with no boundary terms13.

For OBC, at the left edge, we demands that[60] Ψ0 = (0, 0), leading to α0 = 0 in Φ1. Similarly, at the

right edge, we demand that ΨN+1 = (0, 0)T, leading to βN+1 = 0 in ΦN . Thus, in terms of Φ, the boundary

condition for the left and right edges becomes

Φ1 =

(
β1

0

)
, ΦN =

(
0

αN

)
, (6.90)

respectively. Note that β1,α1 ∈ Cr are still undetermined on their respective edges. We shall use the decay

conditions to fix these in the next section.

We can also define projectors to write the boundary condition in a way similar to the decay conditions.

Define the 2r × r matrices

Qα =

(
0r×r

1r×r

)
, Qβ =

(
1r×r

0r×r

)
, (6.91)

as the injectors into the β and α subspaces, respectively. In terms of these operators, the OBC on the left

13Most of the following is a restatement of the results by Lee and Joannopoulos[49] in our formalism
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edge is equivalent to the statement that Φ ∈ range(Qβ), while the right edge is equivalent to Φ ∈ range(Qα).

Finally, define the projectors

PR = QαQ†α, PL = QβQ†β. (6.92)

Our boundary conditions become

Left edge: PLΦ = Φ, Right edge: PRΦ = Φ. (6.93)

Thus, we have obtained two sets of conditions, viz, the decay conditions and the boundary conditions, that

we need to solve simultaneously in order to obtain the physical edge states, i.e, the edge states that would be

observed in an exact diagonalization of the lattice models on finite size lattices. However, before we attempt

to do so, we can ask a somewhat perverse question, which turns out to have important consequences: What

if we chose the wrong decay condition for a given boundary? We tabulate the situation as follows:

P<Φ = Φ P>Φ = Φ

PLΦ = Φ Left edge Unphysical

PRΦ = Φ Unphysical Right edge

Table 6.1: Boundary(rows) vs decay(column) conditions.

The wrong choice of decay condition implies that the corresponding state grows (instead of decaying)

exponentially in the bulk, and is hence not normalizable and unphysical. However, we shall see that in order

to account for all the windings corresponding to the edge state, we shall need to take the unphysical states

into account. Furthermore, these should not be thought of as a complete fantasy, since they can be revealed

by changing the boundary condition, as we shall demonstrate explicitly in Sec 7.1.4

Taking the correct decay conditions, for the left edge state, we need to simultaneously solve

P<Φ = Φ = PLΦ, (6.94)

or, alternatively,

P<Φ1 = Φ1; Φ1 =

(
β1

0

)
. (6.95)

Note that as rank (P<) ≤ r, this is a homogeneous linear system of up to r equations for the r variables,

viz, the coefficients of β1. But for a nontrivial state, we demand that β1 6= 0, from which we can obtain a

Cramer’s condition, which can be numerically solved to obtain the physical edge spectrum.
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7 Applications

In this chapter, we discuss a few applications of our generalized transfer matrix formalism to the noninter-

acting tight-binding models commonly arising in condensed matter contexts. We shall restrict ourselves to

the models corresponding to topological phases of matter, which are characterized by a topological invariant

on the bulk Brillouin zone and often exhibit nontrivial surface states. We shall see that besides essentially

mechanizing the process of computing the bulk and edge spectra, our construction also provides further

insight into the topological nature of the edge states in terms of windings around the noncontractible loops

of a complex energy Riemann surfaces.

For condensed matter systems, the lattice models are often specified simply by their Bloch Hamiltonians

(unlike the position space Hamiltonians described in Sec 6.2.2). In order to construct the transfer matrix,

we need to inverse Fourier transform the Hamiltonian in the direction along which the transfer matrix acts

by translation. For instance, consider the simple case of a lattice model with only nearest neighbor hopping

on a (hyper-c)cubic lattice in Rd, where we seek to construct the transfer matrix which translates along one

of the lattice vectors (x̂, say). Using the periodicity of the Bloch Hamiltonian along x, we can express it as

HB(kx,k⊥) =

q∑
α,β=1

[
J̃(k⊥)eikxax + M̃(k⊥) + J̃†(k⊥)e−ikxax

]
, (7.1)

where ax is the lattice constant along x. Transforming to position space along x leads to

H(k⊥) =
∑
n

q∑
α,β=1

[
c†n+1,αJ̃αβ(k⊥)cn,β + c†n−1,αJ̃

†
αβ(k⊥)cn,β + c†n,αM̃αβ(k⊥)cn,β

]
, (7.2)

which renders the Hamiltonian of the form in eq. (6.40) with R = 1, and we identify J = J̃ and M = M̃ .

We discuss the more general case (for arbitrary lattices and/or directions of translation) in Sec 7.1.5.

Once we have computed the generalized transfer matrix, we shall use the results from Sec 6.4 to compute

the bulk/edge spectra, and compare them to the results obtained from exact diagonalization on finite lattices.

Furthermore, we shall expose the topological nature of the edge states in terms of windings on certain

manifolds that we can construct based on the algebraic structure of the generalized transfer matrices.
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7.1 The case of r = 1

We begin with the simplest case for our construction, viz, that of r = 1. Even though the transfer matrices are

merely 2× 2 in this case, we shall see that it encompasses quite a few lattice models commonly encountered.

Furthermore, many simplifications which work for r = 1 make this case particularly analytically tractable,

so that we shall be able to expose the workings of the somewhat formal computation from the last chapter

with detailed calculations.

7.1.1 The generalized transfer matrix

The expression for the transfer matrix for r = 1 admits simplifications, owing to the fact that the individual

blocks of eq. (6.62) are simply 1×1 matrices, i.e, complex numbers. The generalized transfer matrix becomes

T =
1

|Gvw|

(
1 −Gww
Gvv −det

(
G|span(v,w)

) ) , (7.3)

where we have set Ξ ∈ R to 1 by a suitable rescaling1, and we have defined the restricted determinant

det
(
G|span(v,w)

)
=

∣∣∣∣∣ Gvv Gvw
Gwv Gww

∣∣∣∣∣ = GvvGww − GvwGwv.

The prefactor becomes |Gvw| after we gauge away the phase of T by setting T → ei arg(Gvw)T (See eq. (6.66)).

The conditions on the Green’s function in eq. 6.64 reduce to Gvv, Gww ∈ R and G∗vw = Gwv. Finally, since

the transfer matrix is real and has unit determinant, T ∈ Sp(2,R) ∼= SL(2,R). Hence, by construction2, all

transfer matrices for r = 1 are symplectic.

We can write out the Floquet discriminant as

∆ = tr {T} =
1

|Gvw|
[
1− det

(
G|span(v,w)

)]
. (7.4)

The band edges are given by ∆(ε,k⊥) = ±2, which can be used to solve for ε(k⊥), at least locally. Note

that ε enters the calculation only as G = (ε1 −M)−1, which is a rational function of ε, so that solving for

the band edges is equivalent to finding the zeros of a polynomial in ε.

Computing the edge is also particularly simple for r = 1. Recall from 6.4.2 that a given vector is a physical

edge state if it satisfies both a decay condition and a boundary condition. Considering the left edge, for

1This also rescales ε, but that is analogous to writing the energy in units of the hopping energy, a practice that is quite
standard.

2This may not be true for higher ranks, as Sp(n,R) ⊂ SL(n,R) is a proper subset for n > 2.
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a Φ1 ∈ C2, the decay condition was given by P<Φ1 = Φ1, where P< =
∑
|ρs|<1 Ps. But since T has only

two eigenvalues and detT = 1, at most one of them (ρ1, say) can lie inside the unit disk. Thus, P< = P1

becomes a projector to an eigenspace of T , and the decay condition implies that Φ1 is an eigenvector of T .

A similar analysis for the right edge, with the corresponding eigenvalue now lying outside the unit disk. The

boundary conditions simply demand that one of the components of Φ vanish. Thus, the conditions for Φ1,N

to be a physical left/right edge state can be written concisely as

TΦ1 = ρΦ1, |ρ| < 1, Φ1 =

(
1

0

)
,

TΦN = ρΦN , |ρ| > 1, ΦN =

(
0

1

)
, (7.5)

where we have exercised our right to scale Φ1,N by an arbitrary complex number. Explicitly, using eq. (7.3),

the condition for a physical left edge state is

TΦ1 =
1

|Gvw|

(
1

Gvv

)
=

(
1

0

)
=⇒ Gvv = 0, |Gvw| > 1. (7.6)

Similarly, the condition for a physical right edge state is

TΦN =
1

|Gvw|

(
−Gww

|Gvw|2 − GvvGww

)
=

(
0

1

)
=⇒ Gww = 0, |Gvw| > 1. (7.7)

The equations Gvv = 0 and Gvw = 0 describe curves in the (ε,k⊥) space, to which we can associate a winding

number, as discussed in Sec 7.2.

The condition for the edge states can also be expressed as an Evans function[56] known in the dynamical

system literature. We simply demand that a given ϕ ∈ C2 be an eigenvector of T (hereby referred to as

the eigenvalue condition). Physically, this is equivalent to the statement that ϕ satisfies either the left or

the right decay condition, i.e, it lies entirely in the growing or the decaying subspace. We can later check

whether these states are physical by computing the corresponding eigenvalues. Given an antisymmetric

matrix J ∈ Mat(2,C), ϕ satisfies ϕT J ϕ = 0, so that the eigenvalue condition (Tϕ ∝ ϕ) can then be

equivalently expressed as

f(ε,k⊥) ≡ ϕT J T (ε,k⊥) ϕ = 0, J =

(
0 1

−1 0

)
, (7.8)

where we have chosen a specific J . This provides a closed form condition for the existence of edge states.
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7.1.2 Hofstadter model

We start off by repeating Hatsugai’s[47] calculation in our formalism. The Hofstadter Hamiltonian models a

2-dimensional electron gas in the presence of a magnetic field normal to the plane. For a lattice Hamiltonian,

the magnetic field simply correspond to the fact that there is a magnetic flux threading each plaquette, so

that the electrons pick up a phase while going around the plaquettes. These phases are incorporated in

the tight binding model by adding extra phases to the hopping strengths, the choice of which is nonunique

and equivalent to the gauge choice for the vector potential in the continuum (Sec 3.1). The Hofstadter

Hamiltonian on a square lattice can be written as

H = −
∑
m,n

[
c†m+1,ncm,n + c†m,n+1e

2πmφcm,n + h.c.
]
, (7.9)

where φ denotes the magnetic flux associated with each plaquette. We have chosen the gauge such that all

phases arising due to the flux depend on m. Thus, the system is translation invariant along y, so that a

partial Fourier transform along y lead to

H(ky) = −
∑
m

[
c†mcm+1 + c†m+1cm + 2 cos(ky − 2πmφ)c†mcm

]
(7.10)

To construct the generalized transfer matrix for this system, we first need to construct a supercell, so that

the system is periodic under supercell translations. If φ is rational, i.e, φ = p/q, where p, q ∈ Z+ are coprime,

then the system is periodic along m with period q, so that we can club together q physical sites to make a

supercell. Thus, M would be a a q×q matrix. Since the eigenvalues of M form the band centers, we conclude

that we have q bulk bands. This strong dependence of the number of bulk bands on the denominator of φ

for rational φ, leads to the intricate fractal structure of the Hofstadter butterfly[105]. Furthermore, for even

q, the system is gapless, while for odd q, the system is gapped and exhibits nontrivial edge states.

The identification of J and M matrices are then straightforward (See 6.3). There is only one link between

adjacent supercells, viz, site q of supercell n connects with site 1 of supercell n + 1, so that the hopping J

has all entries equal to zero except J1q = 1. The on-site matrix M has 2 cos(ky−2πnφ) on its main diagonal

entries and 1’s on its first diagonals. For instance, for the simplest nontrivial case of φ = 1/3, these matrices

are

J =

 0 0 1

0 0 0

0 0 0

 , M = 2

 cos
(
ky − 2π

3

)
1 0

1 cos
(
ky + 2π

3

)
1

0 1 cos(ky)

 . (7.11)
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Figure 7.1: The spectrum of Hofstadter model, with the band edges (dark blue) computed using the transfer
matrix formalism and the left and right edge state dispersion (dashed and dashed-dot) from the Evans
equation (7.8), overlaid on the spectrum computed using exact diagonalization for a (top) commensurate and
(bottom) incommensurate system. Note that in the latter case, the edge states seen in exact diagonalization
exactly follow the winding right edge state obtained from the transfer matrix.

The actual computation of the transfer matrix is quite tedious3 and not very enlightening; however, the

results can sometime be written in a compact form. For instance, for φ = 1/3, the Floquet discriminant is

a polynomial in ε, given by

∆(ε, ky) = ε3 − 6ε− 2 cos(3ky), (7.12)

As expected, q = 3, and ∆(ε) = ±2 is a cubic equation, which has three real solutions for each ky corre-

sponding to the upper and lower edges of the three bulk bands, as shown in Fig 7.1. For the Hofstadter

model, ∆(ε) is always polynomial in ε, for reasons discussed in the next subsection.

The edge state calculation is identical to Hatsugai’s, so we do not describe it in any detail. However, we

emphasize his remark that if the total number of sites is commensurate with the flux φ, i.e, a multiple of q,

then for a given ky, we either get physical edge states on both left and right edges, or no physical edge states

at all. In order to have a physical edge state for all ky, which will have an associated winding, we need to

consider a system with the number of sites incommensurate with the flux4 (see Fig 7.1). Thus, it is useful

to look at both physical or unphysical edge states, i.e, those satisfying all combinations of the boundary

and decay conditions, to expose their topological nature, which manifests itself only partly in numerics for

a given edge and system size.

In our picture, for the case of incommensurate system size, the number of supercells is not an integer.

For the Hofstadter model, the N degrees of freedoms per supercell are physical sites, so that a fractional

3We use MathematicaTMto perform the analytic manipulations for most examples in this chapter. For an explicit compu-
tation, see the example of Chern insulator.

4Our usage of the words “commensurate” and “incommensurate” seems to be opposite that of Hatsugai!
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number of supercells is physically sensible. In general, the degrees of freedom constituting a supercell

are not physical sites; however, we shall see that the number of supercells being fractional still formally

makes sense, and we can contrive the corresponding (potentially unphysical) boundary conditions for exact

diagonalization computations, which will exhibit the winding of the edge states. We shall hereafter use the

word incommensurate (w.r.t the superlattice) to refer to such computations, where the number of supercells

is not an integer.

7.1.3 Natural basis and “unfolding”

Hatsugai’s original calculation[47, 60] of the transfer matrix worked because of the fact that in the Hofstadter

model, only the nearest neighbor hoppings are nonzero. Before we proceed to further examples, we stop to

consider the implications of only having nearest neighbor hopping5 inside a single supercell, which implies,

in our notation, that M is tridiagonal, and J = e1 ⊗ eN , as in the Hofstadter model. Explicitly, if

J =


0 0 . . . 1

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

 , M =


µ1 τ1 . . . 0

τ1 µ2 . . . 0
...

...
. . .

...

0 0 . . . µN

 , (7.13)

with µn, τn ∈ R ∀n = 1, 2, . . .N , where we have defined τN = 1, then we can write the recursion relation

as

τnφn+1 + µnφn + τnφn−1 = εφn, (7.14)

where τn and µn are periodic with period N . Following Hatsugai and others[48, 49], we can compute the

transfer matrix for translation by a supercell as the product

T =

N∏
n=1

Tn, Tn =

(
− 1
τn

(ε− νn) −1

1 0

)
, (7.15)

where Tn is the transfer matrix from the site n to the site n+ 1, satisfying the periodicity Tn+N = Tn. This

construction always results in the transfer matrix T being polynomial in ε, as it is defined as a product of

matrices Tn, each of which is linear in ε. Subsequently, the Floquet discriminant, ∆ = tr {T} is a polynomial

in ε, as was the case for the Hofstadter model.

A natural question to ask is whether a given system can be reduced to this nearest-neighbor-hopping form.

More explicitly, given a particular J and M , we ask whether they can be reduced to the form of eq. (7.13)

5Recall that we are thinking of different degrees of freedom inside a supercell as “sites”, even if physically, they might refer
to spin/orbit/something else.
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by some unitary transformations, or equivalently, by a suitable choice of basis of CN . We start off by noting

that J provides a natural orthonormal basis for CN , viz, {v,xj ,w}, in which J takes the form required

in eq. (7.13), since J = v ·w†, so that 〈vJw〉 = 1 and all other matrix elements vanish. Furthermore, M

becomes

M =

 v†Mv v†MX v†Mw

X†Mv X†MX X†Mw

w†Mv w†MX w†Mw

 , (7.16)

where X is unitary since {xi} are orthonormal. We have some freedom in choosing X, since we can choose

any basis of span{xi} ⊂ CN . We seek to use this freedom to attempt to reduce M to the form of eq. (7.13).

For tridiagonalization of M , we must have w†Mv = 0, which simply means that the degrees of freedom

in a supercell connected to the next and the previous supercells are not directly connected to each other

(except for when N = 2). This can always be arranged by taking a big enough supercell. Also, since

M is Hermitian, X†MX can always be reduced to a tridiagonal form by a suitable nonunique choice of

X ∈ U(N − 2) using the Lanczos/Householder algorithm[106, 107]. Finally, we are left with the conditions

X†Mv ∝ (1, 0 . . . 0)
T
, X†Mw ∝ (1, 0 . . . 0)

T
, (7.17)

which should be checked explicitly for the case at hand. If such an X exists, then we shall refer to such a

transformation as unfolding the model to a 1D chain. A quick survey of the matrix M in this basis reveals

various restrictions on the transfer matrices. For instance, if v†Mv and w†Mw are real, it immediately

follows that the entries of the transfer matrix are real. Furthermore, we can often glean information about

the edge states by looking at the hopping of the resulting 1D chain, as discussed explicitly in Sec 7.1.4

7.1.4 Chern insulator

We next consider the Chern insulator, which is defined on a 2-dimensional square lattice by the Bloch

Hamiltonian

HB = a sin kxσ
x + a sin kyσ

y + b(2−m− cos kx − cos ky)σz, (7.18)

where a, b,m ∈ R. This model is a discrete (lattice) version of the 2-dimensional Dirac Hamiltonian, given

by HDirac = σxp̂x + σyp̂y + mσz, where p̂i = −i∂i are the momentum operators and m is the mass of the

fermion. The bulk spectrum for the Chern insulator is given by

ε = ±
√
a2(sin2 kx + sin2 ky) + b2(2−m− cos kx − cos ky)2, (7.19)
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so that the system is gapless (“semimetallic”) for some k only if m = 0, 2, 4, and is gapped (“insulating”)

otherwise.

The ‘topological’ nature of this model refers to an obstruction to a definition of the eigenstates of HB(k)

which vary smoothly with k. More explicitly, consider the eigenvalue problem H(k)u(k) = ε+u(k) with ε+

corresponds to choosing the positive sign in eq. (7.19). Since the vectors u(k) ∈ C2 are only defined upto

a phase, we must choose their phases in order to define a continuous u(k). Mathematically, this choice of

phase corresponds to choosing a smooth global section of a U(1) bundle defined on the Brillouin zone T2,

and no such section exists if the bundle is twisted (For more details, see Sec 4.2). One way to measure this

twist is the first Chern number C1 ∈ Z, whose nonvanishing corresponds to a nontrivial bundle. This is our

bulk topological invariant.

The first Chern number of a given band ε± is proportional to the integral of the Berry-curvature 2-form

F± over the parameter space T2 3 k, i.e, the first Brillouin zone. Since the Bloch Hamiltonian is a two-level

system, we can use the results from Sec 4.2.2 to compute the Berry curvature. Furthermore, using eq. (4.34),

the Chern number is simply the winding number associated with the map T2 → S2 explicitly given by

k 7→ 1

ε±

(
sin kx, sin ky, 2−m− cos kx − cos ky

)
, (7.20)

where the RHS is in terms of the Cartesian coordinates on S2 embedded in R3. Thus, the Chern number

becomes[40]

C1 =
1

2π

∫
T2

F =


1, 0 < m < 2

−1, 2 < m < 4

0, otherwise.

(7.21)

We say that the system is in a topological phase for m ∈ (0, 2)∪ (2, 4) and a trivial phase for m ∈ (−∞, 0)∪

(4,∞). Clearly, one always encounters a gapless point when tuning m between topologically distinct phases,

i.e, phases with different Chern numbers.

The Chern insulator model turns out to be the drosophila melanogaster (fruit fly) of our analysis of

topological states using the generalized transfer matrix6. This is essentially because the transfer matrix is

quadratic in ε, so that the corresponding energy Riemann surface would turn out to be a torus, while almost

all other models correspond to surfaces of higher genera. which we discuss in Sec 7.2. We begin by explicitly

constructing the transfer matrix for translations along x.

6The inspiration for our general construction was, in fact, an attempt to repeat Hatsugai’s analysis of the Hofstadter model
for the case of Chern insulator. We present that original computation in Appendix C.3.
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Transfer matrix

We begin by inverse Fourier transforming the Chern insulator Bloch Hamiltonian along x:

H(ky) =

N∑
n=0

[
a

2i

(
c†n+1σ

xcn − c†nσxcn+1

)
+
b

2

(
c†n+1σ

zcn + c†nσ
zcn+1

)
+ c†n (a sin kyσ

y + bΛ(ky)σz) cn

]
,

=
∑
n

[
c†n+1

(−iaσx + bσz

2

)
cn + c†n (a sin kyσ

y + bΛ(ky)σz) cn + c†n

(
iaσx + bσz

2

)
cn+1

]
, (7.22)

where Λ(ky) = 2−m− cos ky. Comparing with eq. (7.2), we can readily identify

J =
1

2
(−iaσx + bσz) , M = a sin kyσ

y + bΛ(ky)σz. (7.23)

Clearly, det(J) = (b2 − a2)/4, so that J becomes singular when a = b, which is precisely the case that we

are interested in. We shall hereafter set a = b = 1, so that

J =
1

2i
(σx − iσz) , M = sin kyσ

y + Λ(ky)σz. (7.24)

We compute the SVD of J as

J = v ·w†, v =
1√
2

(
−i
1

)
, w =

1√
2

(
i

1

)
. (7.25)

Next,

G = (ε12 − sin kyσ
y − Λ(ky)σz)

−1
= A (ε12 + sin kyσ

y + Λ(ky)σz) , (7.26)

where A =
(
ε2 + Λ2 − sin2 ky

)−1
. The individual components are

Gvv = A(ε+ sin ky), Gww = A(ε− sin ky), Gvw = Gwv = −AΛ(ky). (7.27)

Thus, using eq. (7.3), the transfer matrix is given by7

T =
1

|Λ(ky)|

(
−ε2 + Λ2(ky) + sin2 ky ε− sin ky

−(ε+ sin ky) 1

)
. (7.28)

7Note that this is not identical to the transfer matrix obtained in eq. (C.26), but is related by a similarity transform, as
they both have the same determinant and trace.
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The condition for the bulk band edges is ∆ = ±2, where the Floquet discriminant is given by

∆(ε, ky) = tr {T (ε, ky)} =
1− ε2 + Λ2(ky) + sin2 ky

|Λ(ky)| . (7.29)

Thus, the bulk band edges are explicitly given by

ε2 = sin2 ky + (2∓ 1−m− cos ky)2. (7.30)

The bands are symmetric under ε→ −ε, and stretch between εmin < |ε| < εmax, with

εmin =
√

sin2 ky + (1−m− cos ky)2, εmax =
√

sin2 ky + (3−m− cos ky)2. (7.31)

for m < 2, while εmin and εmax switch roles for m > 2.

We can compute the edge spectrum explicitly using eqns (7.6) and (7.7), with the explicit definitions of

Gab for the Chern insulator in eq. (7.27), as

εL(ky) = − sin ky, εR(ky) = sin ky,

alongwith the condition for it to be physical, viz,

1 < |AΛ(ky)| = |Λ(ky)|
ε2 − sin2 ky + Λ2(ky)

=
1

|Λ(ky)| =⇒ |Λ(ky)| < 1, (7.32)

since ε2
L,R = sin2 ky. We plot the bulk and edge spectra computed above, alongwith the spectrum computed

using exact diagonalization, in Fig. 7.2(a).

Unfolding the 1D chain and SSH model

For the Chern insulator, the unfolding to a 1D chain is particularly neat, as it leads to an alternating bond

model, a quintessence of which is the Su-Schrieffer-Hieger(SSH) model[108] for polyacetylene. Since M is a

2 × 2 matrix and hence, by definition, tridiagonal, the unfolding requires a unitary operator which takes J

to the desired form of eq. (7.13). Take a unitary operator U , defined as

U =
1√
2

(i1 + σx), (7.33)
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Figure 7.2: The spectrum of Chern insulator for m = 0.8, with the band edges (dark blue) computed
using the transfer matrix formalism and the left and right edge state dispersion (dashed and dashed-dot)
from the Evans equation (7.8), overlaid on the spectrum computed using exact diagonalization for a (top)
commensurate and (bottom) incommensurate system. Note that in the latter case, the edge states seen in
exact diagonalization exactly follow the winding right edge state obtained from the transfer matrix.

so that U v = e1 and U w = e2. Transforming the Bloch Hamiltonian as HB → H′B = U HB U†, we get

H′B = sin kxσ
x + sin kyσ

z − (2−m− cos kx − cos ky)σy (7.34)

Inverse Fourier transforming along x, this becomes

H′(ky) =
∑
n

[
c†n+1

(−iσx + σy

2

)
cn − c†n

(
iσx + σy

2

)
cn+1 + c†n (sin kyσ

z − Λ(ky)σy) cn

]
, (7.35)

where cn ≡ (cn, c̄n)T . Redefining c̄n = b2n, cn = b2n+1 and expanding the products, we get

H′(ky) =
∑
n

[(
−i τnb†n+1bn + h.c.

)
+ µnb

†
nbn

]
, (7.36)

where

µn = (−1)n sin(ky), τn =


Λ(ky) ;n = even,

1 ;n = odd.

Hence, by a basis transformation on the Chern insulator, we have obtained the Hamiltonian for a 1D chain

with alternating bond strengths 1 and Λ(ky). This is analogous to the case of the Su-Schrieffer-Hieger(SSH)

model[41], with the addition of an alternating on-site energy term.

The SSH picture provides a straightforward interpretation for the emergence of the edge states: whenever

one opens a boundary, one gets an edge state if the boundary cuts open a strong bond. Scanning as a
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Figure 7.3: Unfolding the Chern insulator: In (a), we see the Chern insulator in the usual basis, treating the
two degrees of freedom as sites. A change of basis in (b) transforms the model to a 1D chain with alternating
hopping.

function of ky, we can see that the edge states vanish when the bonds change their relative strength, i.e,

when |Λ(ky)| = 1, which is what one obtains from more elementary means[46] or sees in exact diagonalization.

In the SSH model, the edge state appears at zero energy[41]. However, for the Chern insulator, we also have

an on-site energy term µn = (−1)n sin ky. Hence, the spectrum of the edge state is given by ε(ky) = − sin ky

for the left edge (n = 1) and ε(ky) = sin ky for the right edge (n = 2× number of supercells), which is also

what we got from a direct computation.

If the SSH chain has an even number of sites, so that the number of sites is commensurate with the size of

the supercell, the edge states always occur in pairs, i.e, either both at the left and right end or not at all. This

corresponds to the physical situation, as the aforementioned sites correspond to local spin/orbital degrees

of freedom and hence always occur in pairs, which explains why the left and the right edges always switch

off at the same ky in the computation above. However, if one considers the incommensurate case where the

SSH chain has an odd number of sites, there is an edge state for every ky. If we allow such an (unphysical)

boundary condition8, we can expose the entire edge state in an exact diagonalization calculation, as shown

in Fig 7.2(b). Thus, using Dirichlet boundary conditions for different “system sizes”, we can expose edge

spectrum throughout the Brillouin zone.

7.1.5 Further examples

We finally consider lattice models with r = 1 on nonsquare lattices and/or nontrivial directions of translation,

where identifying the J and M matrix is not as straightforward. Consider then a tight binding model with

the Bloch Hamiltonian given by HB(k), k ∈ Td, defined on a lattice with lattice vectors aα, α = 1, . . . N

embedded in RN , so that the physical lattice sites are at coordinates rn =
∑
α nαaα, n ∈ ZN . Since the

Bloch Hamiltonian is periodic under translations by reciprocal vectors9, it can be written in terms of periodic

8In practice, we numerically construct the 2N × 2N Hamiltonian for a system of width N along x, parametrized by ky ,
and literally delete the last row and column to get a (2N − 1)× (2N − 1) Hamiltonian, which we diagonalize to get the exact
diagonalization plot of Fig 7.2(b)

9Recall that given a set of lattice vectors aα, the the reciprocal lattice vectors Gα are defined such that Gα · aβ = δαβ .
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functions of the scalars k · aα.

To construct the transfer matrix which translates along the direction in Rd specified by the unit vector

f̂ , we begin by constructing a set of orthonormal coordinates {ei}di=1 such that e1 = f̂ . In this basis, the

lattice vectors become aα = aα,iei, so that k ·aα = aα,iki, where we have defined ki = k ·ei. The periodicity

of HB then lets us write it as sum of matrices dependent only on k⊥ = {kj , j = 2, . . . d}, with prefactors

ei aα,1k1 . Thus, in order to construct the transfer matrix, we demand that all aα,1 are commensurate with

some γ, i.e,

∃ γ ∈ R s.t γ = Mαaα,1 ∀ aα,1 6= 0, Mα ∈ Z. (7.37)

If such a γ can be found, then set R = max γ/aα,i, so that the Bloch Hamiltonian becomes

HB = M0(k⊥) +

R∑
`=1

J`(k⊥)ei aα,1k1 . (7.38)

This can now be inverse Fourier transformed to obtain a lattice model with range R hopping. Choosing a

suitable supercell, we can identify the J and M matrix using the definitions from Sec 6.2.

Note that the existence of γ defined above is crucial for the definition of a transfer matrix. For instance,

given a square lattice with a1 = (1, 0)T and a2 = (0, 1)T, one can choose f̂ ∝ (1, r)T , and define orthonormal

axes in R2 as (N =
√

1 + r2)

e1 = N
(

1

r

)
, e2 = N

(
−r
1

)
, =⇒ a2,1

a1,1
= −r. (7.39)

Thus, if r = p/q, we must take γ = pa1,1 = qa2,2, so that R = max{p, q}. This makes intuitive sense, since

if one moves in the direction specified by (q, p) on a square lattice, the system is periodic with periodicity

R. However, if r is irrational, we cannot satisfy eq. (7.37) for any γ, since the system is aperiodic along

f̂ . Thus, demanding the existence of a γ satisfying eq. (7.37), we are essentially stating that the system be

periodic along the direction in which we intend to translate using our transfer matrix. This is essentially

tautological, since we defined our translation matrix only for systems which are translation invariant.

To demonstrate this formal construction, take a tight-binding model with the Bloch Hamiltonian[109, 110]

HB(k) = 2

 0 cos(k · a1) cos(k · a3)

cos(k · a1) 0 cos(k · a2)

cos(k · a3) cos(k · a2) 0

 , (7.40)
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Figure 7.4: The spectrum of (top) Dirac Semimetal, (middle) Graphene and (bottom) Kagome semimetal.
See Sec 7.1.5 and table 7.1 for details.

defined on the kagome lattice, with lattice vectors

a1 =

(
1

0

)
, a2 =

1

2

(
−1√

3

)
, a3 = −1

2

(
1√
3

)
. (7.41)

Thus, the lattice is Z3, embedded in R2. Let us define the orthonormal axes on R2 as

e1 =
1

2

( √
3

−1

)
, e2 =

1

2

(
1√
3

)
, (7.42)

and demand that the transfer matrix translate along e1. The lattice vector in these coordinates become

a1 =

√
3

2
e1 +

1

2
e2, a2 = −

√
3

2
e1 +

1

2
e2, a3 = −e2. (7.43)

Thus, a1,1 = −a2,1 =
√

3/2 and a3,1 = 0, so that we can choose γ =
√

3/2 and R = 1. This is a particularly

simple case, as it can be reduced to the form of eq. (7.2). Substituting k · aα in terms of ki = k · ei and

setting k1 = kx, k2 = ky, the Bloch Hamiltonian becomes

HB =


0 e

i
2 (
√

3 kx+ky) + e−
i
2 (
√

3 kx+ky) 2 cos ky

e
i
2 (
√

3 kx+ky) + e−
i
2 (
√

3 kx+ky) 0 e
i
2 (−
√

3 kx+ky) + e−
i
2 (−
√

3 kx+ky)

2 cos(ky) e
i
2 (−
√

3 kx+ky) + e−
i
2 (−
√

3 kx+ky) 0



= ei
√

3
2 kx

 0 eiky/2 0

eiky/2 0 e−iky/2

0 e−iky/2 0


︸ ︷︷ ︸

J(ky)

+

 0 0 2 cos ky

0 0 0

2 cos ky 0 0


︸ ︷︷ ︸

M(ky)

+e−i
√

3
2 kx

 0 e−iky/2 0

e−iky/2 0 eiky/2

0 eiky/2 0


︸ ︷︷ ︸

J†(ky)

.

Comparing to eq. (7.1) with kx →
√

3
2 kx, we can readily identify the J and M matrices.
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Model J M

Chern Insulator
1

2i
(σx − iσz) sin kyσ

y + Λ(ky)σz

Dirac Semimetal
1

2i
(σx − iσz) Λ(ky)σz

Graphene

(
0 1

0 0

) (
0 1− eiky

1− e−iky 0

)

Kagome Semimetal

 0 eiky/2 0

eiky/2 0 e−iky/2

0 e−iky/2 0


 0 0 2 cos ky

0 0 0

2 cos ky 0 0


Table 7.1: A list of J and M matrix for some of the well-known topological and semimetal states. The
corresponding spectra are plotted in Fig. 7.4

In conclusion, using the generalized transfer matrix construction, the calculation of bulk bands as well as

edge states becomes simply a matter of identifying the J and M matrices. We list these matrices for some

of the well known topological and semimetal phases in Table 7.1. The corresponding band structures and

edge states, superimposed over the exact diagonalization result, are collected in Fig. 7.4.

7.2 Riemann surfaces and windings

One of the significant aspects of topological phases of matter are the edge/surface states, whose existence is

determined by the bulk characteristics and which cannot be gapped out by adding boundary terms. These

states often reflect the topological invariants of the bulk. For instance, despite the strong dependence of

the edge spectrum on the precise boundary condition, the number of (signed) crossings of a given energy

level in the band gap is a topological invariant, equal to the bulk Chern number. The proof of this so

called bulk-boundary correspondence is highly nontrivial[62], and has been worked out in detail for the clean

limit only in certain specific cases[68, 45]. However, an alternative perspective, due to Hatsugai, identifies

the topological invariants of the edge states as winding numbers of the edge states around the holes in the

(complex) energy Riemann surface. He also provides a proof of this correspondence[60].

In this section, we describe the geometrical structures associated with the transfer matrices. The central

purpose of this analysis is to obtain a better understanding of the topological nature of the edge states.
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7.2.1 The two complexifications

In the Bloch analysis of discrete periodic systems, we usually restrict ourselves to real energies and momenta,

which correspond to plane wave eigenstates. However, in this section, we shall see that there is much to be

gained by allowing them to be complex (“complexifying” them). In the following, we shall only describe the

situation for r = 1. Furthermore, we shall restrict ourselves to a system in 2 spatial dimensions, with hard

boundary conditions along x and periodic boundary conditions along y, so that the transverse momentum

is k⊥ = ky ∈ S1.

Consider, then, a 2×2 transfer matrix for a 2-dimensional system, T (ε, ky). The eigenvalues of the transfer

matrix are

ρ± =
1

2

[
∆±

√
∆2 − 4

]
, ∆ = tr {T} , (7.44)

which satisfy ρ+ρ− = detT = 1. Following the Bloch ansatz, we can put ρ+ = eikx =⇒ ρ− = e−ikx , so

that kx is a function of (ε, ky). In the standard Bloch theory, (ε, ky) ∈ G , the band gap, if |ρ±(ε, ky)| 6= 1,

i.e, when ρ+ = eikx has no real solution in kx ∈ R. Physically, this simply means that there are no states

propagating along x in the gap.

However, ρ±(ε, ky) = e±ikx can always be solved in C, as ρ+ρ− = 1 =⇒ ρ± 6= 0. That is our first

complexification. In terms of the Floquet discriminant,

∆(ε, ky) = 2 cos kx. (7.45)

By solving this equation for kx ∈ C, we get the so called complex band structure of the system[57, 47],

which can also be numerically computed and plotted in a 3-dimensional space (Re(kx), Im(kx), ε) for a given

ky[48, 103]. The imaginary part of kz is interpreted as the inverse penetration depth of the edge modes,

with Im(kx) negative (positive) corresponding to the left (right) edge.

Now on to the second, and much more interesting, complexification. We note that the expression for the

eigenvalues involves
√

∆2 − 4, which is not a genuine function until we choose a branch of the square root.

For real ε, the argument of the square root is also real and the two branches are picked for ρ±, respectively.

However, if we allow ε to be complex, the square root becomes a genuine function from a two sheeted

Riemann surface to the complex plane, with the two sheets corresponding to the two choices for a branch,

connected at the branch cuts in the complex plane[57, 47]. For real eigenvalues, the two sheets correspond

to the magnitude of the eigenvalue being greater than (less than) unity. It is this structure that we seek to

expose in the following.
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Figure 7.5: The schematic for plotting the Riemann sheet corresponding to Chern insulator.

The Floquet discriminant is, by construction, a rational function of ε and ζ = eiky . However, we shall

restrict ourselves to the cases where it is a polynomial in ε, so that the denominator is independent of ε (see

Sec 7.1.3 for relevant conditions for this to happen). Let us, then, define the discriminant of eq. (7.44) as

P (ε, ky) = ∆2(ε, ky)− 4. (7.46)

We shall hereafter simply write P (ε), tacitly assuming the dependence on ky. For a given system with N

degrees of freedom per supercell, the highest power of ε is that in det(ε1 −M), i.e, εN , so that P (ε) is a

polynomial of order 2N in ε. Thus, for a given ky, P (ε) has 2N real roots, corresponding to the band edges

for N bands. Allowing ε to be complex, we get a ε-Riemann surface consisting of two Riemann spheres

connected along N branch cuts on the real axis, which is a surface with genus[70, 73] N − 1.

In the following, we exhibit this structure explicitly for the case of the Chern insulator. Starting with eq.

(7.29), we can write

P (z) = ε4
min(z − a)(z − 1)(z + 1)(z + a) (7.47)

with

z(ky) =
ε

εmin(ky)
, a(ky) =

εmax(ky)

εmin(ky)
> 1,

where εmin(ky) and εmax(ky) are band edges, as defined in eq. (7.31). The prefactor, ε4
min, is nonzero for

all ky, except when the parameter m = 0, 2, 4, i.e, at the gapless points. Hence, as far as edge states are
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concerned, we shall drop it in the subsequent discussion as it does not affect the roots of P (z) and hence

the branch-cut structure. On the other hand, for m = 0, 2, 4, the system becomes gapless and the topology

of the Riemann sheet changes. In fact, for the gapless case, the polynomial can be written as

P (z) = z2(z − εmax)(z + εmax), z = ε, (7.48)

so that the Riemann surface now consists of two sheets connected at the single branch cut running between

−εmax and εmax, which has the topology of a sphere[70]. This is a general feature: the topology of the

ε-Riemann surface changes at the gapless points.

For the gapped case, given a(ky), we can map the Riemann surface to a torus10 explicitly, using the elliptic

integral[70]:

w =

∫ z

z0

dt√
P (t; ky)

(7.49)

where the integral is independent of the path, as long as it does not wind around the branch cuts, corre-

sponding to the two holonomies of the torus. On the other hand, such a winding gives the two periods of

the torus, as

ω1(ky) =

∮
α

dt√
P (t)

, ω2(ky) =

∮
β

dt√
P (t)

. (7.50)

Hence, the elliptic integral maps the coordinate z on the Riemann sheet to w on the rectangle formed

by 0, ω1, ω1 + ω2 and ω2 in the complex plane, with the opposite edges identified. We can perform a

GL(2,R) transform w 7→ w̃ to map this rectangle to the square S bounded by the points 0, 1, 1 + i and i.

Finally, given w̃ = θ + iφ, we can embed the torus in 3

dimensional Euclidean space as as

x =
(

(R+ sinφ) cos θ, (R+ sinφ) sin θ, cosφ
)
,

where x = (x1, x2, x3) ∈ R3 and R > 1 is a fixed constant.

Using the sequence of maps described above, any curve on

the complex-ε plane can now be visualized as a curve on a

torus. A schematic of this process is depicted in Fig. 7.5.

We also show such a plot in the adjacent figure, with the

dashed black loop enclosing one of the branch cuts.

10or a rectangle in the complex plane with opposite edges identified, to be precise.
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7.2.2 Windings on the Riemann surface

The physical edge states for a topological Hamiltonian are required to satisfy two conditions, viz, the

boundary conditions and the decay condition, which, for r = 1, turn out to be Gvv,ww(ε, ky) = 0 and

|Gvw(ε, ky)| > 1, respectively. The former generically defines a curve in the complex-ε space, while the latter

inequality selects out a part of this curve which corresponds to the physical edge state. However, it is to

those curves in totality that we can associate a winding number, which will encode the topological nature

of the edge states.

In the last subsection, we constructed a set of Riemann surfaces parametrized by ky for a given Floquet

discriminant ∆(ε, ky), which was a polynomial of order N . If the system stays gapped11, then they all

have the same genus, viz, N − 1 independent of ky, so that they can be deformed into each other by

smooth transformations. Thus, we map them all to a generic surface S of genus N − 1. A smooth level set

f(ε, ky) = 0 could then define a curve on S, which would be closed since ky ∈ S1. The set of closed loops on

S is classified by π1(S), the fundamental group of S, which is nontrivial for a genus N −1 surface if N > 1.

The set of curves defined by Gvv,ww(ε, ky) = 0, however, cannot fall into all homotopy classes in π1(S). The

essential reason is that all energies ε corresponding to physical systems must stay positive, so that we are,

in fact, stuck to (two copies of) the real line in the ε-Riemann sheet, connected at the branch cuts12 Thus,

the actual maps that we are concerned with are simply those which wind around one particular band gap,

and hence, in essence, are S1 → S1. This map is associated with just one winding number as π1(S1) ∼= Z,

which is not the same as the fundamental group of the Riemann surface, as, for instance, π1(T 2) ∼= Z× Z.

We now consider the case of Chern insulator, where S = T2. The edge spectrum is explicitly given by

εR,L(ky) = ± sin ky, as computed in Sec 7.1.4. If the associated curve, εL(ky), winds around a hole of the

Riemann surface, it has to be on both the sheets. But the two sheets correspond to the eigenvalues of T

being less than or greater than 1, i.e, for the modes to be decaying as n → ∞ and n → −∞, respectively.

Hence, in order to have a curve with a nontrivial winding, we need both the physical and unphysical states,

as defined in Table 6.1. We point out that in Hatsugai’s analysis, the winding was obtained using only the

physical edge states by using a boundary condition such that Φ1 = ΦN in Table 6.1, so that any given state

is physical at at least one of the edges. This corresponds to the incommensurate case in our description.

In the discussion on the ε-Riemann surface, we remarked that its topology changes when the system

becomes gapless. In particular, for the Chern insulator at m = 0 = ky, the Riemann sheet is a 2-sphere,

11When the topology depends on ky , for instance, if the gap closes for some ky , then we shall need the language of cobordism
to describe the family of Riemann surfaces.

12We could have done this computation by simply gluing together two branches of
√
P (z) wherever P (z) = 0, where the

branches yield the same result, but the language of Riemann surface is more familiar and hence less ad hoc.
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Figure 7.6: The spectrum of Chern insulator for m = −0.8, with the band edges (dark blue) computed
using the transfer matrix formalism and the left and right edge state dispersion (dashed and dashed-dot),
overlaid on the spectrum computed using exact diagonalization for a (left) commensurate and (center)
incommensurate system. In the rightmost panel, we plot the transfer matrix corresponding to the left edge
state for Chern insulator(solid black line), which is contractible, and compare it with the case ofm = +0.8(red
dashed curve), where it is incontractible. The underlying (solid) torus is the manifold Sp(2,R).

on which all loops are contractible. Hence, as one tunes m across one of these gapless points, the winding

number (and hence the Chern number) can change, as the loops that were non-contractible on the torus can

be contracted to a point on the sphere. This does not necessarily mean that there are no states anymore

that satisfy the boundary and decay conditions; rather, it simply implies that the curves corresponding to

such states are now contractible. Furthermore, we can also expose such a state in exact diagonalization by

taking an incommensurate system, as shown in Fig. 7.6. Physically, this indicates that even when the bulk is

trivial, there can still be states localized on the edge that decay into the bulk, but they are not topologically

protected, and hence can be removed by adding a suitable boundary term.

7.2.3 Winding in Sp(2,R)

For r = 1, the corresponding transfer matrices T ∈ Sp(2,R), a Lie group which, as a 3-dimensional smooth

manifold, is homeomorphic to a solid 2-torus, i.e, D2 × S1, where D2 represents the 2-dimensional open

disc. In Appendix B.2, we describe a particular parametrization of this Lie group. Given ε(ky) which is a

continuous function of ky, consider T (ε(ky), ky). As ky ∈ S1, this describes a curve C on Sp(2,R), so that

edge spectra correspond to curves on Sp(2,R). Since13 π1 (Sp(2,R)) ∼= Z, the winding number of this curve

provides another diagnostic of the topological nature of the edge states. For instance, in Fig 7.6, we plot

the left edge state of the Chern insulator in both the topological and the trivial regime, where the winding

number correctly determines the Chern number associated with the bulk in each case.

Note that this computation does not need any of the complexifications described in the previous sections.

Another advantage of plotting these curves in Sp(2,R) over the curves on the ε-Riemann surface is that

13See Appendix B.2 for a proof.
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Figure 7.7: The spectrum of the Hofstadter model for φ = 1/5 (top), and (bottom) the curve of transfer
matrices on Sp(2,R) corresponding to the left edge state in the second gap from the bottom. Note that the
curve winds around twice in Sp(2,R), as expected from the spectrum.

the curves described here is always a solid torus for all rank 1 systems, as opposed to the Riemann surface,

which is a surface whose genus is a function of the number of bands. For instance, we plot the edge state

for the Hofstadter model with φ = 1/5 in Fig. 7.7, the Riemann surface corresponding to which has genus

4. The edge state shown has a winding number of 2, a fact that can be easily gleaned from the figure.

The edge spectra could be computed using the Evans condition of eq. (7.8), i.e, ϕTJ T (ε, ky)ϕ = 0.

We now show that the corresponding winding number is independent of ϕ, and hence is, to some extent,

independent of the specific choice of the boundary conditions. Since π1 (Sp(2,R)) ∼= Z, any curve C on

Sp(2,R) is associated with a winding number (also known as Maslov index[100, 71]), so that we have a map

µ : Z1(Sp(2,R))→ Z, (7.51)

which associates a winding number with each loop, C ∈ Z1(Sp(2,R)), where Z1(M) denotes the set of all

closed loops on a smooth manifold M . Now, the Evans condition for a given ϕ is a continuous function of

ky, to which we can associate a curve Cϕ, with the corresponding winding number µ(Cϕ). Hence, for each

ϕ ∈ C2\{0}, we get a map ϕ 7→ µ(Cϕ) ∈ Z. But as µ(Cϕ) is an integer, it cannot change continuously under

a continuous change of ϕ. Thus, µ(Cϕ) must be independent of ϕ’s for a given gap.

So far, we have not shown using our formalism that the winding number of a curve corresponding to an edge

spectrum in Sp(2,R) is same as the winding number of the corresponding curve on the ε-Riemann surface,

even though we notice it to be so in all the examples that we checked14. The interpretation of the Chern

number as a Maslov index can provide new ways of computing it numerically, as well as analytically[111, 50].

14A proof of a similar statement is discussed in Ref. [50] using K-theory.
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7.3 An example for r = 2: TCI

The analytic computation of the transfer matrix naturally becomes more intricate for r > 1. However, if the

transfer matrix turns out to be symplectic, we can take advantage of the additional structure (See Sec 6.4.1)

for exact computations. Here, we compute the transfer-matrix for a r = 2 model in closed form and derive

exact analytical expressions for its surface spectrum for such a case. The model we study is a C4–invariant

topological crystalline insulator (TCI), first introduced by Fu[112]. The model has topological surface states,

which are protected by crystalline symmetries alongside time reversal symmetry.

The Fu model is defined on a 3-dimensional tetragonal lattice, with alternating layers of square lattices

of A and B type along the z axis. The system has a 4-fold rotation symmetry in the plane normal to the z

axis. The lattice model consists of nearest and next-nearest neighbor hoppings between two orbitals on each

site (typically identified as px and py), with the strength of hopping being equal in magnitude but opposite

in sign on the A and B sublattices. Thus, the model consists of 4 bands, with 2 orbitals and 2 sublattice

degrees of freedom. The Bloch Hamiltonian is given by

H(k) =

(
HA(k) HL(k)

H†L(k) HB(k)

)
(7.52)

with the layer Hamiltonian Ha, a ∈ {A,B} and the inter-layer hopping HI . The 2× 2 blocks are given by

Ha(k) = 2ta1

(
cos kx 0

0 cos ky

)
+ 2ta2

(
cos kx cos ky sin kx sin ky

sin kx sin ky cos kx cos ky

)

= [ta1(cos kx + cos ky) + 2ta2 cos kx cos ky]12 + 2ta2 sin kx sin kyσx + ta1(cos kx − cos ky)σz,

HL(k) =
[
t′1 + 2t′2(cos kx + cos ky) + t′ze

ikz
]
12, (7.53)

where we take tAi = −tBi ≡ ti for i = 1, 2, so that HA = −HB = H0. The system is invariant under C4

rotations, with the C4 action defined by

C4 H(kx, ky, kz) C−1
4 = H(−ky, kx, kz), (7.54)

where C4 = i12 ⊗ σy. Clearly, a cut normal to the z axis preserves the C4 symmetry. We cut the system

along15 z, so that we shall need to inverse Fourier transform along z. Defining

HL(k) = H1(k⊥) + t′ze
ikz12 =⇒ H1(k⊥) = [t′1 + 2t′2(cos kx + cos ky)]12, (7.55)

15This is opposed to the transfer matrix acting along x as in the previous sections, but it conforms to the notation in Ref.
[112]
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where k⊥ = (kx, ky), we identify

J = t′z

(
0 12

0 0

)
, M =

(
H0 H1

H1 −H0

)
. (7.56)

In order to reduce the notational clutter, we set

H0 = a12 + b · σ, H1 = m12, (7.57)

where we have defined

a = t1(cos kx + cos ky) + 2t2 cos kx cos ky,

b =
(

2t2 sin kx sin ky, 0, t1(cos kx − cos ky)
)
,

m = t′1 + 2t′2(cos kx + cos ky), (7.58)

and b = |b|. We also normalize the parameters of the model so that t′z = 1.

To compute the transfer matrix, we begin with the SVD of J as J = V · Ξ ·W †, with

V =

(
12

0

)
, Ξ = 12, W =

(
0

12

)
. (7.59)

The condition for the transfer matrix being complex-symplectic (eq. (6.68)) was that [Gab,Ξ] = 0, which

is trivially true here. Furthermore, as M and J are both real, the transfer matrix will be real. Thus, we

conclude that T ∈ Sp(4,R). Next, we need to compute

G =

(
(ε− a)12 − b · σ −m12

−m12 (ε+ a)12 + b · σ

)−1

≡
(

A B

B D

)−1

, (7.60)

where

A = (ε− a)12 − b · σ, B = −m12, D = (ε+ a)12 + b · σ. (7.61)

As each block here is invertible for almost all ε, we use the eq. (B.8) from Appendix B.1 to get

G =

(
A−1 +A−1BS−1

11 BA
−1 −A−1BS−1

11

−S−1
11 BA

−1 S−1
11

)
, (7.62)

where S11 = G−1/A = D−BA−1B. The computation of Gab, a, b ∈ {v, w} for the definition of V and W of
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eq. (7.59) is simply extracting the correct submatrices, so that

(
Gvv Gwv
Gvw Gww

)
=

(
A−1 +A−1BS−1

11 BA
−1 −A−1BS−1

11

−S−1
11 BA

−1 S−1
11

)
. (7.63)

Setting Ξ = 1 in our explicit expression for the generalized transfer matrix (eq. (6.62)), we need to compute

T =

(
G−1
vw −G−1

vw Gww
Gvv G−1

vw Gwv − Gvv G−1
vw Gww

)
. (7.64)

Substituting Gab from eq. (7.63), we get

T =

(
−AB−1S11

(
AB−1S11

)
S−1

11

−
(
A−1 +A−1BS−1

11 BA
−1
) (
AB−1S11

)
−A−1BS−1

11 +
(
A−1 +A−1BS−1

11 BA
−1
) (
AB−1S11

)
S−1

11

)

=

(
−AB−1S11 AB−1

−
(
B−1S11 +A−1B

)
B−1

)
=

(
−AB−1

(
D −BA−1B

)
AB−1

−B−1
(
D −BA−1B

)
−A−1B B−1

)

=

(
B −AB−1D AB−1

−B−1D B−1

)
. (7.65)

Finally substituting the blocks from eq. (7.61), we get

T =
1

m

(
η2
12 − 2ab · σ (a− ε)12 + b · σ

(a+ ε)12 + b · σ −12

)
, (7.66)

where η2 = ε2 − a2 − b2 −m2. Thus,

tr {T} =
1

m

[
tr
{
η2
12 − 2ab · σ

}
+ tr {−12}

]
=

2

m

(
η2 − 1

)
,

tr
{
T 2
}

=
1

m2

[
tr
{

(η2
12 − 2ab · σ)2

}
+ 2 tr {((a− ε)12 + b · σ)((a+ ε)12 + b · σ)}+ tr

{
(−12)2

}]
=

2

m2

[(
η2 − 1

)2
+ 4a2b2

]
− 4. (7.67)

Since T is symplectic, we deduce that the bulk bands are completely determined by the Floquet discriminants.

Using eq. (6.87) for r = 2, the two Floquet discriminants ∆µ, µ = ±1 can be explicitly computed as

∆µ =
1

2

[
trT + µ

√
2trT 2 − (trT )2 + 8

]
=

1

2

[
2

m

(
η2 − 1

)
± µ

√
16a2b2

m2

]

=
1

m

[
ε2 − a2 − b2 −m2 − 1 + 2µab

]
=

1

m

[
ε2 −m2 − 1− (a+ µb)2

]
, (7.68)
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in terms of which the bulk energy spectrum becomes

σ [T ] =
1

2

(
∆µ ±

√
∆2
µ − 4

)
, µ = ±1. (7.69)

The band edges are given by |∆µ(ε,k⊥)| = 2. Setting ∆µ = 2λ, λ = ±1, we get

ε2 −m2 − 1− (a+ µb)2 = 2λ =⇒ εbulk = ±
√

(m+ λ)2 + (a+ µb)2. (7.70)

Clearly, we have 8 eigenvalues, and the spectrum is symmetric about ε = 0.

For the edge states, given Φ = (β, 0)T , which satisfies the boundary conditions for the left edge, we

demand that TΦ is in the same subspace as Φ, spanned by e1 and e2. But

T

(
β

0

)
=

( (
η2
12 − 2ab · σ

)
β

((a+ ε)12 + b · σ)β

)
. (7.71)

Thus, for Φ to be a left edge state, we demand that

((a+ ε)12 + b · σ)β = 0, (7.72)

From Cramers’ rule, we get a nontrivial solution for β iff the matrix is singular, i.e, iff

det [(a+ εL)12 + b · σ] = (a+ εL)2 − b2 = 0. (7.73)

A similar analysis for the right edge state leads to the condition

det [(a− εR)12 + b · σ] = (a− εR)2 − b2 = 0. (7.74)

The left and right edge spectra are given by

εL = −a± b, εR = a± b. (7.75)

Thus, exploiting the symplectic structure of the transfer matrix, we have analytically obtained explicit

expressions for the boundaries of the bulk bands and the edge spectra as a function of parameters a, b and

m, as defined in eq. (7.58), which themselves are functions of k⊥. We plot the analytically computed spectra

alongside the spectra computed using exact diagonalization in Fig 7.8.
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Figure 7.8: The spectrum of the topological crystalline insulator model due Fu[112], with the parameters
t1 = 0.5, t2 = 0.25, t′1 = 1.25, t′2 = 0.25 and t′z = 1 in eq. (7.53). The band edges (dark blue) and the
left and right edge state dispersion (dashed and dashed-dot) computed using the transfer matrix formalism,
overlaid on the spectrum computed using exact diagonalization equivalent to Fig, 2(b) of Ref. [112].

We notice that this model exhibits partial gaps (defined in Sec 6.4.1), which we expected to generically

be the case for r > 1. These corresponds to the (ε,k⊥) values where one pair of eigenvalues of the transfer

matrix lie on the unit circle, while the other pair lies off it. The edge states always touch one of the band

edges, but sometimes they can mean the edge to a partial gap, so that for a given (ε,k⊥), there is an edge

state as well as a bulk band state. This is clearly seen in Fig 7.8, for instance, between M and X points.

A striking feature of the band structure of TCI’s is the existence of a quadratic band touching at the surface

near the high symmetry point. In the case at hand, this occurs at the M̃ point, i.e, the projection of the M

point of the 3D Brillouin zone on a constant kz plane. This corresponds to the transverse quasimomentum

kM = (π, π). We can see the band touching analytically by expanding the (left, say) edge spectrum in the

vicinity of this point as k⊥ = kM + δk upto the second order in δk, to get

εL ≈ −2(t2 − t1)− t1 − 2t2
2

(δk)2 ± t1
2

√√√√(δk)4 + 4

[
1−

(
2t2
t1

)2
]
δk2
xδk

2
y . (7.76)

For t1 = 2t2 = t, we get a radially symmetric quadratic band touching, with the spectrum given by

εL ≈ −t
[
1∓ 1

2
(δk)2

]
. (7.77)

Furthermore, we can analytically track the lifting of degeneracy of the surface states at the high symmetry

point M on addition of a C4-breaking term. For instance, we can add a term δH = µσz ⊗ σz to the

Hamiltonian, leading to b 7→ b + (0, 0, µ). Physically, this corresponds to breaking the degeneracy of the px
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and py orbitals. Then, at the M̃ point, the left edge spectrum becomes

a = 2(t2 − t1), b = (0, 0, µ) =⇒ εL = 2(t1 − t2)± µ.

The gap is clearly proportional to µ, the strength of the C4 breaking term.

Thus, our analytically computed closed form expressions for bulk and surface bands agree with the exact

diagonalization results. Furthermore, these expressions let us analytically study the fine-tuned nature of

this surface quadratic band touching vis à vis the C4 crystal symmetry, as well as derive the coefficients of

a k · p expansion around that point, which was guessed on symmetry grounds in Ref. [112].

7.4 Large r: Disordered Systems

We have so far discussed analytical computations using our generalized transfer matrix for r = 1, 2, where

it was analytically tractable. However, the power of this method lies in its generality, and the fact that

it provides us with an algorithm to compute arbitrary band structures which can be easily mechanized.

In this section, we do precisely that in order to study disordered systems. In particular, we investigate

metal-insulator transitions in disordered tight-binding models.

Transfer Matrix Setup

Consider a generic d-dimensional tight binding lattice model with q degrees of freedom per unit cell. The

simplest model of a disorder is the diagonal(also known as on-site or Anderson type) disorder. This simply

involves adding a random on-site potential, i.e, adding to our tight binding Hamiltonian a term of the form

Hdisorder =
∑

n,α Vn,αc
†
n,αcn,α, where {Vn,α} are independent and identically distributed (iid) real random

variables, chosen from some fixed probability distribution. The disorder potential explicitly breaks the

translational symmetry, so that the transverse momentum, k⊥ is not a good quantum number anymore.

Instead, we consider the system on a strip geometry, i.e, infinite along x and finite (with open or periodic

boundary conditions) along all the transverse directions.

Thus, we write our system in the position basis and construct the supercells from the sites corresponding

to a constant x. For instance, for a 2 dimensional strip of width Ly, with sites indexed by m = 1, . . . Ly and

internal degrees of freedom at each site by α = 1, . . . , q, the Hamiltonian takes the form

H = H0 +

∞∑
n=1

Ly∑
m=1

q∑
α=1

Vnmαc
†
nmαcnmα (7.78)
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where H0 is the translation-invariant Hamiltonian for the clean system, and the iid real random variables

{Vnmα} are taken from a uniform distribution of width W centered at 0. Our supercells now consist of the

N = qLy degrees of freedom. Using the method described in Sec 6.4, we can identify the hopping matrix J

and the on-site matrix Mn, where only M depends on n as the disorder is diagonal. We can construct the

transfer matrix as a function of n, i.e, Φn+1 = TnΦn, where Tn now depends on the disorder realization. For

a system with N sites along the x axis, we define the total transfer matrix as the product TN ≡
∏N
n=1 Tn.

To investigate the existence of topological edge states, we note that for a clean system in a strip geometry in

2-dimensions, there are edge states localized at m = 1, Ly along the y axis and strongly delocalized(‘metallic’)

along x. Since these modes are topological in nature, they are not expected to localize in presence of weak

disorder; however, for a strong enough disorder, we may have a percolation transition. Since the eigenvalues

of T determine the growth rate of the corresponding wavefunctions along x, for a fully delocalized state the

corresponding eigenvalue ρ of the total transfer matrix must lie on the unit circle16. Conventionally, one

computes the Lyapunov exponent defined as λ = ln |ρ|, which must vanish for a delocalized state. We next

discuss the recipe to compute the Lyapunov exponents numerically.

Lyapunov Exponents and Localization Lengths

The conventional approaches[113, 114, 115] to studying bulk phases of disordered non-interacting models and

their Anderson transitions rely on obtaining the smallest Lyapunov exponent (in magnitude), or equivalently,

the longest localization length in the x direction for a fixed energy ε. When the Fermi energy is set to ε, a

further finite size scaling analysis of the longest localization length in the transverse directions discriminates

between conducting and insulating phases of the bulk. In order to observe the quasi–(d − 1) dimensional

metallic edge modes in a d-dimensional disordered topological phase, it is desirable to compute the multiset

of all17 Lyapunov exponents, hereafter termed the Lyapunov spectrum.

For a clean system, the eigenvalues ρi of the transfer matrix determine the growth/decay rate of the

corresponding eigenstates, so that we can identify the Lyapunov exponents, or alternatively, the inverse

localization length, as λi = 1/li = ln |ρi|. Alternatively, we can define Λ = (T †T )1/2 with eigenvalues

Λi = |ρi|, so that λi = ln Λi. For the disordered case, the transfer matrices depend on n, so that we define

Λ = lim
N→∞

[
T†NTN

] 1
2N

; TN ≡
N∏
n=1

Tn. (7.79)

16If the transfer matrices are regarded as the evolution map of a dynamical system in time N , then the ‘metallic’ edge states
correspond to stable limit cycles as N →∞.

17This is in contrast to studying the onset of localization in a metal, where one seeks only the largest Lyapunov exponent.
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The fact that such a finite valued matrix exists is guaranteed by Oseledec’s theorem[116]. The Lyapunov

exponents are again given by λi = ln Λi, where Λi ∈ R are the eigenvalue of Λ.

In principle, given the transfer matrix, one could directly compute the matrix product in eq. (7.79),

and hence the Lyapunov exponents, as a function of N . However, in practice, such a numerical matrix

multiplication and diagonalization is usually plagued by numerical rounding and overflow errors, associated

with the finite precision of the floating point representation of real numbers. In order to circumvent these

issues, we follow the method described in Ref [116].

The key idea is to perform a QR decomposition[115] after every step involving a matrix multiplication.

Recall that the QR decomposition for a complex nonsingular square matrix M involves writing it as M = QR,

where Q is unitary and R is upper triangular with real, positive diagonal entries, sorted in descending order.

The actual matrix multiplication of Tn’s is then reduced to multiplying a set of upper triangular matrices

Rn’s. Explicitly, we begin by performing a QR decomposition of the first transfer matrix in the sequence as

T1 = Q1R1, and setting T ′2 = T2Q1. Iterating, we get

TN =

(
N∏
n=3

Tn

)
T2T1 =

(
N∏
n=3

Tn

)
T2(Q1R1)

=

(
N∏
n=3

Tn

)
T ′2R1 =

(
N∏
n=4

Tn

)
T3(Q2R2)R1

= . . . = T ′N

N∏
m=1

Rm = QN

N∏
m=1

Rm, (7.80)

where we have defined T ′n+1 ≡ TnQn and carried out its QR decomposition as T ′n+1 = Qn+1Rn+1 at each

iteration. As Q†Q = 1 and R†mRm = Sm is diagonal with the diagonal entries Sm,ii = (Rm,ii)
2
, we get

Λ =

[
N∏
m=1

Sm

] 1
2N

= diag


(

N∏
m=1

Rm,ii

) 1
N


i

(7.81)

Only the diagonal elements of Rm are needed at each iteration, so that the computation of each eigenvalue of

Λ now involves O(N) multiplications, as opposed to O(N2) for a direct multiplication, thereby dramatically

reducing the accumulation of numerical error. As N →∞, the Lyapunov exponents converge to

λi = lim
N→∞

1

N

N∑
m=1

ln[(Rm)ii]. (7.82)

Convergence to the true Lyapunov exponents can also be ascertained by studying the statistical fluctuations

of the average on the right hand side of eq. (7.82).
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7.4.1 Disordered Chern Insulator

We now specialize to the case of a Chern insulator with diagonal disorder. For a clean system, the on-site

matrix M is given by

M =
1

2

Lmax∑
m=1

(
em+1 · e†m

)
⊗ (iσy − σz) + h.c. + (2−m)1Ly ⊗ σz. (7.83)

Thus, in presence of a diagonal disorder V , the on-site Green’s function becomes

Gn = (ε1L ⊗ 12 −M − Vn)
−1
, (7.84)

where Lmax = Ly in the case of PBC and Lmax = Ly − 1 for the open boundary condition. It is worth

remarking that for fixed ε and M , G−1
n is non-invertible only for a set of measure Vn realizations, i.e, almost

everywhere, and so we shall side step questions of its singularity.

The inter-layer hopping matrix J remains unchanged for this ensemble of disorder and takes the form of

a 2Ly × 2Ly matrix

J =
1

2i
1Ly ⊗ (σx − iσz), (7.85)

which, however, remains singular, with rank r = Ly. This conforms with the expectation of Ly independent

channels in the non-disordered limit, which are explicitly coupled by disorder. The SVD for J remains

virtually unchanged:

J = 1Ly ⊗ (v ·w†) =

Ly∑
y=1

Vy ·W†
y, (7.86)

with v and w defined as in eq. (7.25), and we have defined the channels Vy := ey ⊗ v and Wy := ey ⊗w;

{ey}Lyy=1 being the standard basis of CLy . For each n, the transfer matrix Tn can now be numerically

computed using eq. (6.62), which can be used to further compute the Lyapunov exponents using eq. (7.82).

Since Ξ = 1Ly , the transfer matrix is symplectic (eq. (6.68)), so that the eigenvalues occur in reciprocal

pairs and the Lyapunov spectrum is symmetric about zero. We seek our edge mode, localized along y but

completely delocalized along x, corresponding to a zero Lyapunov exponent (within numerical error).

In Fig 7.9, we show the Lyapunov spectrum as a function of N , the number of layers along x, for the Chern

insulator in the topological phase, with m = 1 and strip width Ly = 40. We limit ourselves to the energy

ε = 0, corresponding to the center of the band gap. For a weak disorder (W = 0.1) and open boundary
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Figure 7.9: Numerically computed estimates of Lyapunov exponents as a function of system length N for
Chern insulator on a strip geometry with width Ly = 40 and parameters m = 1.0, ε = 0. For large N , the
estimates converge to the Lyapunov exponents {λi}. (a) W = 0.1 and OBC along y shows robust metallic
edge modes (in red) with λi = 0 in this scale. Also highlighted is an insulating bulk mode (green trace) with
λi ≈ 3. (b) Spatial profile of eigenstates along y at N = 103 for modes with λ ≈ 3(green) and λ ≈ 0(red).
The latter is strongly localized at y = 0, Ly. Arrows mark the position of these eigenmodes in the Lyapunov
spectrum. (c) The same system as in fig (a) with PBC along y, which shows no metallic edge states. (d)
Strongly disordered case (W = 5.0) with open boundaries and absent metallic states.

conditions along y, there are two quasi-1D metallic modes with λi ≈ 0 at the center of the spectrum,

highlighted in red in Fig 7.9(a). Numerically, the relevant exponents are never zero to machine precision,

but are much smaller (|λi| < 10−5 at N = 104) than the other Lyapunov exponents and systematically

decrease (as a power law) with increasing N . To confirm the identification of these modes as topological

edge states, we plot their spatial profile along y in Fig 7.9(b), which clearly shows localization at the edge,

in contrast to an insulating localized mode with λi ≈ 3. Furthermore, for the same parameters but with

closed periodic boundaries, no metallic modes are observed, as shown in Fig 7.9(c). We note that tuning

the mass parameter m to the topologically trivial range or moving ε into the center of the bulk band also

removes these metallic modes.

Finally, for a strong enough disorder (W = 5.0), the metallic modes are also absent, as shown in Fig

7.9(d), which signals a percolation transition. We observe that the lifting of the metallic edge modes from
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the asymptotic value λi = 0 occurs continuously with changes of tuning parameters, in agreement with

the theory of continuous Anderson transitions[114]. However, further work is needed to verify that the

scaling exponents {νi} corresponding to the divergence of the localization lengths {li} at the metal-insulator

transition agrees with the expectations for the Integer Quantum Hall transition[117, 118]. We leave such

numerical investigations for future work.
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8 Conclusions

In Part I of this thesis, we have generalized the chiral kinetic theory, originally proposed to compute U(1)

anomaly in 3 + 1 dimensions, to nonabelian anomalies in higher dimensions. There were two central ingre-

dients in this generalization: the symplectic formulation of classical mechanics and the dequantization of

nonabelian guage fields. The former is crucial to study the latter, since the coadjoint orbits obtained from

the gauge group are compact and often support no global coordinates. The higher dimensional computation

was also conceptually cleaner, once we have discarded the special features of the low dimensional dynamics.

The abelian chiral anomaly or the singlet anomaly for nonabelian gauge fields are a breakdown of an

ordinary conservation law of the form ∂µJ
µ = 0, which can be interpreted as a continuity equation. Thus,

the anomaly can be interpreted as a breakdown of particle number conservation, so that chiral particles are

being spontaneously created (out of a Dirac sea) under a spectral flow. This fact was used to motivate the

computation of the breakdown of Liouville’s theorem, a more general “continuity equation” in phase space.

However, we also obtained the nonabelian gauge anomaly using the same formalism, which is a breakdown of

a covariant conservation law DµJµa = 0 and thus does not conventionally have a spectral flow interpretation

as an influx of discrete particles. It is interesting to ponder whether such a calculation points towards a

possible spectral flow argument for the nonabelian anomalies.

Our computation of the anomalous contribution to the hydrodynamic currents from a classical kinetic

theory approach can be thought of as a counterpoint to the usual anomalous hydrodynamic calculations. In

deriving a low energy hydrodynamic description of a QFT with anomalous currents, one takes the anomalies

as given and explores their consequences on the macroscopic dynamics, which one derives from thermody-

namic constraints. Ideally, however, one would like to start with a microscopic field theory and systemat-

ically integrate out the high energy modes, thereby arriving at a macroscopic hydrodynamic description.

Our computation, to some extent, does part of that for noninteracting Weyl fermions by a circuitous route,

by “guessing” the semiclassical phase space which encodes the anomaly and describes the physics at micro-

scopic scales, and then using classical kinetic theory to compute the macroscopic currents. As long as one

can sensibly talk about discrete particle-like excitations in the underlying QFT, one can potentially improve

this picture by including the collision terms, which would then lead to dissipative hydrodynamic effects.
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To complete the picture, one would like to be able to also derive the gravitational contributions to the

gauge anomaly using a chiral kinetic theory formalism, which would require dynamics on a curved spacetime

manifold. Our work in that direction so far[3] (which did not make it to the final cut of this thesis) has

been unsuccessful; however, we have discovered much interesting physics in the process. One basic issue is

to derive a Lorentz covariant formulation of our theory, which can then be thought of as invariance under

frame rotations when one puts the theory on a curved spacetime manifold. Since the Hamiltonian dynamics

treats the space and time coordinates differently, the Lorentz invariance is nor manifest. Furthermore, one

needs to define a generalization of the Berry curvature 2-form which depends on all components of the

energy-momentum 4-vector instead of just the space parts. We have derived such a generalization in Ref [3].

A more serious problem is the frame-dependence of the “position” of the Weyl fermion! This sounds

absurd for a classical particle, but we are essentially trying to define the dynamics of a wavepacket, whose

centroid is the ‘position’ in question. In this picture, one way to think of the anomalous velocity, which

leads to a sideways group velocity, is a result of the different Berry phases picked up by different momentum

modes which are superimposed to define the wavepacket. This is, in essence, similar to the spreading of a

localized mode in a dispersive medium.

The frame dependence of the ‘position’ can also be understood as an artifact of the nontrivial representation

theory of the Lorentz group for massless spinning particles. To wit, a massive particle has a rest frame in

which one can define the centroid, and the symmetry group in the rest frame (termed the little group) SO(3),

which is compact and whose representations are used to label the spin of the particle, and the corresponding

values in other frames can be obtained by Lorentz boosts. However, for massless particles, there is no rest

frame and the little group is the noncompact group E(2) ∼= R2 o SO(2), the symmetry group of R2, so that

the spin (helicity, to be precise) of the particle is labeled by the representation of the compact subgroup,

viz, SO(2). We are still left with a gauge freedom corresponding to R2 ⊂ E(2), which leads to a sideways

translation of vectors upon boosts, termed Wigner translations. This problem is worse in curved spacetime,

when the gauge freedom from Wigner translations mix with the gauge freedom of the theory under local

diffeomorphisms of the spacetime manifold.

Finally, our computation can be applied to the study of macroscopic effects driven by anomalies in con-

densed matter systems, for instance in Weyl semimetals[34]. The effect of the band structure can be encoded

by using the band energy spectrum instead of ε = |p|, while some of the interaction/scattering effects can be

encoded in the collision integral of the Boltzmann equation. Like the conventional semiclassical dynamics

used to study transport in metals, this provides a much more tractable approach to include real effects than

using the complete quantum field theoretic description.
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In Part II, we have essentially filled a gap in the conventional usage of transfer matrix for tight-binding

models, by bringing the models with singular hopping matrices within its reach. By generalizing the transfer

matrix construction, however, we have also discovered many other interesting algebraic and geometric aspects

of the problem, some of which were originally discussed by Hatsugai for the special case of the Hofstadter

model. The construction also formalizes (and essentially mechanizes) the application of transfer matrices to

nonsquare lattice for translations along arbitrary directions.

The central philosophy behind transfer matrices is the encoding of all possible asymptotic behavior of

the solution of the Schrödinger equation in one matrix, which can be computed by knowing a very small

part (essentially, a single supercell and its connectivity to its nearest neighbors, in our picture) of the

system. Thus, crudely speaking, even though the transfer matrix formalism is a real space setup, it “knows”

everything about the momentum-space behavior of the system, which makes it ideally suited for studying

bulk-boundary correspondence, where the bulk invariants are computed in a momentum space picture, while

the boundary invariants are most naturally defined in real space. A concrete problem in this direction would

be to compute the Berry curvature, and hence the Chern number, directly from a given transfer matrix.

A similar situation is that of lattice defects, especially modes localized at dislocations, where one seeks to

match various “momentum” modes for a system where the periodicity is broken by the lattice defect, so

that the momentum eigenstates are, strictly speaking, not defined.

The rank of the hopping matrix which determines the size of the transfer matrix, alongwith the corre-

sponding singular values, provide an interesting perspective into the system, as they can be interpreted as a

decomposition of the system into channels, with their strengths given by the singular values. Such a perspec-

tive can be useful in studying the system as a set of quasi-1D chains, in terms of the most important degrees

of freedom, with a generalization of the “unfolding” transform that we described for Chern insulator. A

practical situation where such an analysis could be useful is systems with disorder in the hopping strengths

(besides/alongwith the on-site/Anderson disorder), where the rank of the hopping matrix can potentially

change for different layers, but constructing the transfer matrix using only a few largest singular values may

provide the useful statistics for the spectrum.

We note that many of the convenient simplifications that arose for the r = 1 case are due to the fact

that the transfer matrix is symplectic. There is a wealth of interesting properties associated with symplec-

tic matrices that can be relevant to the study of topological phase. For instance, we used the fact that

π1 (Sp(2,R)) ∼= Z to define a Maslov index associated with the edge states. However, the symplectic matri-

ces have π1 (Sp(2n,R)) ∼= Z for all n, so that the corresponding Maslov indices can also be interpreted as

topological invariants of the edge states. We leave such analyses for future work.
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A Lie groups and coadjoint orbits

A.1 Basic notions

We begin with two definitions:

Definition A.1. A Lie group is a smooth manifold G endowed with a group multiplication law, i.e, a smooth

map G×G→ G satisfying the group axioms.

Definition A.2. A Lie algebra is defined as a real vector space V equipped with a bilinear map [, ] : V ×V →

V , which satisfies the following conditions

1. Antisymmetry: [X,X] = 0 ∀X ∈ V .

2. Jacobi identity: [X, [Y, Z]] + [Y, [Z,X]] + [Z.[X,Y ]] = 0 ∀X,Y, Z ∈ V .

From the antisymmetry and bilinearity, given X,Y ∈ V , it follows that [X,X] = [Y, Y ] = 0, and

0 = [X + Y,X + Y ] = [X,X] + [X,Y ] + [Y,X] + [Y, Y ] = [X,Y ] + [Y,X],

so that [X,Y ] = −[Y,X], the conventional definition of antisymmetry.

Given a Lie Group G, we can associate a unique (upto isomorphisms) Lie algebra, usually denoted by g.

Formally, this association is functor from the category of Lie groups to the category of Lie algebras. The

functor is surjective and many to one on objects, i.e, a given Lie algebra may correspond to more than one

Lie group. For instance, SO(3) � SU(2) but so(3) ∼= su(2).

Define g ≡ TeG, i.e, the tangent space of G at the identity element e ∈ G. Then, g is a vector space

isomorphic to Rn, with an additional bilinear function [, ] : g× g→ g arising from the Lie bracket of tangent

vector. Thus, g is an algebra, termed the Lie algebra of G. More formally, As a vector space, g ∼= Rn, where

n = dim (G), i.e, an atlas on G maps maps open sets to open sets of Rn.

We would primarily be interested in a representation of G, i.e,

Definition A.3. A representation of a group G on a vector space V is a homomorphism π : G → O(V ),
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the set of linear operators on V . More explicitly, to each g ∈ G, the representation π associates a linear

operator πg : V → V such that πg1g2
= πg1

◦ πg2
.

A.2 Adjoint and Coadjoint representations

A natural representation of G is induced on the vector space g, termed the adjoint representation. To see this,

consider the set of inner automorphisms of G, ϕg : G→ G, defined by the conjugations ϕg : h 7→ ghg−1. We

can lift this map to a map ϕg,∗ : TG→ TG on the tangent space by push-forward, which acts by changing

the tangent vector as well as the base point. Expliclty, we always have ϕg,∗ : ThG→ Tghg−1G.

Clearly, ϕg : e 7→ e, so that e is a fixed point of G, and ϕg,∗ : TeG→ TeG. Thus, we have a representation

of G on g = TeG, termed the adjoint representation.

Definition A.4. The adjoint representation Ad: G→ O(g) of a Lie group G on its Lie algebra g is defined

as the derivative of the adjoint action h 7→ ghg−1 at the identity. Explicitly,

Ad(g) : X 7→

The derivation of the adjoint representation induces an action of g by itself, ad: g×g→ g, explicitly defined

as

ad(Y ) : X 7→ d

dt

(
Ad
(
etY
)
X
)∣∣∣∣
t=0

= [Y,X].

Thus, geometrically, ad(Y )X ∈ TXg ∼= g.

Given the vector space g, we can construct its dual space g∗ as the set of linear functions f : g→ R. By

definition, we have a bilinear map ( , ) : g∗ × g → R, defined as (f, x) = f(x) ∀x ∈ g, f ∈ g∗. Any linear

operator L : g→ g has an adjoint operator L∗ : g∗ → g∗, defined by (f, Lx) = (L∗f, x).

Definition A.5. The coadjoint representation K: G × g∗ → g∗ is defined as K(g) = Ad(g−1)∗ : g∗ → g∗.

This induces the coadjoint action of g on g∗, defined as

k(Y ) : F 7→ d

dt

(
K
(
etY
)
X
)∣∣∣∣
t=0

= −ad(Y )∗F.

Thus, geometrically, k(Y )X ∈ TF g∗ ∼= g∗.
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Here, K(g) forms a representation of G since

(
Ad(g1g2)∗F,X

)
=
(
F,Ad(g1g2)X

)
=
(
F,Ad(g1)Ad(g2)X

)
=
(

Ad(g1)∗F,Ad(g2)X
)

=
(

Ad(g2)∗Ad(g1)∗F,X
)
,

so that

K(g1g2) = Ad
(
g−1

2 g−1
1

)∗
= Ad

(
g−1

1

)∗
Ad
(
g−1

2

)∗
= K(g1)K(g2). (A.1)

A.3 Symplectic structure on codjoint orbits

We define the coadjoint orbits as:

Definition A.6. The coadjoint orbit of a fixed F ∈ g∗ is defined as OF = {K(g)F | g ∈ G) ⊆ g∗.

Let Stab(F ) = {g ∈ G |K(g)F = F} ⊆ G be the stabilizer of F , which forms a subgroup of G since K(g)

forms a representation. Then, the coadjoint orbit is simply the quotient OF ∼= G/Stab(F ), and G can be

thought of as a fiber bundle over the base space OX with fibers Stab(F ), and the projection πF : G → OF
defined as πF (g) = K(g)F . Next, Let stab(F ) ⊆ g be the Lie algebra of Stab(F ), which forms a subalgebra

of g∗. The projection πF induces πF∗ : g → TFOF , defined as the derivative of πF , i.e, πF∗ : X 7→ k(X)F .

Then, we have a short exact sequence

0 −→ stab(F ) ↪→ g→ TFOF −→ 0, (A.2)

so that TFOF ∼= g/stab(F ), i.e, all vectors on OF can be defined as ξX ≡ k(X) for some X ∈ g. These

vectors act as derivatives on the functions F : OF → R as

ξXF(F ) =
d

dt
F
(

K
(
etX
)
F
)∣∣∣∣
t=0

= F (k(X)F ) . (A.3)

The symplectic structure on OF is then defined by the following theorem:

Theorem A.1. The coadjoint orbit OF is a symplectic manifold, with the symplectic form defined as

ρ(ξX , ξY )
∣∣∣
F

=
(
F, [X,Y ]

)
. (A.4)

Proof. In order to prove that ρ defines a symplectic structure on OF , we need to show that it is closed and
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nondegenerate. We shall need

ξXρ(ξY , ξZ) = ξX

(
F, [Y,Z]

)
=
(

k(X)F, [Y,Z]
)

= −
(
F, ad(X)[Y,Z]

)
= −

(
F, [X, [Y, Z]]

)
, (A.5)

where we have used eq. (A.3). Thus, using Cartan’s relations and [ξX , ξY ] = −ξ[X,Y ]), we can compute

dρ(ξX , ξY , ξZ)

= ξXρ(ξY , ξZ) + ξY ρ(ξZ , ξX) + ξZρ(ξX , ξY )− ρ([ξX , ξY ], ξZ)− ρ([ξY , ξZ ], ξX)− ρ([ξZ , ξX ], ξY )

= −
(
F, [X, [Y, Z]]

)
−
(
F, [Y, [Z,X]]

)
−
(
F, [Z, [X,Y ]]

)
+
(
F, [[X,Y ], Z]

)
+
(
F, [[Y,Z], X]

)
+
(
F, [[Z,X], Y ]

)
= −

(
F, [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]]− [[X,Y ], Z]− [[Y, Z], X]− [[Z,X], Y ]

)
= −2

(
F, [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]]

)
= 0, (A.6)

where we have used Jacobi’s identity in the last step. To show that ρ is nondegenerate, assume that

ρ(ξX , ξY ) = 0, ∀Y ∈ g for a fixed X ∈ g. Then, ∀F ∈ g∗,

0 = ρ(ξX , ξY )(F ) =
(
F, [X,Y ]

)
=
(
F, ad(X)Y

)
=
(

k(X)F, Y
)
, (A.7)

so that 0 = k(X) = ξX , which completes our proof.

Given this symplectic structure, we can define Hamiltonian flows on OF corresponding to a Hamiltonian

H : OF → R. The symplectic form associates with H a Hamiltonian vector field dH via

idHρ = −dH =⇒ ρ(dH, ξX) = −ξXH ∀X ∈ g. (A.8)

We next prove the following lemma

Lemma A.1. Given a Hamiltonian defined as H : F 7→ (F,Z) for a fixed Z ∈ g, the corresponding Hamil-

tonian vector field is given simply by dH = ξZ .

Proof. We shall need to show that ∀X ∈ g,

ρ(ξZ , ξX)
∣∣∣
F ′

= −ξXH(F ′) ∀F ′ ∈ OF . (A.9)
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The LHS is simply
(
F ′, [Z,X]

)
, while to evaluate the RHS, we use eq. (A.3) to compute the RHS as

− ξXH(F ′) = −H (k(X)F ′) = −
(

k(X)F ′, Z
)

= −
(
F ′, ad(X)Z

)
=
(
F ′, [Z,X]

)
, (A.10)

which completes the proof.

A.4 Coadjoint orbits of SU(2)

The matrix group SU(2) is defined as

SU(2) =
{
M ∈ Mat(2,C) |M† = M−1, detM = 1

}
. (A.11)

Parametrizing M , the constraints imply that

M =

(
α β

γ δ

)
∈ SU(2) =⇒ δ = α∗, γ = β∗, αδ − βγ = 1, (A.12)

where α, β, γ, δ ∈ C. Thus, we set α = x0 + ix3, β = x2 + ix1 to parametrize M using x ∈ R4’s using Pauli

matrices as

M =

(
x0 + ix3 x2 + ix1

−x2 + ix1 x0 − ix3

)
= x01 + ixiσ

i, i = 1, 2, 3, (A.13)

subject to the constraint
∑3
µ=0 x

2
µ = 1. This is the equation of a 3-sphere in R4, so that as smooth manifolds,

SU(2) ∼= S3.

The Lie algebra is simply defined as su(2) = {Xiσ
i |Xi ∈ R}. This can be derived either geometrically,

by considering the tangent space of S3 at the “north pole” corresponding to x = (1, 0, 0, 0), or alternatively,

by expanding M(x) in the vicinity of 1. In the latter approach, we set xi = εXi, so that

M =
√

1− ε2|X|21 + ε iXiσ
i = 1 + ε iXiσ

i +O(ε2), (A.14)

and consider the terms at linear order. We define a basis for su(2) as λi = 1
2σi, so that

[λi, λj ] =
1

4
[σi, σj ] = iεijkλk, 〈λi, λj〉 =

1

4
tr {σiσj} =

1

2
δij . (A.15)
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We define

SU(2) =

{
g01 + ig · σ

∣∣∣∣∣ g0 ∈ R, g ∈ R3,

3∑
µ=0

g2
µ = 1

}
(A.16)

with its Lie algebra su(2) = {X ·σ, X ∈ R3}, and consider the coadjoint action of the Lie algebra on the Lie

group, defined as K(g) : X 7→ g−1X g. To egplicitly compute this product, we shall need some Pauli matrig

identities. Recall that Pauli matrices are all Hermitian and traceless, and satisfy

[σi, σj ]+ = 2δij1, [σi, σj ]− = 2i εijkσk. (A.17)

Combining these two, we get

σiσj =
1

2

(
[σi, σj ]+ + [σi, σj ]−

)
= δij1 + iεijkσk. (A.18)

Iterating and using the contraction for the Levi-Civita symbols, we also get

σiσjσk =
(
δij1 + iεij`σ`

)
σk

= δijσk + iεij`
(
δ`k1 + iε`kmσm

)
= δijσk + iεijk1− ε`ijε`kmσm

= δijσk + iεijk1−
(
δikδjm − δimδjk

)
σm

= iεijk1 + δjkσi − δikσj + δijσk. (A.19)

The coadjoint action on X = Xiσ
i can then be explicitly computed as

g−1Xg =
(
g01− igiσi

)(
− i

2
Xiσ

i

)(
g01 + igiσ

i
)

=
1

2

[
−ig2

0Xiσ
i − (giXjg0 − g0Xigj)σ

iσj − igiXjgkσ
iσjσk

]
=

1

2

[
−ig2

0Xiσ
i − g0 (giXj − gjXi)

(
δij1 + iεijkσk

)
− igiXjgk

(
iεijk1 + δjkσi − δikσj + δijσk

)]
=

1

2

[
−ig2

0Xiσ
i − 2ig0ε

ijkgiXjσ
k − 2i(gjX

j)giσ
i + i(gjg

j)Xiσ
i
]

= − i

2

[
(2g2

0 − 1)Xi + 2(gjXj)gi + 2g0ε
ijkgjXk

]
σi. (A.20)

Thus, on our coordinates, the coadjoint action sets

K(g) : Xi 7→ (2g2
0 − 1)Xi + 2(gjXj)gi + 2g0 ε

ijkgjXk. (A.21)
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Defining vectors g = {gi} and X = {Xi} on R3, this becomes

K(g) : X 7→ Xg =
(
1− 2|g|2

)
X + 2 (g ·X) g ± 2 g ×X

√
1− |g|2. (A.22)

For a fixed X, the coadjoint orbit is simply the span of this map for g ∈ R3, which can be shown to be a

2-sphere by simply computing

|Xg|2 =
(
1− 2|g|2

)2 |X|2 + 4 (g ·X)
2 |g|2 + 4

(
1− 2|g|2

)
(g ·X)

2
+ 4

(
1− |g|2

)
|g ×X|2

=
(
1− 2|g|2

)2 |X|2 + 4
(
1− |g|2

)
(g ·X)

2
+ 4

(
1− |g|2

)(
|g|2 |X|2 − (g ·X)

2
)

=
[(

1− 2|g|2
)2

+ 4 |g|2
(

1− |g|2
)]
|X|2 = |X|2 . (A.23)

where we have used X · (g ×X) = g · (g ×X) = 0, and

|g ×X|2 = εijkgjXkεimngmXn = (δjmδkn − δjnδkm) gjXkgmXn = |g|2 |X|2 − (g ·X)
2
. (A.24)

Thus, the orbit is simply given by the points with R3 with a fixed |X|, i.e, a 2-sphere centered at the origin.
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B Useful mathematical results

B.1 Block matrix manipulations

In this section, we describe a few well known results to do with operations on partitioned matrices with

square blocks[119]. Consider a square matrix of dimensions 2n × 2n, consisting of blocks of dimensions

n× n:

M =

(
A B

C D

)
. (B.1)

We seek formulae relating the properties of M to those of A,B,C,D. The starting point is a decomposition

of M in terms of triangular matrices,

M =

(
A 0

C 1

)(
1 A−1B

0 D − CA−1B

)
, (B.2)

or, alternatively,

M =

(
1 B

0 D

)(
A−BD−1C 0

D−1C 1

)
, (B.3)

which can be verified by a direct computation.

Using this, we can compute the determinant of M as

detM = det(A) det(D − CA−1B)

= det(D) det(A−BD−1C) (B.4)

The quantities of the form A−BD−1C that appear in these expressions are known as Schur complements,

usually denoted by

M/D = A−BD−1C, (B.5)

where the order of the matrices in the second term is clockwise in M .

Now the inverse. For a lower triangular matrix with nonsingular A and D, the inverse can be computed
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as (
A 0

C D

)−1

=

(
A−1 0

−D−1CA−1 D−1

)
. (B.6)

Similarly, for an upper triangular matrix,

(
A B

0 D

)−1

=

(
A−1 −A−1BD−1

0 D−1

)
. (B.7)

An expression for inverse of M is

M−1 =

(
1 A−1B

0 M/A

)−1(
A 0

C 1

)−1

=

(
A−1 +A−1B(M/A)−1CA−1 −A−1B(M/A)−1

(M/A)−1CA−1 (M/A)−1

)
(B.8)

This expression is not very useful in general, but it illustrates the principle of decomposing a block matrix

into a product of upper-triangular and lower-triangular matrices and computing the inverses individually,

using the expressions above.

B.2 A parametrization of Sp(2,R)

We seek to parametrize Sp(2,R), and show that it is homeomorphic to a solid 2-torus[120, 121]. This can be

shown using an Iwasawa decomposition[122]. Explicitly, let us consider a matrix S ∈ Sp(2,R), parametrized

as

S =

(
a+ b c− d
c+ d a− b

)
, (B.9)

with (a, b, c, d) ∈ R4. The determinant condition, detS = 1, demands (a2 + d2) − (b2 + c2) = 1. Hence,

Sp(2,R) corresponds to a submanifold of R4 of codimension 1, which can be thought of as a 4-dimensional

analogue of a hyperbola. We reparametrize

a = cosh η cos θ1

b = sinh η cos θ2

c = sinh η sin θ2

d = cosh η sin θ1
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where η ∈ R and θi ∈ [0, 2π). This makes Sp(2,R) homeomorphic to R× S1 × S1 ∼= R× T 2. Define

χ =
1

2
(1 + tanh η) ∈ (0, 1), (B.10)

so that Sp(2,R) ∼= D × S1. Finally, it is straightforward to embed the torus formed by (χ, θ1, θ2) in R3.

This parametrization also provides a particularly simple proof of the fact that π1(Sp(2n,R)) ∼= Z for the

n = 1 case. Generally, the proof involves the fact[100, 71] that U(n) ⊂ Sp(2n,R) is its maximally compact

subgroup, so that Sp(2n,R) has U(n) as its strong deformation retract. Furthermore, π1(U(n)) ∼= Z, which

can be seen by the determinant map for U ∈ U(n) as U 7→ detU ∈ S1, and π1(S1) ∼= Z.

For Sp(2,R), consider the deformation retract

St = S(ηt, θ1, θ2) : [0, 1]→ Sp(2n,R). (B.11)

For t = 1, we recover S, while for θ = 0, we get

a0 = cos θ1, d0 = sin θ1, b0 = c0 = 0

so that S0 is parametrized simply by θ1 ∈ S1, which implies that S1 is a deformation retract of Sp(2n,R),

which proves our result.
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C Miscellaneous

C.1 Fermi-Dirac distribution and integrals

Consider a gas of fermions in the grand canonical ensemble. Owing to the Pauli exclusion principle, a

given microstate can either be unoccupied or occupied by exactly one fermion. Thus, the 1-particle grand

canonical partition function z is

z =
∑

states

e−β(ε−µ) = 1 + e−β(ε−µ), (C.1)

where ε is the energy of the microstate, β = T−1 is the inverse temperature and µ is the chemical potential.

The corresponding grand potential g is

g = − 1

β
ln z = − 1

β
ln
(

1 + e−β(ε−µ)
)
. (C.2)

The grand potential is the generator for a variety of other relevant functions, such as the probability of

occupation of a given state f (Fermi-Dirac distribution) or the 1-particle entropy h:

f = − ∂g
∂µ

=
1

1 + eβ(ε−µ)
, h = − ∂g

∂T
. (C.3)

These follow a highly nontrivial relation:

h = −
∑

states

pi ln pi = −f ln f − (1− f) ln(1− f)

=
1

1 + eβ(ε−µ)
ln
(

1 + eβ(ε−µ)
)

+
eβ(ε−µ)

1 + eβ(ε−µ)
ln

(
1 + eβ(ε−µ)

eβ(ε−µ)

)
= ln

(
1 + eβ(ε−µ)

)
− eβ(ε−µ)

1 + eβ(ε−µ)
β(ε− µ)

= ln
(

1 + e−β(ε−µ)
)

+ β(ε− µ)

[
1− eβ(ε−µ)

1 + eβ(ε−µ)

]
= β [−g + (ε− µ)f ] .
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Thus,

g = (ε− µ)f − Th. (C.4)

C.2 Symplectic forms in noninertial frames

Consider the generalized Liouville 1-form for the dynamics of a classical particle on Rn,1 with an isotropic

momentum-dependent Hamiltonian:

ηH = pidx
i −H(|p|)dt. (C.5)

We seek a Hamiltonian formulation of this system as seen from a noninertial frame of reference. We switch

frames by a time-dependent change of coordinate xi = Oij(w
j + ξj), where w(t) corresponds to a Galilean

boost and O(t) ∈ SO(n) to a time-dependent rotation, so that ξi is the position coordinate in the noninertial

frame.

The derivation of a suitable symplectic form describing the dynamics in the noninertial frame then involves

a choice of the definition of “momentum”. The most straightforward choice is the canonical momentum,

defined as πj = piO
i
j , which preserves the canonical (pidx

i) form of ηH . We also define the velocity of the

frame as vi = ∂tw
i and its vorticity as (O−1∂tO)ij = − 1

2ωij , both of which may depend on time. The

vorticity satisfies ωij = −ωji, which simply follows from the orthogonality of O.

The Liouville form becomes

ηH = πidξ
i −
[
H− πivi +

1

2
ωijπiξj

]
dt ≡ πidξi −H′dt, (C.6)

where assuming a slowly accelerating and rotating frame, we have only retained the terms linear in ω and

v. Thus, for the canonical momentum, the change of frame keeps the symplectic structure invariant, while

changing the Hamiltonian. In other words, ξ and π are canonically conjugate.

An alternative choice of momentum is the kinetic momentum, which intends to keep the equation of

motion for ξ̇i invariant. To wit, consider the symplectic form in rotating coordinates

ρH ≡ dρH = dπi ∧ dξi −
[
∂H
∂πi

dπi − vidπi +
1

2
ωij (πidξj + ξjdπi)

]
∧ dt. (C.7)

The equations of motion become

ξ̇i =
∂H
∂πi
− vi +

1

2
ωijξj , π̇i = −1

2
ωijπj . (C.8)
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Then, one seeks the kinetic momentum ψi, in terms of which the equation of motion for ξ becomes ξ̇i =

∂H/∂ψi. We elucidate this by examples in the following.

Massive case: Consider a massive classical particle, so that

H =
|p|2
2m

=
|π|2
2m

=⇒ ∂H
∂ψi

=
πi
m
.

Then, the kinetic momentum is defined by setting

ξ̇i =
ψi
m

=⇒ πi = ψi +m

(
vi −

1

2
ωijξj

)
, (C.9)

so that

H′ =
|π|2
2m
− πivi +

1

2
ωijπiξj

=
1

2m

∣∣∣∣ψi +mvi −
1

2
mωijξj

∣∣∣∣2 − (ψi +mvi −
1

2
mωijξj

)(
vi − 1

2
ωik
)

=
|ψ|2
2m2

+ ψiv
i − 1

2
ωijψiξj − ψivi +

1

2
ωijψiξj + second order terms

=
|ψ|2
2m2

+ second order terms. (C.10)

It is precisely this cancellation that we seek in defining the kinetic momentum. Thus to linear order in v

and ω, defining ai = ∂tv
i and αij = ∂tωij , the symplectic form becomes

ρH = dψi ∧ dξi +
1

2
mωijdξ

i ∧ dξj +m
(
ai + αijξ

j
)
dt ∧ dξi − d

( |ψ|2
2m

)
∧ dt. (C.11)

We combine the inertial terms as

Ω =
1

2
Ωµνdx

µdxν =
1

2
ωijdξ

i ∧ dξj +
(
ai + αijξ

j
)
dx0 ∧ dξi, (C.12)

the symplectic form simply becomes

ρH = dψi ∧ dξi +mΩ− dH ∧ dt. (C.13)

Here, mω corresponds to the Coriolis force, ma to the inertial force and mαijξ
jdtdxi to the tangential

acceleration due to a variable angular velocity. This does not capture the centrifugal force, as we have

168



ignored the terms at O(ω2).

Massless case: For massless particles, H = c|p| = c|π|; c = ±1, so that the equations of motion become

ξ̇i = cπ̂i − vi − 1

2
ωijξj , π̇i =

1

2
ωijπj .

Taking a cue from the massive case, consider a definition of kinetic momentum as

πi = ψi + c|ψ|
(
vi −

1

2
ωijξj

)
, (C.14)

where we have replaced m with c|ψ|. Defining ψ̂i = ψi/|ψ|, we again get a cancellation in H′ at linear order:

H′ = c|π| − πivi +
1

2
ωijπiξj

= c|ψ|
{∣∣∣∣ψ̂i + vi −

1

2
ωijξj

∣∣∣∣− (ψ̂i + vi −
1

2
ωijξj

)(
vi − 1

2
ωik
)}

= c|ψ|
{[

1 + 2cψ̂i
(
vi −

1

2
ωijξj

)]1/2

− ψ̂i
(
vi − 1

2
ωik
)}

+ second order terms

= c|ψ|
{

1 + cψ̂i
(
vi −

1

2
ωijξj

)
− ψ̂i

(
vi − 1

2
ωik
)}

+ second order terms

= c|ψ|+ second order terms. (C.15)

Thus, the symplectic form becomes

ρH = dψi ∧ dξi + c|ψ|Ω− c d|ψ| ∧ dt. (C.16)

In considering Galilean boosts (instead of Lorentz boosts), we are ignoring the effect of time dilation,

including which will lead to corrections at the next order in Ω.

C.3 Transfer matrix for Chern insulator

The Chern insulator is a 2-dimensional lattice model described by the lattice Hamiltonian[40]

H = a sin kxσ
x + a sin kyσ

y + b(2−m− cos kx − cos ky)σz (C.17)
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The system is gapped in the bulk, except for m = 0, 2, 4, when the gap closes. It is topological for 0 < m < 2

with edge states around k = 0 and and for 2 < m < 4 with edge states around k = π.

Let us put the Chern insulator on a cylinder which is periodic along y and finite along x. Then, we need

to inverse Fourier transform along x (as kx is not well-defined for a finite system) and write the Hamiltonian

as

H(ky) =

N∑
n=0

[
a

2i

(
c†n+1σ

xcn − c†nσxcn+1

)
− b

2

(
c†n+1σ

zcn + c†nσ
zcn+1

)
+ c†n (sin kyσ

y + bΛ(ky)σz) cn

]
(C.18)

where cn(ky) is a row vector, corresponding to the annihilation operator for the two degrees of freedom on

each lattice site and Λ(ky) = 2−m− cos ky. Here, ky (≡ k⊥) just acts as a parameter in the Hamiltonian.

We are only concerned with a topological state for n ≥ 0.

The corresponding recursion relation is

1

2i
(aσx − ibσz)ψn+1 −

1

2i
(aσx + ibσz)ψn−1

= (ε1− a sin kyσ
y − bΛ(ky)σz)ψn (C.19)

We identify the hopping matrix

J =
1

2i
(aσx − ibσz) (C.20)

which has eigenvalues

σ(J) = ±1

2

√
b2 − a2. (C.21)

Hence, J becomes singular when a = b, which is precisely the case that we are interested in. For the

subsequent calculations, we set a = b = 1. Hence,

J =
1

2i
(σx − iσz) = −1

2

(
1 i

i −1

)
(C.22)

and ker(J) is spanned by v = (1, i)T , while ker(J†) is spanned by w = (1,−i)T . The crucial fact, that helps

us compute the transfer matrix, is that v and w are orthogonal, i.e, 〈v,w〉 = 0.
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To see that explicitly, we write out ψn = (ψ1
n, ψ

2
n)T , and the recursion relation as

(
1 i

i −1

)(
ψ1
n+1

ψ2
n+1

)
−
(
−1 i

i 1

)(
ψ1
n−1

ψ2
n−1

)

= −2

(
ε− Λ(ky) i sin ky

−i sin ky ε+ Λ(ky)

)(
ψ1
n

ψ2
n

)
(C.23)

We now premultiply the above expression by (1, i) and (1,−i) to get two recursion relations, one excluding

ψn+1 and one excluding ψn−1. We can simplify these expressions greatly by defining

φn = ψ2
n + iψ2

n, φ̄n = ψ2
n − iψ2

n. (C.24)

Notice that these are not complex conjugates, as ψin’s are in general complex. In terms φ’s, we get

(ε+ sin ky)φn − Λ(ky)φ̄n + φ̄n−1 = 0

φn+1 − Λ(ky)φn + (ε− sin ky)φ̄n = 0 (C.25)

Replacing n→ n+ 1 in the former and reorganizing the terms, we get

(
φ̄n+1

φn+1

)
=

(
1−ε2+sin2 ky

Λ(ky) ε+ sin ky

−(ε− sin ky) Λ(ky)

)(
φ̄n

φn

)
. (C.26)

Hence, we have managed to compute the transfer matrix, acting as

Φn+1 = TΦn, Φn =

(
φ̄n

φn

)
(C.27)

We can explicitly check that det(T ) = 1. The other useful quantity is the trace,

∆(ε, ky) =
1− ε2 + Λ2(ky) + sin2 ky

Λ(ky)
. (C.28)

This is equal to the trace obtained by using the formal construction in eq. (7.29). Finally, we can compute

the band edges and edge states, as described in §6.4.
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C.4 Closed form conditions for physical edge states

In this section, we construct a closed form expression combining the decay and the boundary conditions for

the case when there are an equal number (= r) of eigenvalues are inside and outside the unit circle in the

complex plane, which corresponds to an (ε,k⊥) ∈ G , i.e, in the bulk gap. This implies that TrP< = TrP> =

r, so that P< + P> = 1 and

P<Φ1 = Φ1 =⇒ P>Φ1 = 0. (C.29)

We seek to represent P> in terms of the (generalized) eigenvectors of T . Let ρi ∈ C be the generalized

eigenvalues of T with corresponding left and right generalized eigenvectors being φi’s and ϕi’s. Furthermore,

let us assume that that ρi lies outside the unit circle for i = 1, . . . r while it lies inside the the unit circle for

i = r + 1, . . . 2r. Then, we define the left and right subspaces corresponding to P> as

L> = (φ1, . . . , φr), R> = (ϕ1, . . . , ϕr), (C.30)

where L>,R> ∈ C2r×r span the co-kernel and range of P>, respectively.

If T were normal, i.e, diagonalizable by a unitary transform, then the right eigenvectors ϕi’s form an

orthonormal basis of C2r. As P> projects along a subset of these eigenvectors, it is an orthogonal projection,

which can be written as

P> = ϕ1ϕ
†
1 + ϕ2ϕ

†
2 + · · ·+ ϕrϕ

†
r = R>R†>. (C.31)

Alternatively, in terms of the left eigenvectors, P> = L>L†>. For general T , the analogous expression is the

non-orthogonal representation[123] of P>

P> = R>(L†>R>)−1L†>. (C.32)

Hence, the decay condition P>Φ1 = 0 (eq. (C.29)) implies L†>Φ1 = 0, which, using eq. (C.30), can be

written explicitly as

r∑
j=1

(φ∗j )i(β1)j = 0, i = 0, . . . , r, (C.33)

which constitutes r linear equations for r variables (β1)j . Note that β1 is unique up to a non-zero complex

scalar since the right-hand sides are all zero. Thus the space of unique solutions really is the complex
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projective CPr−1 valued. The equations (C.33) have a nontrivial solution if and only if

det
[
L†>Qβ

]
= 0. (C.34)

which is essentially a Cramer’s condition. The analogous right edge conditions reads as

det
[
R†<Qα

]
= 0 (C.35)

These conditions incorporate both the boundary and decay conditions and can be solved numerically to

obtain ε as a function of k⊥ to obtain the edge spectrum, εedge(k⊥).

Equation (C.34) is very convenient for numerical computations, but we also present an alternative char-

acterization which is more explicit in terms of T ’s projection. The general spectral decomposition of the

resolvent of T [97] yields

P> =

∮
|z|=1

dz

2πi
(z − T−1)−1 =

∮
|z|=1

dz

2πi
T (zT − 1)−1. (C.36)

Essentially, note that the integrand has poles whenever z equals an eigenvalue ρs of T so that |ρs| > 1.

Now, in the simpler case of a normal T , we have P> = L>L†> = R>R†>, so that

det
[
Q†βP>Qβ

]
= det

(
Q†βL>

)
det
(
L†>Qβ

)
= 0. (C.37)

Substituting the integral representation of P> from eq. (C.36), we get

det

[∮
|z|=1

dz
[
T (ε)(zT (ε)− 1)−1

]
ββ

]
= 0, (C.38)

where [∗]ββ denotes the r × r sub-matrix of the argument and we have expressed the ε dependence of T

explicitly. Such an equation, though impractical for numerical computations, make explicit the analytic

properties of an edge dispersion ε(k⊥) in open neighborhoods where it exists as a solution.

In the most general case where P> is oblique(non-orthogonal), the analogue of eq. (C.37) is

det
[
[P†>P>]ββ

]
≡ det[Q†βP

†
>P>Qβ] = 0 (C.39)

where P> is still given by the integral equation (C.36).
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