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Characteristics of the mean-square error surface in adaptive digital filters determine how well
a gradient algorithm performs within a given filter structure, i.e., if the surface has steep slopes and
contains local minima, a gradient algorithm will have difficulty reaching the global minimum. It is
shown that although Stearns’ conjecture holds strictly for first- and second-order filters, it is not
true in general, and that an additional restriction introduced by Soderstrom is needed for unimo-
dality of the error surface. The adverse effect of overparameterization which can have serious
practical implications is shown through an exaﬁple. Also, it is shown that for certain insufficient
order filters, a nonminimum phase characteristic is sufficient for multimodality of the error surface
when the unknown system is driven by white noise. A convenient method for finding the station-

ary points is introduced.

It is also shown how different filter structures of an adaptive filter leads to a change in the
characteristics of the corresponding error surface, and consequently, to a change in the correspond-
ing convergence rate and minimum mean square error. A general theory, based on an analysis of
stationary points, is presented which shows that whenever a direct form IIR filter with a unimodal
MSE surface is transformed into an alternate realization, the MSE surface associated with the new
structure may have additional stationary points, which are either new equivalent minima, or sad-

dle points. The general theory is specialized for the parallel and cascade forms.
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CHAPTER 1

INTRODUCTION

The term filter is often used to describe a device in the form of a piece of physical hardware
or computer software that is applied to a set of noisy data in order to extract information about a
prescribed quantity of interest. This quantity can vary from the heart beat in an electrocardiogram
(ECG) to transmitted signals in communication channels. The predesigned filters used in the com-
munication channels have been effective in a wide variety of applications. Most of these filters are,
of course, optimal in a fixed environment. For instance, a matched filter used in radar applications
is optimal in achieving the minimum probability of error in deciding which signal in a set of a
priori known signals was transmitted in an a priori known fixed channel. But the change in the
environment degrades the performance of some of these filters to an unacceptable degree. If the
characteristics of the channel change, for instance, the matched filter has to be redesigned in order
to off set thé effect of this channel variation. This may not be possible from av practical point of
view. This shows the lack of robustness of such filters underkvarying conditions. However, filters
which are self-designing to adjust (or to adapt) to these variations have a great potenti‘al in replac-
ing the fixed filters. Thé broad range of applications of adaptive filters has led to a global research
in many disciplines. As a result, many algorithms have’been proposed and studied for adaptive
filtering [1]-{26], adaptive echo cancellation [27}-[32]. adaptive channel equalization [33]-[37]. adap-
tive controi [38]-[40], and system identification [41]-[47], some of which are known to have desir-
able convergence properties if certain @ priori information can be assumed from a knowledge of
system characteristics and signal properties. These algorithms and their analyysis can be found in

detail in some recent books [48}-[53].



1.1. Adaptive Filtering

The design of optimal filters requires a priori information about the statistics of the data to be
processed. When this information is not known completely, it is feasible to use an adaprive filter
which relies on a recursive algorithm for its operation. Figure 1.1 shows the general adaptive
filtering configuration in which the coefficients of the adaptive filter are adjusted to minimize the
mean-square value of the error signal e(n). It is assumed that the available information signals,
x(n) and y(n), are correlated; therefore, the adaptive filter tries to remove that component of y(n)
which is correlated to x(n). The complete removal of this component depends on the nature of the
correlation. Two subclasses of adaptive filters can be distinguished analogous to conventional digi-

tal filters: adaptive finite impulse response (FIR) and adaptive infinite impulse response (IIR) filters.

The FIR adaptive filters have been extensively considered for specific applications such as
adaptive noise cancellation [4], echo cancellation [27]-[32]. and channel equalization [33]-[37]. The

signal y(n) is generated by

v(n) = woln) x(n) + wy(n) x(n—1) + - - - + wy_;(n) x(n—N+1) (11.1)
= WT(n) X(n) o
where
REFERENCE SIGNAL
y(n)
INPUT ADAPTIVE . QUTPUT
x(n) @=——  FILTER H(*) = e(n)

/ g(n)

Fig. 1.1. General form of adaptive filters.

.



x(n) wo(n)
x(n—1) wi(n)
X(n) = , W(n)=
x(n—N+1) wN_.l(n)

which is an N-weighted sum of the present and past inputs. The wide applications of FIR adaptive
filters are due to the simplicity of the FIR structure which makes the analysis of the adopted algo-
rithms simpler. It is well known that for FIR adaptive filters in a stationary environment. the
mean square function is given by

E e*(n) = WIRW — 2 WTP + E y2(n) (1.1.2)
with

RAE [X(n) X(n)T

PAE [y(n)X(n) ]

which represents a quadratic error surface! that has a single global minimum point [4]. The unique

minimum is the well-known Wiener solution given by
W*=R"IP . V (1.1.3)

Note that the linear prediction of x(n+1) based on the observation vector X(n) is a special case of
the adaptive filtering problem in Fig. 1.1. Thus, the adaptive filters can f unction as linear predic-
tors, as well. Some well-known algorithms within the discipline of adaptive systems are now intro-

duced.

LMS Algorithm:

The least mean square (LMS) algorithm [1] is a naive, yet attractive, algorithm for its perfor-
mance and its low computational complexity. It uses a simple estimate of the MSE gradient

to update the filter's weights in the direction of the negative gradient ( i.e., downhill) through

W(n+1) = W(n) + 2ue(n)X(n) . (1.1.4)

1 Error surface is an (N+1) dimensional surface which is a plot of E e2(n) as a function of N adaptive coefficients.



It has been shown [1] that if 0 < u < , where A,y iS the largest eigenvalue of R, then

<vmax

(1.1.4) will be stable and W(n) converges to W* in the mean. However, if a vanishing adap-
tive gain is used, the convergence will be guaranteed almost surely at the expense of taking
away the tracking capability of the algorithm.
RLS Algorithm:
The recursive least square (RLS) algorithm, which is formulated through the equation error
method [20], enjoys the unimodality of the error surface in the FIR case. This is because the
algorithm is essentially reduced to a Newton type algorithm ( or known as sequential regres-
sion (SER) algorithm) given by
W(n+1) = W(n) + 2 Mm)X(n)[ y(n) = Wi (n)X(n)]

M(n—1DXm)XT(n)M(n~1) (1.1.5)
1 + X™(n—1)X(n)

M(n) = M(n—1) —

where M(n) is an estimate of R™1. For this reason, RLS is normally faster than the LMS algo-
rithm. The difference between the two becomes much more evident as the input signal x(n)
becomes more colored. In other words. as the eigenvalue spread of the input autocorrelation
matrix,. measured by the condition number, gets larger, the LMS algorithm convergence rate
decreases. Meanwhile, the RLS algorithm normalizes this spread by estimating the inverse of

the input autocorrelation matrix within the algorithm.
FDLMS Algorithm:

The drastic degradation of LMS in the colored input case was resolved by the introduction of
the frequency domain LMS (FDLMS) algorithm [8],[9], which bas the effect of whitening the
input to the adaptive FIR filter. This is achieved by passing the input through a bank of
band-pass filters whose outputs are used as the inputs to the taps. It was concluded that this
bank of band-pass filters does an FFT operation on the input which whitens it to some degree.

The update equation is given by



W(n+1) = W(n) + 2ue(n)A2Z%(n) (1.1.6)
where
A =diaglogo?...o2.,| . o2=E [lzi(n)lzl
Z(n) =T X(n) . T= [tkl]
27 ¢
ta=eN  , k,1=0,1, -~ ,N—1.

These and other algorithms have made the adaptive FIR filtering literature quite rich. On the con-

trary, the literature for adaptive IIR filtering is scarce.

The advantages of IIR filters over FIR filters are well known, e.g., for the same performance,
IIR filters require much fewer computations than FIR filters, and IIR filters can usually match phy-
sical systems well whereas FIR filters often give only a rough approximation of them. This is also
true in the field of adaptive filtering. However, unlike adaptive FIR filtering, the error surfaces for
adaptive IIR filters may not be unimodal, and the poles may move outside the unit circle during the
adaptation. These considerations make thekadaptive IIR filtering mkuch more difficult. In order to
discuss several issues in IIR adaptive filtering, let us assume thaf the reference signal y(n) is gen-
erated by the input x(n) through some unknown system. Then, the adaptive filtering problem

becomes a system identification problem, as shown in Fig. 1.2. It is further assumed that

v(n)

INPUT
UNKNOWN OUTPUT
' SYSTEM
%x(n)
'——-——- :
e(n)
ADAPTIVE IR
WS
SYSTEM §tn)

L ‘

Fig. 1.2. System identification configuration.



y(n) = I—S—Eg;;%x(n) + v(n) (1.1.7)
q

where

D@ ) =do+diq7t +...+d,,q™,

Cl@)=1+ciqt+... +Cq, q

are coprime polynomials of the unit delay operator g~ and v(n) is additive noise. The transfer

: . D(z! . . . .
function of the unknown system is %_;_ whose poles are assumed to lie strictly inside the unit
z

circle. The additive noise v(n) is a zero mean stochastic process that is independent of x(n). Let

the adaptive system be an IIR filter whose input-output relation is governed by

sy~ Bl@ln)
y(n) m X(n). (11.8)

where

Blg™n) =bp(n) + by(n) g7+ ..+ b, (W) g™,

Al@ln)=1+a(n)qt+...+ a,(n)q ™

Figure 1.3 shows the system identification mode of adaptive IIR filtering with the assumption that

(1.1.7) and (1.1.8) hold.

In 1981 Stearns [12] conjectured that if the input excitation x(n) is a white process and if the
adaptive filter has a "sufficient order” with respect to the unknown system, i.e., n, 2 n, and
ny 2 ngy. then the error surface will have no local minima. Based on this conjecture, the error sur-
faces of the IIR adaptive filters can be classified [22] as:

1) sufficient order with white noise excitation;
2) sufficient order with colored (noise) excitation:
3) insufficient order with white noise excitation;
4) insufficient order with colored (noise) excitation.
It is understood that to ensure possible parameter convergence, the input should always be per-

sistently exciting which necessitates the following definition by [51]:



v(n)
D(g™)
Clg™
=)
y(n)
+
x(n) —— | C}-—————) e(n)
BRECY)
B(q~1,n)
A(g7ln)

Fig. 1.3. System identification with linear time invariant model.

Definition:
A process x(n) is persistently exciting of the order %, in a stationary environment if
a) its kxk autocorrelation matrix R is positive definite,

b) it is ergodic or mixing.

The stationary input x(n) is ergodic when its asymptotic time average is equal to its ensemble
average. But the mixing condition is a weaker condition than the ergodicity requirement. It
merely guarantees that future input carries information that is independent of the present and

past inputs. This is essential for the convergenceof the adaptive algorithm.



1.1.1. RLS vs. gradient algorithm for IIR filters

The autoregressive-moving average (ARMA) model set up under the equation error approach
is an IIR filter formulated in an FIR setting. To clarify, the output of this adaptive filter y.(n) is

considered to be generated by

ve(n) = [1—A(q’1.n) y{n) + B(g™%,n) x(n) (1.1.9)

Hence, y.(n) is not recursive. This formulation has resulted in the development of many algo-
rithms, such as RLS, whose convergence analyses are straightforward. In the sufficient order case,
the unique attracting solution of many such algorithms corresponds to the global minimum point

of the error surface. If we define
e.(n) & y(n)=y.(n) = A(g™1.n) y(n) — B{g™1.n) x(n) (1.1.10)

then, in the steady state, Fig. 1.3 can be represented alternatively as shown in Fig. 1.4.

v(n)
D(qg™) -
Nes0) ‘A(q )
x(n) \ L ——=e(n)
B(g~1.n)

Fig. 1.4. Alternative representation of Fig. 1.3.



K=1
The equation error approach minimizes the function % 2.e2(n)| (or Eel(n) by ergodicity
0

assumptions) while the output error approach minimizes E e*(n). But minimization of E e2(n)
through the RLS algorithm (1.1.5) by replacing W(n) and X(n) with
8 =[a;(n) -+ a,(n) byln) - -- by, (W' and ¢ =[y(n—1) -+ ylo—n, x(n) --- x(o-n,)]F .

respectively, produces biased estimates in this case [46]. To cure this, the algorithm proposed by

Fan and Jenkins [22] suggests that the operation K(i—l-)- is done on the input first and then the
g~ in

equation error approach is used for optimization. This alternatively results in the Steiglitz-
McBride algorithm [45] which has been analyzed for uniqueness of the solution and for conver-

gence properties.

However, the algorithms based on a gradient search for updating the coefficients of the IIR
adaptive filter are complex to analyze directly. This is due to the nonlinear nature of the algo-
rithms. For instance, Stearns’ algorithm, which is the simplest gradient algorithm with constant

step size, is given by

* 1

a(n+1) = a;(n) — 2pe(n) ——— y(n—i)
- Alg ;’n> (1.1.11)
bi(n+1) = bi(n) + zue(n)m x(n~j)

But the error surface can determine the possible behavior of such algorithms. For instance, unimo-
dality means the uniqueness of the estimate and if certain regularity conditions are satisfied the

algorithm converges to a neighborhood of the unique solution.

The ordinary differential equation (ODE) method [48],[55] is also a nice tool to understand the
transient behavior of many algorithms and their convergence to the solution. It has been proven
[48] that if the adaptive algorithm uses a vanishing gain, the convergence to the solution is in an
almost everywhere sense while constant adaptive gain guarantees the convergence only to a neigh-
borhood of the solution in the probability sense (weak convergence). This method was used in [22]

o show the weak convergence of Fan-Jenkins algorithm to the unique solution. This method can
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be applied to the gradient techniques, as well [56].

For insufficient order adaptive filters, gradient search algorithms may be more suitable. The
reason is that the algorithms formulated under the equation error approach may very well have
solutions, although unique, which do not coincide with the global minimum of the corresponding

error surface [20]. Therefore, the study of error surfaces in this case is essential to find the MMSE

solution attained by gradient methods.

The alternative realizations of conventional (fixed) filters is a classical subject in almost every
signal processing textbook [57],[58]. The advantages of the parallel and the cascaded structures over
the direct form are well known. For instance, the low sensitivity of these structures to roundoff
and quantization error noises makes them more robust than their direct form counterparts. These
realizations have also been considered for adaptive filtering applications [10][11],[24]-[26] and some

promising behavior has been observed with regard to convergence and pole monitoring capabilities.

1.2. Overview of the Presentation

The goals of this thesis are primarily twofold: (1) to address the question regarding the
uniqueness of the estimates obtained by the gradient algorithms in the field of adaptive IIR filter-
ing. and (2) to introduce and analyze the alternative structures of IIR filters. They are achieved in

two, essentially self-contained, Chapters (2 and 3), respectively.

In Chapter 2, the shapes of the four classes of error surfaces introduced above are investi-
galed. In particular, Stearns’ conjecture which concludes the unimodality of class 1 error surfaces is
restated and a counter example is developed through the notion of degenerated solutions introduced
by Soderstrom[41]. In addition, a case of overparameterization is sited which shows the creation of
local minima on the performance surface. This adverse effect can have serious practical implica~
tions. Also, some sufficient conditions regarding multimodality of error surfaces of insufficient
order adaptive filters are introduced. The derived conditions are then applied to some already

existing examples in the literature [12].[15]. The analysis in this chapter results in a unification of



i1

the existing knowledge in the system identification with adaptive filtering.

To overcome certain shortéomings of the direct form IIR adaptive filters, such as complicated
pole monitoring and slow rate of convergence, alternative structures of IIR adaptive filters will be
introduced in Chapter 3. Nume;‘ical examples are used to point out some desirable behavior of the
parallel form. Some analyses are then carried out to relate the characteristics of the error surfaces
in the direct form with those of equivalent realizations. Several examples are introduced which set
the groundwoi—k to generalize important characteristics of the error surfaces in the parallel and cas-
cade forms. The analyses given have a great potential to be applied to the bandpass adaptive IIR
filtering algorithm, introduced by Shynk er al.[10][11] which has shown promising performance in

various applications.
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CHAPTER 2

CHARACTERISTICS OF ERROR SURFACES FOR

ADAPTIVE IIR FILTERS

2.1. Introduction

In 1981 Stearns [12] conjectured that if the input excitation x(n) is a white process and if the
adaptive filter is of sufficient order with respect to a linear unknown system, then the error surface
will have no local minima. In 1982 Soderstrom {43] proved Stearns’ conjecture indirectly for the
special case in which the degree of the numerator in the adaptive filter plus 1 is at least as great as

the number of poles of the unknown linear system.

In this chapter it is shown by example that when this additional constraint imposed by Soder-
strom i§ not satisfied, Stearns’ conjecture can be false. To show the multimodality of the error sur-
face associated with this example, we use the notion of degenerated points introduced by Soder-
strom [41]. It is concluded that Soderstrom's constraint is sufficient but not necessary. In addition,
another sufficient order. but overparameterized, filter is considered which shows the sensitivity
issue surrounding exact knowledge of the unknown system'’s order. Lack of this knowledge will
lead to underparameterization or overparameterization. which are shown to be undesirable. We
present a necessary and sufficient condition which is less stringent than Soderstrom’s. The
definition of de’generated points is extended when x(n) is white noise and some sufficient conditions
are given for multimodality of the error surfaces of "insufficient order” adaptive filters. Finally,
some insight regarding the pole locations of the minimizing solutions with respect to the unknown

Ssystem parameters is presented.

2.2. Degenerated Points and Saddle Points

Let us consider the model representation in Fig. 1.3 where the adaptive IR filter in (1.1.8) is

considered frozen. In other words, it does not depend on the time variable n. Then. the mean
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square error (MSE) is given by

2

D™ _ Bla™ .y + E[va, 22.1)

2 =
Ele?(n)] = E SO RCED

which is a function of the parameter vector 8(a,b) where

a=[a, - -a, ],

b=[byb; b,

The stationary points of the MSE functional are the solutions of

D@1 _ Bl@™® |, . Bl@™h N <i< ‘

Clg™1) A(@g™D J:&(n) A2(q—-1) x(n—i) 0. 1%isn, (2.2.2?.)
D(q™) _ B(g™ ) i e <<

Cl@g™)  Alg™ ]X(n) Alg™) xla=i)) =0, 0Sisn, (2.2.2b)

which are obtained by setting to zero the gradient of E[e?(n)] with respect to a and b. Let us assume
that 8" is a stationary point and correspondingly A*(q™!) and B*(q™!) satisfy (2.2.2a) and (2.2.2b).
Then. if (2.2.2b) is multiplied by b;* and summed over j ( or al;ernatively. (2.2.2a) is multiplied
by a;" and summed over i ), we get

D(g™") _ BY(g™
Clg™»  A*q™

B*(g™") _
x(n) - 7‘?‘(—?1:—1).}((11) = Q. (2.2.3)

The MSE (2.2.1) at this stationary point could be expanded to

D(q™") _ Bgq™H)
Cl@™)  A*q™D

Ele*(n)] = E x(n) | + E[v2]. (2.2.4)

D(g~!) _ BYgq™ )
C(q—l) At(q_i) ]x(n)

Using Equation (2.2.3), the expression in (2.2.4) is reduced to
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D(g™!) _ B(q™)

Ele*(n)] D A x(n) - O )x(n) + E[v?]
(2.2.5)
_=|D@" B(g™) D™ 2
E o )x() A'( 5 x(n) - e )x(n) + E[v2].
Now, if 22::2 in the second term after equality is replaced by ggg:g - i:((z:ll)) + i:((?;:l’)) ,
then using (2.2.3) Equation (2.2.5) is reduced to
; _ 2
Ele(n)] = E ‘égg_g x(n)| — B,Eq ))x(n> + E[v2) (22.6)

Note the close similarity of (2.2.6) with the minimum norm obtained by the minimum norm esti-
mator in linear spaces. As a matter of fact, if an adaptive FIR is used, i.e., when A(q™*) = 1, there
is only one stationary point, which corresponds to the Wiener solution of the underlying linear

vector space.

Soderstrom [41] introduced the notion of degenerated points for adaptive filters with by = 0.
Since we intend to use the more general filter structure (1.1.8), a slightly more general definition of
degenerated points is introduced when x(n) is a white process. Based on this definition, it will be
shown that a degenerated stable stationary point is a saddle point. Existence of such a saddle point -
which was to be equivalent to the existence of multiple minima is the key to establishing a set of
sufficient conditions which result in the multimodality of error surfaces when x(n) is white. (x(n)

is assumed white throughout unless stated otherwise.)
Definition:

The degenerated points are the points in the parameter space such that B(q™)=0 if ny<n,,
and B(g7V=L(q™HA(q™") if ng>n, where L{q~D=ly+;q7 1+ - - - +lnb_naq—(nb_n°), which includes

B(g~1H)=0.
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Theorem 2.1:
A stable degenerated solution of (2.2.2) is a saddle point.
Proof: Based on the definition of degenerated points we consider two cases:

Case 1: n,<n,

Since B(q™1)=0, (2.2.2) is reduced to

D(q™") o1
E Sl x(n) AT

It has been proven in [41] that the solutions of (2.2.7) are saddle points. See Appendix A

x(n—j) | =0 , 0<j<n,, 2.7

for the details.

Case 2: n,2n,
The degenerated points are of the form B(q~1)=L(q )A(q™?) and (2.2.2) is reduced to

Piq_-:i)_—]_,(q—l)

Clg™) )

1 , )
x(n—j) =0, 0<i<n, . (2.2.8)
A(g™D) ! ; DRI

Now it can be shown that stable solutions of (2.2.8) are saddle points. If the polynomial

B(q™!) is represented as

B(q™) = L(g™)-A(g~)+8(qg™D)

where

Blqg™H= 2, Bg™

i=ny—n,+1

then minimizing (2.2.1) is equivalent 10 minimizing

2

D(q™) _y /. —1n_ B(@™) :
o) L(g™) o) x(n) (2.2.9)

with respect to the parameters a;,l; and By . This is so because there is a one-to-one
correspondence between (a.b) and (a.l,B) points. If the gradient of (2.2.9) with

respect to {; parameter is set to zero, we will have
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-1
gg;g L(q~1)— B((q )) x(n)x(n=P| =0, 0<j<n,—n, (2.2.10)
Note that
i((zj; x(n)x(n—-j) =0, O.Sjsnb_na— (2211

with x(n) being white. This clearly shows that the optimal L(q™?) polynomial, denoted

by L*(g™1). is the same for all the stationary points of (2.2.8) and satisfies

ggq‘i —L(q™) () x(n—) =0 . 0 i<ny=n, (2.2.12)
If L*(g™1) is substituted in (2.2.9), ggq i —L*(q7D | is then fixed. The degenerated
' q

point solutions corresponding to B(q™1)=0 are the solutions of

x(n—j)- (q ) ~L*(q™

) x(n) |=0 , n,—n,+1<j<ny, (2.2.13)

gl
A (g™

which corresponds to a saddle point by [41]. O

This theorem simply states that the degenerated points are not extreme points. However, the
significance of these points is expressed by the next theorem which predicts the multimodality of
the error surface if such points exist. In other words, non-uniqueness of the estimates could be

concluded.

Theorem 2.2:

If n, > ny =0 orn, =n, =1, the existence of a stable degenerated solution implies the mul-

timodality of the error surface of (2.2.1).
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Proof: Since a stable degenerated solution is a saddle point by Theorem 2.1, the proof is immediate

by [41]. O

" It should be pointed out that the analysis of degenerated solutions is independent of the
parameter n* & min(n,~n..n,—ny). This means that Theorem 2.1 and Theorem 2.2 are true for both
the sufficient order case, i.e., when n* 2 0, and insufficient order case, n* < 0. We now apply

Theorem 2.2 to the sufficient order case to construct a counterexample to Stearns’ conjecture.

2.2.1. Stearns’ conjecture and its counterexample

Stearns [12] examined the behavior of the error surfaces of first-order and second-order IIR
filters driven by white noise. In particular, he realized when first- and second-order filters were of
sufficient order, i.e., ones for which n* = min (n,—n,.n,—ng) = 0, the error surfaces did not attain

any local minimum. Based on this observation he introduced the following conjecture:
Consider the system (1.1.7) in which x(n) is white. Then, withn* 2 0 , the solution of (2.2.2) is

given by

A@H=cl@hHa(@E™,.

B(g™) = D(g~VH (gD,

where H(g™) = 14+ h, g~ + ...+ h .q™ is an arbitrary polynomial restricted only to have

n

all zeros inside the unit circle.

The indirect proof of this conjecture by Soderstrom [43] confirmed its validity when

(ny+1) = n, 2 0, (2.2.14)
Le., when the number of free parameters in the numerator of the filter is at least as great as the
number of poles of the unknown linear system. An alternative proof has been given in Appendix
B. Note that this condition is always satisfied for the first-order case. Hence, no local minimum
exists for first-order IIR adaptive filters of sufficient order. However, for the second-order case,

violation of this condition seems to result in no contradiction to Stearns’ observation. In fact. the
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only situations in which the condition can be violated are when n,=nq=0 and n,=n.=2. Then, the

bo
second-order filter ——— _ is of sufficient order to identify the unknown linear system
1+a,z2 a2

do

———————— which does not satisfy (2.2.14). Despite the fact that Soderstrom’s proof does not
1+c,z 7 4coz7?
cover this case, it was shown by Stearns in [12] only by examples that this second-order case has a
unimodal error surface. This behavior can be proven by Theorem 2.2 as follows. To find a degen-
erated solution we let by =0 in (2.2.2). Equation (2.2.2a) is trivially satisfied and (2.2.2b) is
reduced to

E|——— x(n). ! x(n)|=0. (2.2.15)
1+ciz 7 4c,z72 14+a,z 14+a,272

Since do=0, (2.2.15) can be written equivalently as

1 1 dz
b, — =0, 5
¢‘|Z| =1 1+a12+a222 1+ciz Hcz 2 1 2 (2.2.16)

where ®,,=1 for white x(n). Using the residue theorem, (2.2.16) is reduced to
1—ax,=0. : (2.2.17)
Since lczl<1, (2.2.17) implies that |ay|>1 which corresponds to an unstable solution. Therefore,

there exists no degenerated point within the stability region such that (2.2.2) holds.

However, if we consider a third-order filter, the conclusion is different ( see [59],[60]). Let

. . do .
the unknown system be given by the transfer function which is being

1+ciz 4cz 74 cz73

b
identified by a filter of the form i . According to Theorem 2.2, if (2.2.2) has a
1+a;2 4az % +az73

stable solution, multiple minima exist on the MSE surface. When b, =0, Equation (2.2.2b) can be

equivalently written as

1 9§ : ' - =0 (2.2.18)
=1 14a,z+a,z°+azz® 1+cz iz 24z 2 ' -

which can be evaluated by the residue theorem. This leads to the condition that
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cfag—(a;c c3—cicp+203)a3—asc,+a ac3+1 = 0. , (2.2.19)

This is a three-dimensional surface in the a;~—ap—a;z plane, and if this surface has a nonempty inter-
section with the stability region shown in Fig. 2.1 ( see [61] for details), then multiple minima
exist. Let us suppose that ¢c; = —2.4, ¢; = 1.91 and ¢35 = —0.504, which correspond to the unknown

system having poles at 0.7, 0.8 and 0.9, A stable solution is easily found to be
a;=4,=0, 23;=0.2854

which indicates the existence of the saddle point (0,0.0.2854, 0) on the error surface. Figure 2.2
(courtesy of Prof. Fan [62]) shows 3-D contours of the normalized reduced error surface [12] as a
function of a;, a; and a3. Two separate bodies are evident which indicate the presence of two

minima. The global minimum is at (a;.35.a3) = (~=2.4,1.91,~0.504) with zero normalized MSE, and

Q3

Fig. 2.1. The stability region of a third-order polynomial
viewed with the indicated axis directions.



(b) NMSE = 0.99950

Fig. 2.2. The 3-D error contours of the counterexample with normalized MSE values shown.
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the local minimum point is approximately at (—0.6563,—0.4727,0.8167) with normalized MSE of
approximately 0.999488. Note that the whole 3-D surface is contained in the stability region. The
surface of saddle points (2.2.19) intersects the stability region and separates the two bodies in Fig.

22.0

A deeper local minimum is expected as the order of the unknown system increases and the

left-hand side of (2.2.14) grows more negative.

2.2.2. Overparameterization

When there is uncertainty in the order of the unknown system, which is usually the case, the
tendency is to overparameterize the adaptive filter. As Stearns’ conjecture suggests, the overparam-
eterization should not cause any problem for practical purposes as long as Soderstrom'’s condition is
satisfied as well. Otherwise, local minima may appear on the error surface. To see this, consider the '
counterexample which was just introduced. In the general form, let ¢3 = 0 in which case a second-
order unknown system is being identified with a third-order adaptive filter. The analysis of the
degenerated points given previously is still valid and all that needs to be done is to set ¢; equal to

zero. This reduces (2.2.19) to
C1C23.3—'a2C2+1 =0, (2220)

which is a hyperplane parallel 1o the a; axis for a given c¢; and ¢;. Depending on how this hyper-
plane cuts the 3-D stability region shown in Fig. 2.1, we could have two, one or no local minima on
the error surface. For example, if ¢; = —0.2 and ¢; = 0.82, then Fig. 2.3 (courtesy of Prof. Fan
[62]) shows that the hyperplane partitions the stability region into three parts. In each part, ﬁhere

is a minimum, two of which are local minima.
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(f) NMSE = 0.9999

Fig. 2.3. Continued.
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2.3. Insufficient Order Filters

To simplify the task of analyzing error surfaces, Theorem 2.2 can also be applied to
insufficient order filters where n*<0 . It provides the necessary tool to establish conditions for
existence of multiple minima even for insufficient order filters. We now give two examples which

are analyzed for comparison purposes using both the conventional method and Theorem 2.2.

Example 2.1:

Suppose that the unknown system in Fig. 1.3 is given by do + d;z7* + d;z™? and an adaptive IIR

botbiq " . . .
filter of the form : —— is used to minimize the mean square error. Equation (2.2.2) yields
—aq
bot+biq™?
20T x(n=1)
(1—aq"1) -1
1 -1 > botbig
E — x(n) (dg+digt+dg?— ——— ) x(n) | = 0, (E2.1.1)
1—aq™! 1—aq™?
L x(a-1)
1—aq™!
which can also be written as
0 by by
1-a 0 |Rh=0, (E2.1.2)
O 1 —a
where
1
x(n)
(1—aq~1)?
R=E |1  x(a=1) ! x(n) ! ia-1) 1 x(n—2) R Y |
(1—aq™1)? 1—aq™ 1—-aq™! 1—aq™! 1—aq™!
x(n=2)
(1—aq™?)?

and
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hy do—by

hl dl"ado"bl
h = hz = dz-adl
h3 - adz

First assume that ab, + b; 3 0 so that in (E2.1.2) R h = 0 . This simply implies that h is in the null

space of R. Here x(n) is a white process with unit variance. Then, it is found that

1 a(2—a?) a?(3—2a?) a3(4—3a2)
a 1 a(2—a?) a%(3-2a?) |,

BT
(1~a%) a? a 1 a(2-—a?)
and
-1
hy 1 a(2—a?) a%(3—2a?%) a3(4—3a°) 0
h; |= —h; | a 1 a(2—a?) a’(3—2a%) | =h;| a?
h, a2  a 1 a(2—a?) —2a
Therefore
0
a2
b=y |y | (E2.1.3)
1

1 0 0 Bo
—a 1 0 by
0 0 —-a 0
Consequently, equating (E2.1.3) to (E2.1.4) results in the following equation
1 0 0 O dy by
- —52 d b
a 1 0 a 1 - 1 (EZI.S)
0 —a 1 2a d, 0 r

Using Cramer’s rule it is found that
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(abo‘*'b[)
de=b d; = ——- (1—-22%)
0= bo S CPC)
(abg+by) y (abp+by)
= a R
P a7 (12?7
d
.Obviously, 2=_2 — Where is the monotonically increasing function shown in Fig. 2.4.
d; 1—2a* 1—-2a®

d
When l-ail < 1 there is a unique stable solution for a -in the (-1,1) interval which represents the
: 1

global minima. Otherwise, if l?ii | > 1, there are two solutions for a which correspond to two
1

minima.
Now consider the case where abg + b; =0, which corresponds to the degenerated point solu-

tion (Theorem 2.2), B(g™!) = L{g7HA(g™"). In this case (E2.1.2) yields

e s |

Fig. 2.4. Existence of stable solutions in terms of the model

d
parameter in Example 2.1 where péd—z.
1



dy+ad, = O,

bo = d0+ad1 +32d2.
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(E2.1.6)

Since a should be stable, there is a solution to the first equation in (E2.1.6) if there is a local

d
minimum. The condition for this to happen is |ail > 1 which is precisely what we just concluded
i

from the tedious calculations above. Then, the second equation implies that by, = d,. Notice the

pole-zero cancellation which occurs for this case. O

Example 2.2:

Suppose that the unknown system in Fig. 1.3 is given by dy + dyz™! and an adaptive IIR filter of the

(E2.2.1)

(E2.2.2)

x{(n—3)

form : _t;_*_ —- is used to minimize the mean square error. Setting V4E e? = 0, we get
—d1q "Taq v '
b
x(n—1)
(1—a1q"1+a2q‘2)2
b - b
E x(n—2) | | (do+d;qt — )x(n) | = 0,
(1—a;q~t+a,q?)? o 1—a;q~*+a,q™
1
x(n)
1-a,q 7 +a,q7?
which is equivalently written as
0 b 0
0 0 b|RIh=0
1 —a; a,
where
1
x(n)
(1—a;q 7 +a,q2)?
1 1 ] 1
R o =5 x(n—1) T —— x(n) P
1—a;q~ " +ayq Ta1q TTaxq a1q Taxq
1
x(n—2)
(1—a;q ' +a,q72)°

and
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h() do"'b

hl dl_ado
h = =

h2 agdo_aldl

h, axd;

Let us first assume that b = 0 so that in (E2.2.2) Rh = 0. This simply implies that h should be in

the null space of R. If we represent R as

To Iy Tz T3
R= Ty Ty Iy Iz |, (E2.2.3)

Tep Ty Iy Iy

then it is found after numerous polynomial manipulations that

a;? —a,(1 + a,)? : a; (1 —ay?)
T, = Toy = — 7
2 A ! A
_ (1 + 32)2 - 3.123.2 _ 2&1(1 + 3.2) —a3
Iy = A n= A
(a23 -_— 23.2 )(1 + 3.2)2 + 3.12("‘28.23 + 48.2 + 3) + a14(az b 2)
Ty =
? < A
31(2325 + 5824 - 9822 - 63.2) + 313(“48.23 - 2322 + 832 + 4) + a15(2a2 - 3)
Iy = A »
where
2
A= (1 - 3.2)(1 + ay + az)(l —ay + 32) . (E22.4)

Note that A is the square of the product of the stability triangle sides associated with the second-
order adaptive filter. Now, since R h = 0, it is obvious that h is in the null space of R. Then

-1

hy rp r; T, I3 aja, (a; — 2)
hl = - h3 {T—=1 To Tj | = h3 3.12 - az(azz - 2) ’ (E225)
h, T T Ty Ty —2a,

and

aja, (a, — 2)

3.12 - 32(322 hand 2)

h = Y _23.1 I,

(E2.2.6)

1
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for some y. Another way to derive the same result for h is to write Rh =0 as

T Ty T2 I3 | |ho 0
r; rg Ty r h
1 To T1 T2 1 _ 0 (E2.2.7)
T Ty Tp I h2 0
0 0 01 hj Y
and then apply Cramer’s rule to solve for h; in terms of y:
Ty Tz I3 Fg T2 T3 To Ty T3
Tp T1 Iy 'y Iy I Ty To I3
T3 Ty Ty T Ty Ty Tp T3 Ty
ho=— h., = h, = — h, =
0 A Y 1 A b4 2 A Y 3=y
where
Tg T3 I3
A= Ty To T1 |- (E22.8)
T.p T3 Tg
Then, taking the inverse of the matrix in (E2.2.5) will not be necessary. It was found that
-1
A= [(1 —a)? A l . (E2.2.9)
But h is given in (E2.2.2) and therefore could be expressed as
1 b
o ! 0 (E2.2.10)
h=do |, [+di|_, [+]o 2.
0 as 0
Consequently, equating (E2.2.6) to (E2.2.10) results in the following equation
1 0 — a;ds (az - 2) b
2 2 dg
—a; 1 —a®+aa*—2)
! bR g l=1° (E2.2.11)
a; "aj 23.1 i 0
0 as -1 Y 0

In order to have a consistent system of equations in (E2.2.11), we first found that there is a special

relationship between a; and a, given by

3.12 = a7 (1 + 32)2. (E2212)
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Then, it is straightforward to solve (E2.2.11) to obtain

. b (1 - 2a,) . ba, . (E22.13)
- = = a . 2
T Aoy d+ay VL (-ayrdtay [ no

Using (E2.2.12) and (E2.2.13), it is found that

d; P

do

[(1+a)(1—2a) P

From (E2.2.12) we conclude that the admissible a, is positive and a, < 1 by the stability con-

az

. Then, the intersection of
[(1+a)(1—2a,) P

dition. Figure 2.5 shows the plot of the function

the line

2
d
d_l ] with this plot on (0.1) determines how many solutions there are for a,. Obvi-
0

d; 4 : . : :
ously, if !E)— |<% there is a unique solution. Otherwise, there are two solutions which

f
A

-1

Fig. 2.5. Existence of stable solutions in terms of the model

d
parameter in Example 2.2 where pé—d—l-.
0
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correspond to two minima. Note that this result confirms the observation in [12].
Now, if we consider the case where b = 0 in (E2.2.2) corresponding to the degenerated point

do . .
solution, then it is a matter of simple computation to find that a; = — I Since a; is in the interval
1

(-2.2) by stability requirements, we conclude that an acceptable solution for a; exists iff

d
| a-l- | > %— i.e., when there are multiple minima. O
0

In order to establish a systematic method to find multiple minima on MSE surfaces, we can
exploit Theorem 2.2 even further in obtaining conditions., with respect to the unknown system
characteristics, which guarantee the existence of multiple minima. These conditions will then be
used to demonstrate that Example 2.1, for the insufficient order case, can be studied in a simpler

way.

Theorem 2.3:
Consider the system (1.1.7) in which x(n) is white and n*<0.

1. When ny=n,—1, stable degernerated solutions exist if D(z™!) has at least (ny,+1) zeros outside
the unit circle. For the case in which n, = 1 and n, = 0, this means that the error surface has

multiple minima.

2. When nyZn, let L(z7!) satisfy (2.2.12). Then, stable degenerated solutions exist if
[D(z™)~L*(z7))C(z™)] has at least (n,+1) zeros outside the unit circle. For the case in which

n, = ny = 1, this means that the error surface has multiple minima.
Proof:

Equation (2.2.8) at the solutions A*(z™!) and L*(z™?) could be rewritten as
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1 1 D(z) .. -j dz .
= — _, 0< <
0=>— ¢12l=1 oD [T L*(2) |z = Sjs€ny
(2.3.D
—T % (0.p) -
=_1 1 [DG)-L()CE)]  2m0 27 dz, 0<i<n,
27i Y fzj=1 Znan'( z 1) C(z) zmax(0,—p)

where p=n,—n,—1.

Note that (2.2.7) is embedded in (2.3.1). Now, we use the result of Astrom and Soderstrom
[44] which is of central importance in analyzing Eq. (2.3.1).
Lemma 2.1:(44]

g(z)

Let f(2) = HOR where g(z) is analytic inside and on the unit circle and h(z) is a polynomial

of degree n with all zeros strictly inside the unit circle. Assume that

LJ  f@kdz=0. 0<kS(n-1).
2miY 1z1=1

Then all zeros of h(z) are also zeros of g(2). i.e., f(2) is analytic inside the unit circle. O

From Equation (2.3.1), it is observed that

number of poles = n,+max(0.n,—n,+1)
= max(n,ny+1)

number of equations = (ny+1)

Since the number of poles should be less than or equal to the number of eQuations if we wish to

apply Lemma 2.1, then we require

[(ny+1)—n, 20

We now distinguish two cases:

1. n, = na-l
As discussed before, B'(q7))=0 or equivalently L*(q"}) =0 for this case. Thus

1 - D(2)

, in Equation (2.3.1), should be analytic inside the unit circle. This can
a1 C@)
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occur only when D(z) has at least n, zeros inside the unit circle so that the cancelled poles are
stable ones. Thus we conclude that if D(z™?) has at least n, zeros outside the unit circle, stable
degenerated solutions exist. Note that this excludes n*20, in which case, D(z™1) can not have
n, zeros because n, > n, 2 ng. Exclusion of sufficient order filters is further justified by
Soderstrom’s condition being automatically satisfied in this case since (ny+1) =n, Z n,.
Existence of a stable degenerated solution in the special case in which n, = 1 and n, = 0 implies

multimodality of the error surface according to Theorem 2.2.

2. n,2n,

Note that L*(q™!) is not necessarily zero and its solution is found by (2.2.12). But (2.3.1) is

reduced to
—-—21, ¢ : -[D(Z)”(I;(()Z)C(Z)] 2%7dz=0 , 0 €i<n,. (2.32)
w1 IZ|=1 z(nb—na+1) ZnaA*(z_l) zZ

We then conclude that [D(z)—L*z)C(z)] must have an (ny—n,+1)th order zero at z=0 and that
the sufficient condition for the existence of a stable A*(z™!) is that among the remaining zeros
of D(z)-L*(z)C(z) at least n, of them are inside the unit circle. Note that since
deg (D(2)—L*(2)C(z))=n,—n,~n* and since n*<0, the degree requirement is automatically
satisfied. Application of Theorem 2.2 implies multimodality of the error surface when

na=nb=1.D

Example 2.3:

Let us use the adaptive filter 1——b—_—1— to find the MMSE estimate of the stable unknown sys-
—az

do+dz7! . . .
tem ——————. Sinceny, = 0and n, =1, by Theorem 2.3, the function
14c;z7 4c,z72

1 dy+diz

(E2.3.1
z=a*  14c;z+cs2? )
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has to be analytic inside the unit circle. Let d;=0. If D(z™!) = do + d,z has its zero outside the

d d )
2 | <1, thena*= —— is a stable degenerated solution. This guarantees the

unit circle, i.e..
| d; d;

existence of a local minimum. For instance, if the unknown system is given by

0.05—0.4z71

I3 5055 Fig. 2.6 shows the normalized error surface which already appeared in [15].
—1.131z 25z

On the other hand, if d;=0, then (E2.3.1) is analytic only if |a®] > 1 and no stable degenerated point

exists. The unimodal characteristic of the error surface when the unknown system is given by

0.05

1-1.752"140.8122 was shown in [15]. O

-1 - | 0. S 1.

Fig. 2.6. Normalized error contours of Example 2.3. All the
degenerated points are shown by the heavy line.
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Example 2.4

Consider Example 2.1 in the last section. From the identity B*(z"1)=L*(z"1)A*(z™"), we find
that L*(z"1)=bg and a*b§+b{=0. Since D(z)—L'(z)C(z)=(dy—b¢)+d;z+d,z? has a first-order zero at

z=0, it is concluded that by=d,y. ( Consistent with Eq. (2.2.12). ) Also, (d;z+d,z?) has a nonzero

2

dyz+dz” e N
is analytic inside the unit circle

d
root inside the unit circle if Ia—1-|<1 which implies that :
2 z—a

d d
with a,’=--a—1- and |a}<1. Thus, multiple minima exist if Id—1]<1. This is consistent with the
2 2

d
development in Example 2.1. It is seen that if Ial|> 1, then no stable degenerated solution exists
2

~ and Example 2.1 shows the unimodal characteristic of the error surface. O

We now introduce the following conjecture based on the examples that we have studied. This
conjecture provides a necessary condition for multimodality (and a necessary and sufficient condi-

tion for unimodality) of error surfaces of adaptive filters with white noise input.

Con jecture:
If no stable degenerated solution of (2.2.2) exists with white noise input x(n), the error sur-

faces of the adaptive filters are unimodal.

2.4. Colored Inputs

The formulation in [41] is also valid for the colored input x(n) as long as it is persistently
exciting of sufficient order. Thus, Theorem 2.2 in which n, > n, = 0 holds for this class of colored
inputs. A sufficient order multimodal example was given in [41]. An insufficient order example can

be easily constructed by generalizing the example in [41], as given in Example 2.5.
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Example 2.5: [22]

H—i:l_j?' the adaptive filter be b and
—az

1+a;q  +aq 2

Let the unknown system in Fig. 1.3 be

x(n) be generated by a white noise process ¥(n) through x(n) = (1—aq™1)?(1+aq~1)?v(n). Then, it

can be shown that the degenerated stationary points for b=0 are given by
o?al — 2aa; + a’aja, — 3afa; + 4(1—a*)? -3 =0 (E2.5.1)

for |oj< 1 . This is a hyperbola which intersects the stability region for a = 0.6 , thus giving a
multimodal error surface (see Fig. 2.7). Note that for some other values of o, (e.g., & = 0.1) the
hyperbola does not intersect the stability region. This gives another example of a unimodal surface

for insufficient order cases. [J

Although, for the general case in which n,<ny, a stable degenerated solution of the form
B(g™=L{qg™)A(g™) can be shown to be a saddle point, rﬁultimodality of the error surface does
not follow. Therefore, we have to find all the stationary points and to examine each for minimal-
ity. Under some conditions, it is possible to give some expressions which facilitate this task. We

now explore this possibility.

The stationary points of the MSE function satisfy (2.2.2a) and (2.2.2b) which alternatively

can be written as

1 s
Al(g™DA(@™) hy
- 1 PR 1 — : =
S(B,A) E . [W x(n) _—_C(q_l)A(q-l) x(n I') ] 0,
___.__];______. x(n—m) h,
A(g™MA(@™

(2.4.1)

where

m = n,+n, , r = max(n, +ng.n.+ny),
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¥ b g™ & DlgDAG™) — Blg™)C(q™)
i=0

and
0 by by by,
0 by by by,
, 0 by by by,
S(B.A) = 1 a; a, an,
1 23; a an,
1 a; a - - - an,

isan (m + 1) | (m + 1) Sylvester matrix. This formulation was used to find the stationary points in
Examples 2.1 and 2.2. Note that although this formulation is valid in all cases, we consider the
insufficient order filters, i.e., cases where n*<0. Let Ay and By represent a stationary point of the
MSE function and also assume that they are coprime. Then S(By.A,) is nonsingular and h is in the

null space of R, the cross-correlation matrix in (2.4.1).

Let x(n) be an ARMA process given by

G(g™V) x(n) = F(g™V) v(n),

where »(n) is white noise and the polynomials
FzD=1+fz7+... +f,2"

GzD=14+gz'+... + g,,gz_ng,

are relatively prime. Assume that A(z™!) and F(z™!) have no common zero. Then, (2.4.1) is

equivalent 10

- 1 H(z) jdz <&
777 by (z-1> Ay e . 08I,
2.4.2
- 14 2 FEDFR . H@ 2P o h<igm A
2T g (g (R0 gmon) T

where
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H(2)AA(2)D(2)-B(2)C(z),

and
p=n,+n;—ny,—n;—1.

In (2.4.2), we have
number of poles = 2n,+n,+max(0,—p) ,
number of equations =m+1=n, +n, + 1.
To use Lemma 2.1, the number of poles must be less than or equal to the number of equations.

This leads to the conditions

n,<(ny+1)—-n_,
g\o ® ® (2.4.3)
nf= .

Fulfillment of the conditions in (2.4.3) and application of Lemma 2.1 require that

H(z)

™A (z1)-2"G(z 1)

I'(2)A be analytic inside the unit circle. This implies that all the poles are

cancelled by the zeros of H(z); hence, I'(z) becomes a polynomial in z. If we denote

. 2n,+n, .
2 RA(DG(z DA Y o7

i=0

and

m-n"
H(Z)é Z hizi.

i=0

and

___*
0=, —0,=n

r2a ¥ vz,
i=0

then, using the result by Kailath [63] regarding polynimial multiplication in the matrix form, we

have

h=T(y)a, (2.4.4)

where aT=[aq - - - azna+ng],hT=[h0 -+ hy_o] and T(y) is an (m—n*+1) | (2n,+n,+1) lower triangular

Toeplitz matrix with the first column being [y, - -y P R 0JF. The vector h given by
2 g
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(2.4.4) is in the null space of the matrix R. This null space is obviously of dimension (—n*).

From the identity
H(z) 4 Ay(2)D(z)-By(z)C(z) = I'(z)'[zznaAoz(z"l)]-[zngG(z“l)], (2.4.5)

we should solve (m—n*+1) equations in (2n,—n*—n,+1) unknowns Ay, ByandI'. Exzample 2.1
shows the use of h in solving for the unknowns. Also. inspection of examples in [15] reveals the

convenience of (2.4.5) in finding the stationary points.

In summary, when n, 2 n,, all the stationary points have to be found and determined to be
minimum, maximum or saddle point. However, if (2.4.3) is satisfied then we can take advantage

of the equality in (2.4.5) to find the solutions in a more convenient way.

The cases where Ay(z™1) and By(z™!) are not coprime follow similarly by dissolving the com-
mon factors in (2.2.2) and then using an equation similar to (2.4.1) to find the stationary points
through similar analysis. It would be appropriate to mention that for all the examples of
insufficient order case that we have studied. the minimum points are such that no pole zero cancel-

lation occurs.

2.5. Summary

The four classes of error surfaces introduced in Chapter 1 can have local minima. In particu-
lar, class 1) which is associated with Stearns’ conjecture was shown to be multimodal for a case
when Soderstrom'’s condition (2.2.14) is not satisﬁéd. The same conclusion could be made about
class 2) whose examples cén be found in [41]. The error surfaces associated with class 3) were
investigated and, as Theorem 2.3 suggests, multimodality of some of these surfaces could be con-
veniently concluded when the unknown system is not minimum phase. Also, a multimodal error

surface in class 4) was introduced and analyzed through the notion of degenerated points.
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CHAPTER 3

ANALYSIS OF ALTERNATE REALIZATIONS

OF ADAPTIVE IIR FILTERS

3.1. Introduction

In recent years there has been growing interest within the communications industry in using
adaptive digital filters for noise cancellation, echo cancellation, and channel equalization. This
interest is due in part to remarkable advances that have been made in VLSI digital hardware.
Computationally powerfﬁl single-chip digital signal processors (known generically as DSPs) are
now available for these types of applications. DSPs can be programmed for real-time operation and

are quite convenient for applications in which space and power are particularly limited.

Noise cancellation, echo cancellation, and channel equalization all require that the adaptive
filter adjust to match an unknown transfer function or system impulse response function. Hence,
they are all variations of the system identification problem shown in Fig. 1.3. For exahple, in echo
cancellation the filter adjusts to match the transhybrid characteristics. The adjustment of the
adaptive filter to the unknown system can be achieved in different ways. The popular equation
error and output error methods resulted in the development of many algorithms such as recursive
least squares (RLS), least mean square (LMS), and hyperstable adaptive recursive filter (HARF),
which have some desirable asymptotic properties. But the fast convergence and low computation
requirements led to the modification of many of these algorithms. Hence, fast RLS (FRLS) and
simple HARF (SHARF) were introduced. However, these modifications compromised on some very
import convergence properties. The global convergence of SHARF disappeared and high sensitivity
of FRLS to finite word length implementation surfaced. The trade-off between the convergence
properties and computational complexity is viewed differently in each field. Traditionally, devising
new algorithms to improve performance while keeping the structure of the filter fixed, mostily in

direct form. has been the focus of most researchers.
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Virtually all practical echo cancellers that have been reported in the literature use a finite
impulse response (FIR) filter as the adaptive element. This is because FIR adaptive filters are well
behaved, i.e., they are guaranteed to remain stable in the presence of many diverse channel condi-
tions and they usually converge to a globally optimum condition because the error surface is uni-
modal [12]. However, from the viewpoint of computational complexity, the FIR structures are
quite expensive. For example, when cancelling echoes in a satellite link with an FIR filter of length
128, it is difficult for a DSP to complete all the necessary computations within the limits of the

standard 8 KHz sampling rate used for digital voice transmission.

When excessive computational complexity is a major issue, the use of infinite impulse
response (IIR) adaptive filters becomes appealing. The poles of the IIR make it possible to obtain
well-matched characterisiics with a much lower-order structure, and. hence, with many fewer
arithmetic operations. For example, a fifth-order IIR filter requiring 9 multiplies and 8 adds per
output sample may match the unknown system as well as a 64" order FIR filter that requires 64
multiplies and 63 adds per output sample. Unfortunately, an IIR adaptive structure may not
remain well behaved during the adaptive process. Poles may move outside the unit circle, resulting
in instability, or the adaptation may converge to a local minimum because the error surface may be
multimodal. Therefore, it is important to monitor stability at each iteration and to select an algo-

rithm which promises good convergence.

One of the notable features of IIR adaptive algorithms is their relatively slow convergence
rate in comparison with that for FIR filters. Although the poles permit better noise cancellation
with lower computational cbmplexity after convergence, they cause sensitivities that inadvertently
slow the convergent rate. The FIR class can be summarized as well behaved with a rapid conver-
gence rate, but with high real-time computational requirements and limited abilities to cancel prop-
erly after convergence. The IIR class is less well behaved and converges more slowly, although its
real-time computational requirements are lower and it has the potential to more effectively match

the unknown system after convergence.
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There are many published algorithms for adaptive IIRs realized as direct form digital filters.
In this form the transfer characteristic is expressed in terms of single numerator and denominator
polynomials, and the time domain implementation becomes a single high-order difference equation.
The direct form adaptive IIR structure is very common throughout the literature on system
identification within the discipline of adaptive control [47]. However, from the signal processing
point of view, a decomposed filter structure consisting of parallel or cascaded first- and second-
order sections is superior for two reasons: 1) Coefficient sensitivities of the parallel and cascade
forms are much lower than that for the direct form [56].[57], and 2) it is simple to monitor stabili-
ties for the parallel and cascade forms by examining the pole locations of the individual second-
order sections. Property 1) suggests that the parallel and cascade forms can be more finely
adjusted. will have smaller minimum mean-square error, and will be less sensitive to gradient
noise and arithmetic quantization effects. Property 2) is extremely important in practice. A major
deficiency of the direct form is that stability cannot be easily monitored because it requires that the

high order denominator polynomial be factored in real time to observe the pole locations.

3.2. Example: The Paralle] Form Realization

Suppose we wish to realize the adaptive filter of Fig. 1.3 as a parallel structure. It will be
assumed that the original adaptive filter is characterized by an N' order linear difference equation
and that the coefficients of this difference equation are adaptively adjusted until E{e*(n)} is minim-
ized. Figure 3.1 shows the decomposition of the adaptive filter into N/2 (assuming N is even) 2°¢

order sections, where the i'" section is characterized by a second-order difference equation

2 2
yvi(n) =3 bx(n—j) — 2 aiy y; (n—m). (3.2.1)
=0 m=1

The instantaneous error is given by

e(n) = d(n) — rlez y; (n). (3.2.2)
i=1
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x(n)e-

Section XN/2

A\

e ey

Fig. 3.1. Parallel form adaptive IIR filter.

In this algorithm the mean-square error E{e’ (n)} is approximated by the instantaneous squared

error e (n). In order to use a gradient algorithm, it is necessary to find explicit expressions for

9 e (n)/§ ayy =2 e(n)lg e(n)/g aiy, ]

and

§ ¢ (2)/3 by = 2 e(n)g e(n)/3 by 1

The necessary partial derivatives can be calculated from (3.2.2).

yv{n—m) + i a, m (3.2.3a)
=1

dim

ge(n) _ —ay; (n) -

saim aaim
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ge(n) _ —dyi (n) = —x(n—i) + i 2 dy; (n—r) '

(3.2.3b)
ab; ab;; r=1 ab;;

where m =1,2,j=0,1,2,and i =1, ..., N/2. Note that (3.2.3) represents two recursive relations
for the sensitivities of e(n) with respect to the a;, ‘s and by; 's, i.e., coefficients of the second-order

sections. Using (3.2.3) the coefficient update equations become

i (041) = 2y (n) — 2,ue(n)-—f-—1_1—)yg (n—m)

Aflg™n
(3.2.4)
by(n+1) = b;; (n) + Zue(n)—-—-——l——-—x(n—j)
Ai(q—l.n)
where
m€[1,2], jel1,2,3], ie€[1, .. N/2],
Aj(@t.n)= 1 +a;(n)g ! +a,(n)g2 |.
The variable ™! is the unit time delay operator, and 1 is the inverse operator of A{(q~%n).

Aq™Ln)
Two numerical examples are presented here for the case in which the order of the adaptive filter
matches that of the unknown system (sufficient order). In Example 3.1, the poles of the unknown
system are not close to the unit circle, and both the direct form and the parallel form converge
easily. Example 3.2 has poles that are close to the unit circle; in this case, the direct form fails to

converge, whereas the parallel form converges quite readily.

Example 3.1z

This example considers identification of the third-order filter

H, = 2—-=1.7z'4+062 (E3.1.1)
1-17z1'+122240323

1

whose parallel structure consists of first-order and one-second order transfer functions, —
1-0.5z"

and 1 . respectively. This filter has poles at z = 0.5 and z= 0.6 %= j0.49. The
1—-1221 406272
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input x(n) is a unit variance white Gaussian pseudo-noise sequence chosen to ensure the richness of
the excitation. According to Stearns’ conjecture [12] and the development in Chapter 2, in particu-
lar (2.2.14), this gradient algorithm should converge to the true minimum MSE by virtue of uni-
modality of the error surface. Figure 3.2 shows the mean-square error E{e? (n)} starting initially
from the origin in the parameter space for both direct and parallel structures. The function
E{e? (n)} is estimated by averaging over a window of length 100. The step size u is 3X1073, which
was chosen after u was varied over the course of many experiments. The direct form shows a fas-
ter convergence initially, although the parallel form starts to show less error after 2500 iterations.
After 50k iterations the average square errors are of the order 1072 and 107 for the direct and

parallel structures, respectively. The respective adaptive filters at this point in time are

°.2

4= 8.2

parallel form
parallel form

direct form

27 direct form lerIlirI-lilliiTlllIll‘r‘
S 1088 1SR 2008 508 083
a TlYT[IIll‘llll‘llilrlTﬁ
Qe 190 208 393 432 S2a

Fig. 3.2. Comparison of MSEs for parallel and direct forms for Example 3.1.
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-1 —~2 -3
Hypo = 1.996 + 0.63z 0.07z7¢ + 0.232 ) (£3.1.2)

1—0.525z71 = 0.22z72 + 0.307z73

and

_ | 0.947 + 0.04z™ + 0.03z72 + 1.05 + 0.07z71

Hparallel - (E3,1,3)
1—-1.19z1+0.60z2 1—0.44 z1

It is likely that reduced gradient noise, which is directly related to the low coefficient sensitivity of

the parallel structure, resulis in a smaller mean square error for the parallel algorithm.

Example 3.2:

Example 3.1 had poles well inside the unit circle. Now consider a model with poles at

z=0.95andz=0.8 = j0.51,

1 1
Hp = + . (E3.2.1)
1-16z71+09z72 1-0.95z"1

with a unit variance white Gaussian pseudo noise input, chosen to place the poles closer to the unit
circle in the z-plane. Figure 3.3 represents the behavior of the adaptation of the parallel form
measured by the mean square error, if the initial adaptive filter is selected to be

1 + 1

1—12z"1 4+ 0.6272 1—0.5z71

Hipitia1 = (E3.2.2)

with u = 1073, The average square error is of the order 10™* after 50k iterations and the adaptive

filter

(E3.2.3)

_ | 1—=10.0006z7" + 0.0005z2 1+ 0.013z71
Hparallel - +

1—1.62z71 + 0.90272 1 —0.950z71

closely matches the model. The direct form was also attempted for this case, but convergence was
not observed in 50k iterations. It is interesting to note that the maximum x« which stabilized the

direct form adaptive (gradient) algorithm was on the order of 107 which indicates the relatively
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;

Fig. 3.3. MSE for parallel form for Example 3.2.

high coeflicient sensitivity of this form when the poles are close to the unit circle. In contrast, the
low sensitivity of the parallel structure has caused a considerable improvement of the simple gra-

dient algorithm toward identification of the poles close to the unit circle. O

Shynk, Gooch and Widrow [101[11] introduced a parallel structure of first-order sections
whose inputs are the outputs of pass-band ﬁlteré. Near orthogonality of the inputs reduces the
dependencies of each Section and the associated Newton algorithm converges quite rapidly. How-
ever. complex computations are not desirable for practical purposes. Two important questions are
raised regarding the parallel structure considered in section 3.3. 1) Is it possible for any two sec-
tions to converge 10 the same poles? 2) If yes. how do we prevent this from happening? Note that
a reduction in the order of the adaptive filter results if 1) is possible. This is very undesirable since
it then indicates the failure of the adaptive filter to identify the unknown system. In other words,
the L_\*IS is trapped in a local minimum. The complete nature of such solutions is discussed in the

next section.
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3.3. Equivalent Realizations of Adaptive IIR Filters

Convergence of the algori;hm whose update equation is given by (3.2.4) to a filter structure in
Fig. 3.1 where any two or more sections have the same poles can create serious problems in any
application. This merely shows that a reduction in the overall transfer function has occurred and,
hence, the adaptive filter has not been able to identify the unknown system. In this section we
characterize this reduced-order structure as a point in the parameter space and analyze its charac-
teristics. It will be concluded that such a point is a saddle point and that this should not cause any
problem as long as the initial conditions are chosen suitably. The analysis is of course general

enough to accommodate any realization.

Consider the update equation

9k+1 = Ok -+ ,LLFk (3-3.1)

where 0 is the adjustable parameter vector, Fy is a vector whose direction determines the direction
of updating @, and u is the step size. Each element of F, is usually a function of 8,. If (3.3.1)
converges to a point 6", then the vector F, is identically zero at 6*. In other words, the stationary
point 8" could be found, not necessarily uniquely, by solving Fy|g- = 0. Then 0" is called a stable
point of (3.3.1) if any perturbation A® introduced in 8" results in no difficulty for (3.3.1) to con-

verge back to 8*. If gradient techniques, in particular the LMS, are adopted. then

F(0) = -V Ele?] . (3.3.2)

Therefore the equation Vg E[e?] = 0 determines the stationary points of the gradient methods.

Obviously. the minimum points of E[e?] are the only stable points.

The idea of stationary points is used now 1o analyze the behavior of the LMS algorithm when
other realizations of the adaptive filter are used. Three important questions that must be answered

are
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1) What happens to the MSE, E[e?], error surface when other realizations are used? 2) Are
new stationary points created as a result of such transformations? 3) Are any new stationary
points so created stable or unstable points, i.e., are they minima, maxima, or saddle points? Note
that the performance of algorithms that use gradient techniques is highly dependent upon the
answers 1o the above questions. Until these questions are answered, the performance of these algo-
rithms can not be predicted accurately in many situations. In the following discussion the adju-

stable system parameters of the direct form will be denoted @ = [0y, @5, ..., ap). Next, consider an

equivalent realization of the same system in terms of 8 = [B;, .. ..., Bx]. another parameter vector.
Defnition:

i) Each realization can be considered as a continuous mapping g € R¥X(¢N, g: D — R defined
by

gla) & B (3.3.2)

where D C §, and R C Sg and

S = % ] The adjustable system is stable

i) Let f1 D — R and h: R = R represent the MSE functional defined on D and R , respec-

tively. By an equivalem realization it is meant that g is a realization such that ¥ a € D.

f(a) = h(gla)) = h(B). (3.3.3)

The equivalency property is, of course, redundant in signal processing since equivalent realizations

of a given system automatically imply this property for any functionals f and h.

The nature of the error surfaces of sufficient order direct from filters with white noise and
some classes of colored noise inputs is known (see [12], [43] and Chapter 2). It is important to

know how the modality of these error surfaces changes under g.

("
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The differentiability of g plays an important role in this analysis.

If g is differentiable, then by the chain rule it is found that

dffa) _ oh(B) (by equivalency property)
oo oa
(3.3.4)
= oh(B) 88 )
0B da
where 9L ang 88 are N-row vectors and 95. is the (NXN) Jacobian matrix. Now if 8°is a sta-
oo 0B Qo ,
tionary point of h(B). then &' is a stationary point of f(a) where g(a*) = B* That is
=0 8 - (3.3.5)
aB oo
where g(a’) = B*. Note that & exists since g is an onto mapping. Also since
H
v, = 98| . V gh(B)|g- - 98 (3.3.6)
da jg* oa |g*

the nature of the stationary point « is that of 8*'s.
Yp

Alternately, let there exist 8™ € D such that =0 but gg o & 0 where 8% = g(a?).

LY
9B
This is the situation in which a stationary point is formed at 8% under the transformation g while

+

a” is not a stationary point itself. Clearly (3.3.4) is not applicable; thus, g must be

nondifferentiable at ™.

Thus, we have Lemma 3.1.

Lemma 3.1:

The function g is nondifferentiable at any newly formed stationary point on h(g8).
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Lemma 3.2 clearly determines the nature of such points.

Lemma 3.2:

All the newly formed stationary points are saddle points.
Proof: If B(a*, r) is an open ball centered at a* with the radius r > 0, then the image of B under g
contains an open ball B'(B*, r'). r' > 0, since g is continuous. Because a* is not a minimum (or a
maximum) in B, there are directions d where f(a* +d) < f(a*). Since (a* +d) € B then

gla® + d) € B' and by equivalency property h(g(a® +d)) < h(8*). O

To clarify, the following examples are helpful.

Example 3.3:

1

24zt
Consider the MSE identification problem of a system Hy(z™) = 3 by the
1+1l1-1 -
3 3

. 2+a12—1
sufficient order filter Hy,(z™!) =

- Let the driving input, x(n), be a white process.
1+a‘12'1+a22“2

Then, the error surface of E[e?], as a function of @, and a,, is unimodal, as depicted in Fig. 3.4. No

saddle point is observed on this surface.

Now, consider a parallel realization of Hy(z™!) using two first-order sections
Hy(z™}) = —1  and Hy(z 1) = — 1 for the same identification problem. We can now
1+Blz—1 1+B22_1 :

define the mapping g € R? X (2 as

aj+/af ~ 4o,

gl(oel. Cig) =

(E3.3.1)

0 3]
o
|

ay — i~ 4o

g2y, o) =

=B,

to

Obviously, the mapping g is continuous over the stability region and nondifferentiable only on the

parabola o, = % of.

gt
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-1.0

Fig. 3.4. MSE surface for the second-order direct form IIR filter in Example 3.3 (with real poles).

It can now be observed that if = a point a&* =(aj, a;') with the property that

Vaf(a)| + # 0, and for B+ A gla™) we have Vgh(B)|.+ = 0, then @’ must lie on the parabola

a; = Y af. To see this, we can write

s
081
gh oh |_ |of of
081 98 gy Qo o
081
Using (E3.3.1), this is then reduced to
1 1
Vgh = Vaf

B> B:

9o

8Bz

9o

982

(E3.3.2)

(E3.3.3)
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Then, for a* with the above property, it is necessary that 8{ = 85 in (13) since the (2 X 2) matrix

will have a nonzero left null space. It is easily seen that Bi = B;" corresponds to the point

df

(o, % af?) which is on the aforementioned parabola. It is found that -
1

]a+ = 0 (i.e., the total

derivative) which indicates that the a* corresponds to the MMSE solution on, and only on, the par-

abola ap = Y% af.

The error surface contours in the 8; — B, plane are shown in Fig. 3.5 for this example where,

/ e
/
/
f
///
_
-

-1.0 1.0

s
///~

Fig. 3.5. MSE surface for the second-order parallel form IIR filter in Example 3.3 (with real poles).

gt
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for the sake of presentation, it has been assumed that 8; and B; take on real values only. This does
not violate the identifiability of H(z™). It is found that 8% = (0.362, 0.362) and, correspondingly,
a* =(0.724, 0.131). Figure 3.5 clearly shows that the B; = B, line is perpendicular to all the con-
tours whose normalized MSE values are greater than 0.13946. It is obvious that B* is a saddle
point and. therefore. if an adaptive gradient search algorithm is used to identify Hy(z™) by two
first-order filters, there will be no difficulty with convergence as long as the initial conditions for 3,
and B, are not selected on the 8; = B8, manifold. Existence of noise will work to our advantage in
this case since it tends to prevent the solution from remaining on the 8; = 8, line. To illustrate
this, two experiments were conducted as shown in Fig. 3.6. The LMS algorithm ( Eq. (3.1.4) with
ajp = ap = 0) was initialized at (0.95, 0.948) for the two experiments with & = 1072 but the white
pseudo-noise input sequences were selected to be different. It was observed that the LMS quickly
converged to a neighborhood of B* after 20 iterations which is expected since the filter is essentially
acting like a first-order filter. But small deviation from the reduced order line eventually caused
the break away. The reduced order linear subspace is not invariant simply because of the depen-
dence of the future estimates on the past estimates. Further simulations are shown in Fig. 3.7 in
which the initial points were selected at (-0.95, -0.948) and (-0.95, 0.95). The convergence of the

parameters to the global minima is clearly shown. O
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Step size = .001 450
Number of iterations = 3500

Fig. 3.6. The trajectories of two simulations when the LMS is initialized at
the point (0.95,0.948) with indicated specifications.
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Fig. 3.7. The trajectories of two simulations when the LMS is initialized at the points
(—0.95,—0.948) and (—0.95.0.95) with the same specifications in Fig. 3.6..
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Example 3.4:

2+ oz3z_1

Let Hy(z™) =
1+ a12_1 + azz"

T be the adaptive filter to identify Hp(z™) as given in Exam-

2

ple 3.3. The reduced order MSE surface [12] is shown in Fig. 3.8. Now, let H;(z™1) = 1T
12

1+ B;3z7!
and Hy(z) = 1 5%
1+ 322—'1
reduced order MSE surface when 3, and 8, are real is shown in Fig. 3.9. Note the familiar sym-

metry and the fact that no stationary point has been formed as a result of pole-zero cancellation in

H,(z™). This result is generalized later. O

az
A
10
N 3.0
— /
i 1 -
20 TON_oeest — 10 20 > %t
& o%
-10

Fig. 3.8. Reduced order MSE surface for the second-order direct form IIR
filter in Example 3.4 (with real poles).

denote two cascaded first-order sections used to identify Hy(z™). The



61

AB2
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0.3
30 '

=10

Fig. 3.9. Reduced order MSE surface for the second-order parallel form IIR
filter in Example 3.4 (with real poles).

Example 3.5:

. _ 2+ 21
If we now consider Hp(z = , then the MSE surface contours are as shown

1+ 2zt + iz"z
4

in Fig. 3.10 when Hy(z™!) as in Example 3 is used. But the real first-order sections, H;(z™!) and
H,(z™1), in parallel, can not identify H(z™!). The new stationary point 8% is a minimum in this
case (see Fig. 3.11). However, note that if complex first-order sections are permissible, 8% will be a
saddle point. In this example, d is restricted; therefore, for all feasible d, f{a* + d) > f(a*) which

is translated to minimality of 8%. O
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Fig. 3.10. MSE surface for the second-order direct form IIR filter in Example 3.5 (with conjugate poles).

B2
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/ // \\
/,// / —’—_\
l/ N\
i ( A\/—\ "\ \ \
\ \ A \o‘sogsj \, ‘)
i / ;
\ w ) T ~—s2 } N
-10 \ < / —= i
' \ T / |
\_// 0.60 |
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Fig. 3.11. MSE surface for the second-order filter in Example 3.5 when real sections are used.
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3.4. Application of the General Theory to the Parallel Form

In this section some general resulis regarding the parallel form structure are obtained. Con-

sider the identification problem of a system H,(z™), with no multiple poles, given by

1z Moz
H(z)=_2 l : | (3.4.1)

1+ d;z7 4. +dyz™N

A sufficient order adaptive filter Hy(z™!) of the form

-1 =N
oz .oz
Hy(z™) = ! N (3.4.2)
1+ aN+12—1+....+O!2NZ.—N

is able to identify Hy(z™') and the MSE surface is unimodal according to the results in [43] and
Chapter 2. Another alternative is to use N banks of first-order filters to do the identification, i.e.,
we could write

—1 ~1 -1
Hy (1) = — P¥ g P i B (3.4.3)

1+ Butz™t 14 Bagaz™? 1+ Bzt

where there is a direct relationship between a and B. We have the following theorem.

Theorem 3.1:

The newly formed stationary points in (3.4.3) are located on the reduced order subspaces.

Proof: We can write

gll = a_f . % (3.4.4)
08  da gB
where it is found (see Appendix C) that
dor i
det [9% 1= ITT |Byer = By || 1§ = 1o N (3.4.5)
i<

Therefore, if there exists B € ¢N such that -gg—]ﬂ+ =0 but gf_ o = 0. where 8% = g(a?), then
a
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(3.4.4) reduces to

0= -a—f-lu+ : —aglp-f- (346)
a 08
and -g%lp+ is therefore singular. This is possible if any two or more poles of (3.4.3) are equal,

according to Equation (3.4.5). Lemma 3.2 states that B* is a saddle point. O

Every stationary point in the direct form corresponds to (N!) stationary points in the parallel

form since there are (N!) permutations of sections to represent (3.4.2).

3.5. Application of the General Theory to the Cascade Form

Now some general results regarding the cascade form can be obtained. Let us assume that the
transfer function of the unknown system is given by
co + ez M Fonz ™

H(z D) = ‘ (3.5.1)
1+ diz7 4. +daz™N

and the filter

o + ayz Moz
Hyzh=—2""1 A (3.5.2)
1+ QN+12_1+....+C¥2NZ—:\

is used for identification. Let us assume that ¢y = ap = 1 for simplicity but with no loss of general-

ity of the final conclusion. The alternative form of (3.5.2) is given by

1+ 8,z7! 1+ B.z71 1+ Bz N
Hy(z™h) = ! Bx : (3.5.3)
1+ Brsrzt | |1+ Braoz™! 1+ Bonz™

g

p—
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which consists of first-order sections in series. We then have the following result.
Theorem 3.2:
The newly formed stationary points in (3.5.3) are on the manifolds corresponding to sub-

spaces where any two or more zeroes, or any two or more poles, are the same and consequently

where no pole-zero cancellation takes place in the sections.

Proof: The general form of —g% is given by

ge 1020 (3.5.4)
0B 0T
where I' is as given in Appendix C and Q has the same form of I’ with 8;, 8,. ...., By substituted
for Bn+1- Btz ----r Ban. respectively. It then easily follows that
Ja | _ . :
det|=— | = |TT |8 — Bill- IT Brai — Bl Lji=1....N (3.5.5)
i< i<j

and the proof immediately follows. O

Theorems 3.1 and 3.2 provide the loci of the new equilibrium points when complex first-order
sections are used in parallel or in series to model the unknown system. However, these theorems

can be extended easily to second-order sections in which case complex arithmetic is avoided.

3.6. Summary

Some alternative structures are attractive for their convenience and properties. It was shown
that changing the underlying direct form parameter space to parallel form parameter space, charac-
terized by a transformation, does not result in formation of any local minimum when no constraint
is applied (see Example 3.5 for a constrained case). However, linear manifolds are introduced by
this transformation on the MSE surface. It was shown that these manifolds are unstable and pose

no threat to the adaptive algorithm as long as the initial conditions are not placed on them. Similar
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analysis was carried out for cascade form adaptive IIR filters and similar conclusions were

obtained.

R
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CHAPTER 4
CONCLUSIONS

The main contributions in Chapter 2 are a clarification of the conditions under which Stearns
conjecture holds and a unification of knowledge that has evolved in the fields of adaptive control
and adaptive signal processing. It is shown that although Stearns’ conjecture concerning sufficient
conditions to guarantee unimodality of error surfaces for adaptive pole-zero filters is valid for
first- and second-order filters, it is not true in general without an additional constraint introduced
by Soderstrom. Soderstrom’s additional condition, which requires that the degree of the numerator
of the adaptive filter be greater than the degree of the denominator of the unknown system, was
not stated as a binding condition in Stearns’ original conjecture. An example of overparameteriza-
tion showed the creation of local minima on the performance surface. It was also shown that for a
class of insufficient order filters, the nonminimum phase characteristic of the unknown system
driven by white noise is sufficient for multimodality of the error surface. Finally, a convenient

method for finding the stationary points was introduced.

It has been shown in Chapter 3 that the MSE surfaces associated with alternate realizations of
adaptive IIR digital filters have different characteristics which result in different adaptive behavior
in practice. A general theory, based on an analysis of stationary points, was presented which
shows that whenever a direct form IIR filter with a unimodal MSE surface is transformed into an
alternate realization, the MSE surface associated with the new structure may have additional sta-
tionary points, which are either new equivalent minima (and hence indistinguishable at the filter
output), or saddle points, which are unstable solutions in the parameter épace. The general theory
was specialized for the parallel and cascade forms. For parallel and cascade forms with N first-
order sections, the MSE surface contains N! distinct subregions, each containing an equivalent glo-
bal minimum which corresponds to particular ordering of the second-order sections. In the parallel

form, saddle points are created on the boundaries between these subregions of the parameter space;
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these boundaries represent reduced order manifolds which are nonattractive, and which will be
avoided by a gradient algorithm as long as there is scme noise present in the adaptive algorithm.
The parallel form should not be used to identif y systéms with multiple poles unless the adaptive
filter structure is modified appropriately. The bottom line here is that an adaptive filter must be
defined by a structure that represents the proper partial fraction expansion of the unknown system

function.

In particular, it has been shown that for both the parallel and cascade forms, a gradient algo-
rithm will find a global minimum as long as there is some noise present to jitter the solution away
from the reduced order manifolds which may contain saddle points. Experimgntal examples were
presented to illustrate that the predicted behavior is indeed observed in practice. Note that this
work does not reveal anything directly‘ about the convergence rate of these different forms. How-
ever, the lower coefficient sensitivities of the parallel and cascade structures as compared 10 a direct
form suggest that the minimum MSE is likely to be smaller after convergence due to the shallow
nature of the MSE surface in the vicinity of the global minimum. At least one example showed
that convergence can be achieved with the low sensitive parallel or cascade forms in circumstances
in which the unknown system has poles near the unit circle. Further research is needed to fully

explain this impact of low sensitivity on adaptive behavior.

e
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APPENDIX A

PROOF OF CASE ONE IN THEOREM 2.1

As in [41], we can express E [¢?] as

W(a, b) AE[e?] = Py — 2P,(2)Th + bTP,(a)b. (A1)
where
Py=E Eq § @)
— | D(g—1) 1 . .
E - 0€3i<
Pia); Clq™) x(n) Alg™) x(n=p) 1M (A.2)
Py@)y = E A( 5’ x(n—j) -—(q——)-x(n—-k) 0<ijk < n

Now, since P,(a) is always a positive definite matrix for sufficiently rich input x(n), we could

optimize W(a, b) with respect to b by

B =P, Pi(a). (A.3)
Equation (A.3) set equal to zero yields Py(a) = O which, of course, is exactly Equation (2.2.7). To

show that degenerated points which satisfy (2.2.7) are saddle points, we find two points arbitrarily
close to (a’, 0), where a* is a stable solution of (2.2.7), which gives higher and lower costs compared

to those for W(a*, 0) = P,. First,
W(a*, 8b) = P, + 8b™P,(a")8b > P, . (A.4)

Second, since (A.3) represents a continuous function of a , then the perturbation 8a induces a per-

turbation in b°. Therefore, we have

W(a* + 8a, b%a” + 82)) = Py — Py(a* + 8a)T P;1(a* + 8a) P,(a* + 8a) < P,. (A.5)

Thus, (2, 0) is indeed a saddle point. O
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APPENDIX B

PROOF OF STEARNS’ CONJECTURE WHEN SODERSTROM’S CONDITION IS SATISFIED

We will distinguish between two cases for our analysis:
1. A and B are coprime.

2. A and B have a common factor.

Case 1: When A and B are coprime, the analysis could be divided into two parts:
(a) Let either A be of true order n, (i.e.. a, 0) or B be of true order n, (i.e., by, #0). Then,

simple manipulation of (2.2.2) results in

1l @)
Al DA™ Yo
. 1 L 1 _ . -
S(B.A) E _ : [C—(q—_m x(n) VAT x(n—r) ] : 0,
1 3 Y
@AD"

(B.1)

where

m=n,+n, , T = max(n, +ng.n.+ny).

r

2 viq™ & D@ HA(@™D —B(@HC(@™) .,

i=0

and
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Oby by - - - by,
O b() bl T * bnb
O b() bl cot bnb
SBA= | 4 gy - g
1 a; ap - - - a,
1 a; a; - - - a,

is an (m + 1) | (m + 1) Sylvester matrix, which is nonsingular. By [48.lemma 4.7], the
second matrix in (B.1) is of rank r when (ny+1)—n.20 since m 2 r. Therefore, it follows
thaty; = 0.i=0, 1, ..., r, or equivalently,

D(g™HA(q™Y) = B(g™HC(@™). (B.2)

Since A and B are relatively prime, we must have

Alg™) = C(q@™).
B(g™)) = D(g™D.
which means that
a1 = 0 =g, =0,
boger = "7 = by = 0.

Unless n* = min (n, —n.. n, —ng) = 0, this is not possible since in that case S(B.A) would

become singular, resulting in a contradiction.

(b) When A(q™!) and B(q™!) are of true order N and M, respectively, with N < n, and

M < ny, Equation (2.2.2) can be expressed by



1
A(@™A@™ x(n)
1

: 1
S*(B.A) E oy .
(B.A) : [ ®) SGOAE™

ClqDAGD
1

AEDAG x(n—m¥*)

where

x(n—r*) ]

m* = max(n,+ M ,ny, + N), r* = max(N +ngq.n, + M),

¥ £.97 4 D(gDA(G) - Blg=HC(gD) .

i=0
and for the case when (n, + M) = (n, + N)

0 bo bl T bM
0 b() bl Tt i bM
— 0 bo bl ot b‘\d
S*(B’A) - 1 a; d» " an
1 a; a - -+ ay
1 a; a; - - - an

€o

£
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(B.3)

but other cases are easily followed. Obviously, the (m + 1) | (m* + 1) Sylvester matrix

S*(B,A), obtained by removing zero columns of S(B,A), is of rank (m* + 1) and the second

matrix is of rank r*. Therefore. we conclude that §, = 0,i=0, 1, ..., r*, or equivalently,

D(g™VA(Q™) = B(g™HC(g™).

(B.4)

Since A and B as well as C and D are relatively prime, it follows that this case is possible if

min(N —n. , M — n4) = 0; otherwise. contradiction is the result.

Case 2: When A and B are not coprime, there is a polynomial L(q™!) of order ny such that

A(@™Y) = A(@HL(g™).
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B(g™}) = B(qg"H) L(g™D), (B.5)

where A(q™1) and B(q™) are coprime polynomials given by

~n,

AlgV) =1+a,q1+... +3, q

Blg™) = bo+byqt+...+B, q ". : (B.6)

in which i, = n, —ng and i, = n, —n.. Consequently, (2.2.2) is reduced to

__Ble=D) b
c Alg™MA(@™) : D(g~)A(g™Y) — B(g1)C(gh) ] = 0
1 x(n—j) ™A™ ’
A(g™)
1€i€n,.0<j<n,. B.7)

Similar to case 1, when the true order of A is 1, or the true order of B is f. the left-hand

side of the equality in (B.7) can be expressed by

——1—————x(n)
Alg DA Yo
B.A)E : 1w 1 _ )
S(B. &) . [C(q‘l)K(q‘l) x(n) SRR x(n—r +ny) ]
1
AGORGD Yoo
(B.8)
where
:ZL viq ! 4 D(q~DA(q™H) ~ Blqg™HC(q™ ,
i=0

and S(B, &) is an (m+1)|(m—ny, + 1) Sylvester matrix. (i.e., the same as S(B, &) with the
last ny columns removed.) Since A and B are coprime, S(B, A) is of rank (m—n; + 1) and
the second matrix is of full rank (r—n; + 1) by [48, lemma 4.7]. Thus, we conclude again

thaty; = 0, i=0,1,..., r—np . or equivalently,
D(g™HA(g™Y) = B(g~HC(q™D). (B.9)

Now, since C and D are coprime as well, then, as in part 1, min(s, — n., fi, —n4) = 0 (or
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equivalently n; = n*) and

A(@YH = €@,

B(g™») = D(g—1). (B.10)

The case in which the true orders of A and B are not 1, and f,. respectively, follows from
the same set of arguments presented in case 1. This proves the conjecture when (2.2.14) is

satisfied. O
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APPENDIX C

DETERMINANT OF THE JACOBIAN OF THE PARALLEL REALIZATION

We have

N N

27! + apz 4 ez V=Y (B D1 + Br+z™h)
: i=1 =1
i

N N
1+ aN+1Z—1+...+C12NZ_NEH(1 + ﬁN+jz~1) = (1 + BN-HZ—I)H(I + ﬁN+jZ_l).

=1

Notice that

a n
dans; =0forjk=12,...N.
9B«
Also
a N
Qo+ = the coefficient of z™ in {z7![T(1 + Bnaz ™ |,
aBN-H =1
=i
aak — . —k —1 N -1
—— = the coefficient of z7™* in {z ' TJ(1 + Bn.z) |
9B; =1
=i
Therefore a_a_ is
da T P
% [0]T

where I" and P are N X N matrices. Since det

Qe
98

=1
i

. . a . . :
the singularity of 5___ and the matrix I is the one to be concerned with.

o8
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(C.1)

(C.2)

(C.3)

= [ det TP, then P does not play any role in
p



N
Now, if we define Fi(z™1) 4 z7!TJ(1 + Buy4z™). then

=1
i

¥1 & The coefficient of z7* (e, k = 1) in F(z ) = 1

Y21 & The coefficient of z72 (i.e., k =2) in F,(z™1) =

¥3i & The coefficients of z73(i.e.. k = 3) in Fi(z™1) =

i & The coefficients of z™* in Fi(z™1) =

Thus T'yxy is given as follows

1 1

Now, to find [T'| & det(T") we proceed as follows:

1.

Y21 Y22 ...
Yx1 Y2 .-

YN1 YN2 T

my, My, ..,

myFEmy .. #m, _{ =N+

Y2i ..
Vi e

Yni e

. Ya2n

Yin |

NN

2N

2 Ba,

my=N+1
my #=N+

my, my = N+1
my#=my=#N+i

my_y = N+1

Subtract the first column from every other column. Note that

ﬁml -Bmz Bmk_l

76

(C.4)
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.

2N 2N

Yei T Va1 T Z Bml -Bm2 ""Bmk—l - Z Bm,Bmz----Bmk_l
my, My, ..., Mg = N+1 my, My, ..., My _q = N+1
mysEmy .. = my, g =N+ my#my.. =m, _ =N+1
2N 2N
= Bn+1 Z 5m1 - mez-"Bmk_z = Bn+i Z Bml 'Bmz'" Bmk_2
my, My, .., My 5 = N+1 my, My, ., My_n = N+1
my = m, . smy ) EN+isN+1 My =My, my =N+ =N+
2N
= (Bn+1 — Bn+i) 2 Bml °Bm2'--Bmk_2

my, My, .., My_g =N+1
My my#.., 28my _ #EN+i=N+1

N
= (Bn+1 = Bnai) - {Coeff. of z7¥*in the polynominal z~!T](1 + Bnsiz ™) =
p i

=2 1+ Bynz™? '
=i
Q (BN-H - BN+1) -S(k—l)(i-l)'
Then, || is equivalent to the determinant of
1 0 e 0 0
Y21 (Bnt1r = Bn+a) \ coo (Bnser = Buai) (Bn+1 — Ban)
Y1 (5N+1 - BN+2)8(1~’.—1)1 e (3N+1 - 3N+i)8(k—1)(i—1) (BN+1 - BZN)' 8(k—1)(N—1) ’
YN (Bt = B2 ®v-n1 7 (Bsr — Brn+)8(N=1)(i-1) (Bn+1 = Ban)Bine1yin-1)
2. Factor out (By+; — Bns+i) terms, i = 2, ..., N and then expand with respect to the first row
1 1 1
N
T} = H(Bi =B pdet | Suy o Sp—nyion) S(k—1)(N-1)
i=2
Sn-1)1 " Spn—1)Gi-1) S (N-1)(N-1)
- O N
Fi(Z—l)

reduced version of I when Fi(z™) is replaced by

Fi(z_l)

1+ B4zt
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3. Continue this process until I' has been reduced to a 1 X 1 unit matrix. Then we see that

TN
T = iFl(ﬁr\m — Bray) (C.5)
i<j
2

o) o I
Therefore, | 22| = |TT (Bawi — Busp) | - O

98 ij=1

i<
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