June 2006 ' UILU-ENG-06-2211
CRHC-06-07

SOLUTION OF LARGE MARKOV
MODELS USING LUMPING
TECHNIQUES AND SYMBOLIC DATA
STRUCTURES

Salem Derisavi

Coordinated Science Laboratory
1308 West Main Street, Urbana, IL 61801
University of Illinois at Urbana-Champaign

REPORT DOCUMENTATION PAGE P 70 0188

Public reporting burden for this collection of information is astimated to average 1 hour per responss, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data neaded, and completing and reviewing the collection of information. Send comment regarding this burden estimaté or any other aspect of this
callection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suits 1204, Ariington, VA 22202-4302, and to the Office of Managament and Budgst, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
: September 2005
7. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Solution of Large Markov Models Using Lumping Techniques and Symbolic Data .
Structures 9975019 and CCR-~00-86096
6. AUTHOR(S)
Salem Derisavi
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
| Coordinated Science Laboratory REPORT NUMBER
University of Illinois UILU-ENG-06-2211
1308 W. Main Street, Urbana, IL 61801 (CRHC-06-07)
3. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10, SPONSORING/MONITORING
| National Science Foundation AGENCY REPORT NUMBER
{ 4201 Wilson Boulevard
Arlington, Virginia 22230, USA

{17, SUPPLEMENTARY NOTES

1 12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b, DISTRIBUTION CODE

| Approved for public release; distribution unlimited.

| 13. ABSTRACT (Maximum 200 words)

Continuous time Markov chains (CTMCs) are among the most fundamental mathematical structures used for performance and dependability
modeling of communication and computer systems. They are often constructed from models described in one of the various high-level
| formalisms. Since the size of 2 CTMC usually grows exponentially with the size of the corresponding high-level model, one often encounters
the infamous state-space explosion problem. In state-based numerical analysis, the solution technique we have chosen to use to solve for
measures defined on a CTMC, the state-space explosion problem is manifested in two ways: 1) large state transition rate matrices, and 2)
large iteration vectors. ‘
The goal of this dissertation is to extend, improve, and combine existing solutions of the state-space explosion problem in order to make
possible the construction and solution of very large CTMCs generated from high-level models. Our new techniques follow largeness
avoidance and largeness tolerance approaches. In the former approach, we reduce the size of the CTMC that needs to be solved. That makes
both the transition matrix and the iteration vectors smaller. In the latter approach, we reduce the size of the transition matrix representation by
using symbolic data structures.

In particular, we have developed the fastest known CTMC lumping algorithm with the running time of O(m log r), where n and m are the
number of states and non-zero entries of the generator matrix, respectively. We have also combined the use of symbolic data structures with
state-lumping techniques to develop an efficient symbolic state-space exploration algorithm for state-sharing composed models that exploits
lumpings that are due to equally behaving components. Finally, we have developed a new compositional algorithm that lumps CTMCs
represented as matrix diagrams (MDs). Unlike other compositional lumping algorithms, our algorithm does not require any knowledge of the
modeling formalisms from which the MDs were generated.

14. SUBJECT TERMS 15. NUMBER OF PAGES
continuous time Markov chains, symbolic data structures, matrix diagrams, multi-valued decision 172
diagrams, ordinary and exact lumping, compositional lumping, symbolic state-space exploration,
v iqs A . 16. PRICE CODE
design of tools for performance/dependability assessment, numerical analysis, splay trees,
computational complexity
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std..239-18
298-102

SOLUTION OF LARGE MARKOV MODELS
USING LUMPING TECHNIQUES AND SYMBOLIC DATA STRUCTURES

BY

SALEM DERISAVI

M.S., University of Illinois, 2003
B.S., Sharif University of Technology, 1999

DISSERTATION

Submitted in partial fulfiliment of the requirements
for the degree of Doctor of Philosophy in Computer Science
in the Graduate College of the
University of Illinois at Urbana-Champaign, 2005

Urbana, lllinois

(© 2005 by Salem Derisavi. All rights reserved.

Abstract

Continuous time Markov chains (CTMCs) are among the most fundamental mathematical
structures used for performance and dependability modeling of communication and computer
systems. They are often constructed from models described in one of the various high-level
formalisms. Since the size of a CTMC usually grows exponentially with the size of the corre-
sponding high-level model, one often encounters the infamous state-space explosion problem,
which often makes solution of the CTMGs intractable and sometimes makes it impossible.
In state-based numerical analysis, which is the solution technique we have chosen to use to
solve for measures defined on a CTMC, the state-space explosion problem is manifested in
two ways: 1) large state transition rate matrices, and 2) large iteration vectors.

The goal of this dissertation is to extend, improve, and combine existing solutions of the
state-space explosion problem in order to make possible the construction and solution of
very large CTMCs generated from high-level models. Our new techniques follow largeness
avoidance and largeness tolerance approaches. In the former approach, we reduce the size
of the CTMC that needs to be solved in order to compute the measures of interest. That
makes both the transition matrix and the iteration vectors smaller. In the latter approach,
we reduce the size of the representation of the transition matrix by using symbolic data
structures.

In particular, we have developed the fastest kﬁown CTMC lumping algorithm with the
running time of O(mlogn), where n and m are the number of states and non-zero entries of
the generator matrix of the CTMC, respectively. The algorithm can be used both in isolation

and along with all compositional lumping algorithms, including the one we have proposed in

il

this dissertation. We have also combined the use of multi-valued decision diagram (MDD)
and matrix diagram (MD) symbolic data structures with state-lumping techniques to de-
velop an efficient symbolic state-space exploration algorithm for state-sharing replicate/join
composed models that exploits lumpings that are due to equally behaving components cre-
ated by the replicate operator. Finally, we have developed a new compositional algorithm
that lumps CTMCs represented as MDs. Unlike other compositional lumping algorithms,
our algorithm does not require any knowledge of the modeling formalisms from which the
MDs were generated. Our approach relies on local conditions, i.e., conditions on individual
nodes of the MD, which are often much smaller than the state transition rate matrix of the
overall CTMC. We believe that our new approach has a simpler formulation, and thus is

easier to understand.

iv

To my parents, symbols of strong will and unconditional love.
To my sisters and symbols of care, Nejat-and Elham.
To Reza, whose brotherhood is the most invaluable treasure I have.

Last but not least, to Roya, my dream of a happier life.

Acknowledgments

I would like to thank my advisor, Professor William H. Sanders, for his invaluable technical
advice and personal support throughout my studies. He was always eager and skillful in
teaching me some of his grand technical visions and intuitions. I would also like to thank
Professor Peter Kemper, from the University of Dortmund, and Professor Holger Hermanns
from Saarland University, for all the precious ideas and comments without which the contri-
butions of this dissertation would not have been realized. A lot of thanks goes to Ms. Jenny
Applequist for the time she spent correcting my endless writing mistakes, not only in this
dissertation but also in all my published works. She was always very patient answering all
my questions regarding writing style. She, more than anybody else, taught me how to write
more clearly.

I would also like to thank those members of the Mdbius group with whom I had the honor

to work: Amy Christensen, Graham Clark, Tod Courtney, David Daly, Dan Deavours, Jay
h Doyle, Shravan Gaonkar, Mark Griffith, Vinh Lam, Eric Rozier, and Patrick Webster. I am
also grateful to other people in the PERFORM group who were such great people to interact
with: Michel Cukier, Vishu Gupta, Michael Ihde, Kaustubh Joshi, Sudha Krishnamurthy,
Ryan Lefever, James Lyons, Hari Ramasamy, and Sankalp Singh.

This material is based upon work supported by the National Science Foundation (NSF)
under Grant Nos. 9975019 and CCR-00-86096. Any opinions, findings, and conclusions or
recommendations expressed in this material are mine and do not necessarily reflect the views
of the National Science Foundation. I am grateful for NSF’s support of my research.

Finally, I‘ would also like to thank all my other friends, without whom I would not be the

person I am and without whom I would not enjoy my life in Urbana—Champaign. To name a
few: Nawal Ali, Atef Alrashidi, Abbas Aminmansour, Hamed Asghari, Shadi Ashnai, Amir
Behgooy, Vahid Behravan, Hamid Reza Chitsaz, Mohsen Dadfarnia, Silva Dushku, Reza
Etebari, Mahnaz Fallah, Babak Farzad, Azadeh Farzan, Azadeh Fotohi, Yashar Ganjali,
Bijan Ghahreman, Erfan Ghazinezami, Foojan Ghahramani, Zahra Golshani, Shirin Habib,
Afsaneh Hajiamin, Hannaneh Hajishirazi, Hadi Jorati, Fatemeh Khalili, Faezeh Koohestani,
Reza Mahani, Sima Mahani, Arash Mahdian, Mohammadhossein Mazarei, Maziar Mirhos-
seini, Hossein Namazi, Alireza Namazifard, Romina Nikoukar, Abdolrezé, Osouli, Mahdi
Rastad, Bardia Sadri, Nasrin Sarrafi, Mayssam Sayyadian, Azadeh Shakery, Hojjat Sharifi,
Babak Shotorban, Ali Toossi, Arash Termehchi, Roozbeh Touri, Farshid Zaker, and Reza

Ziaei.

Table of Contents

Listof Figures ¢ o v i i i i i it i e e e e e e e et e xi

List of Tables @ v i i i i i i i i e i e e e e e e e e e et e e e xiii

Chapter 1 Imfroductiomn eenneoe.. 1

1.1 Motivation e e e 1

1.2 Related Work 5

1.2.1 Largeness Avoidance i it 5

1.2.2 Largeness Tolerance 8

1.2.3 Combination of Techniques 11

1.3 OQur Contribution 12

1.4 Outline. e e e, 15

Chapter 2 Background e e e e e e 17
2 1 GTMGS aIld MRP TN S T S T T e ST LTy T T LT T .'—‘Z""TH—"{I.SW' T

2.2 Ordinary and Exact Lumpability 19

2.3 Symbolic Data Structures, ... 23

2.3.1 (Multi-Terminal) Multi-valued Decision Diagrams 23

232 MatrixDiagrams 25

24 Summary e e e e e e e e e e e e 27

Chapter 3 Optimal State-level Lumpingof MRPs. 28

3.1 Background 30

3.2 Algorithm Description 31

3.3 Time Complexity e 38

3.3.1 Using General Balanced BSTs 41

332 UsingSplay Trees i i i i it 44

3.3.3 Lower Bound on Complexity 46

3.4 Performance Results 47

341 ExampleModel 47

342 Performance Results 50

3.5 Summary e e e e e e e e 53

viil

Chapter 4 Symbolic CTMC Construction and Numerical Analysis ... 55

41 Background e e e 56
4.1.1 Hierarchical Model Specification 56

4.2 Lumping Properties of the Replicate Operator 63
4.2.1 c-State Permutations and RC-State Permutations 64
4.2.2 Equivalence Relations Reand R 67
4.2.3 Ordinary and Exact Lumpability 68

4.3 Symbolic Generation of the Unlumped State Space S 76
4.3.1 The Overall Algorithm 78
4.3.2 Firing Local Actions L oo oL 79
4.3.3 Firing Global Actions. e e e e 81

4.4 Symbolic Construction of the Lumped State Space S 86
4.5 State Transition Rate Matrix Generation and Numerical Analysis 88
4.5.1 State Transition Rate Matrix Generation using MDs 89
452 Numerical Analysis e 95

4.6 Performance Results o o oL 96
4.6.1 Implementationin Mobius Lo oo 97
4.6.2 Example Models e 98

A7 SUMMAETY .« o v o v e e e e e e e e e e e e e e e 106

Chapter 5 Compositional Lumping of Matrix Diagram Representations of
Markovian Models v o v v i i i et e e e e e e e e e e e e e e 108
5.1 Preliminaries2 e e e e e e e e e e e e 110
5.1.1 Extension of MD Notation 110
7 512 3Level MDsvs. Arhitrary MDs L Lo Do oo

5.2 Compositional Lumping of Matrix Diagrams 113
52.1 Augmentationof MDstoMRPs L. 113
5.2.2 Local Equivalence Relations %, and =~ 114
5.2.3 Global Equivalence Relations ~g, and ®ge 115

5.3 Compositional Lumping Algorithm for Matrix Diagrams 118
53.1 Computing=pand Rje oL 119
532 Overall Algorithm e 122

54 Performance Results o 124
5.4.1 Implementationin M&bius 124

5.4.2 Tandem Multiprocessor System 125
5.4.3 Performance Results, 127

5.5 SUmMMAIY . . v v v v v i e e e e e e e e e e e e 130
Chapter 6 Conclusion D e e e e e e e e e e e e e e 132
6.1 High-level View e 132
6.2 Contributions e 133
6.3 Future Work v it e e e e e e e e e e 137

Appendix A Model Specifications 000, 139

A.1 Hypercube Multi-processor Model, 139
A.2 Courier Protocol Model 140
A.3 MSMQ Polling-based Queuing System L. 141
References, R I T ST S U 150
Author’s Biography ¢t i i i e e e e e e e 158

List of Figures

3.1
3.2

3.3

3.4

3.5
3.6
3.7

3.8

3.9

4.1
4.2

4.3
44

4.5
4.6
4.7

5.1

Pseudocode of the lumping algorithm 32
Pseudocode for computing the coarsest lumpable partition starting from a

given initial partition P™' 33
Simple version of CoMPUTEKEYS for ordinary and exact lumping 35
() Ordinarylumping.o v i i e 35
(b) Exactlumping 35
Efficient version of COMPUTEKEYS for ordinary and exact lumping 35
(a) Ordinary lumping. v i it e 35
(b) Exactlumping 35
Pseudocode of refinement step L oo 36
The subclass tree Cr associated with each class C 37
CoMPUTELUMPEDCTMC’s pseudocode for ordinary lumping 38
(a) Simple version 38
(b) Efficient version 38
CoMpPUTELUMPEDCTMC’s pseudocode for exact lumping 39
(a) Simple Version 39
(b) Efficient version i oo e e 39
Hypercube system (triangles specify enabling functions for transitions) . .. 49
(a) Connection between processorso 49
(b) Load-balancing between each two neighboring processors 49
(c) Servicein each ProCessor o it i i 49
Pseudocode for the overall symbolic state-space exploration algorithm 78
Pseudocodes for the local state-space exploration 80
(a) Mainpseudocode 80
(b) Saturation pseudocode 80
Pseudocode for computing B using Ibaraki and Katoh’s algorithm 82
Pseudocode of the global state-space exploration procedure 82
(@) e e 82
(b)) e e 82
Computing the set of next states for global actions using MDD connectors . 85
Composed model structure of the Couriermodel 99
Composed model structure of the parallel computer system 101
Computing =, and = forlevelc 122

5.2
5.3

5.4
5.5

Al
A2

A3

Ad

Compositional lumping algorithm for MD 122

ComPUTELUMPEDNODE's pseudocode for ordinary and exact lumping . . . 124
() Ordinarylumping.o 124
(b) Exactlumping 124
MSMQ subsysterm e 126
Composed model structure of the tandem multiprocessor model 127
The model of the hypercube multiprocessor system 142
Atomic models of the session layers of the Courier protocol model 146
(a) Sender'ssessionlayer. 146
(b) Receiver'ssessionlayer 146
Atomic models of the transport layers of the Courier protocol model 147
(a) Sender’stransportlayer 147
(b) Receiver’s transport layer, 147
SAN representation of the MSMQmodel 147

List of Tables

3.1

3.2

41
4.2
4.3
44

4.5
4.6

5.1

Al
A2
A3
A4
A5
A6
A7
A8
A9

Performance comparison of three different implementations of state-level lump-

ingalgorithms e 52
(a) Specification of the lumped and unlumped MRPs 52
(b) Running times and comparisons 52
Running time of red-black and splay implementations for MRPs with different

degrees of lumpability oo 53
State-space sizes and generation times for the Courier protocol model 99
Solution times (per iteration) for the Courier protocol model 100
Unlumped and lumped state-space sizes and generation times 102
Space requirements of MDD and MD representations of unlumped and lumped

CTMOS . . o e e e e e e e e e e e e 103
Lumped CTMC characteristics and solution times (per iteration) 104
Sorting MDD memory requirement and generation time 105
Specifications of MD representation of tandem system’s CTMC 128
() Unlumped MD e 128
(b) Lumped MD e 128
List of global variables of the hypercube model and their meanings. 143

List of places of the hypercube model, their initial markings, and their meanings144
List of timed activities of the hypercube model, their rates, and their meanings144
List of instantaneous activities of the hypercube model and their meanings . 144
List of input gates of the hypercube model, their predicates, and their functions145

List of places of the Courier protocol model and their initial markings 146
List of global variables of the MSMQ model and their meanings 148
List of places of the MSMQ model, their initial markings, and their meanings 148

List of timed activities of the MSMQ model, their rates, and their meanings 148

A.10 List of instantaneous activities of the MSMQ model and their meanings . . . 149
A.11 List of input gates of the MSMQ model, their predicates, and their functions 149

xiii

Chapter 1

Introduction

1.1 Motivation

Computer and communication systems are a central part of the infrastructure on which
information technology is built. As the demand for this technology grows, particularly
through the widespread use of the Internet, the need for faster, smaller, cheaper, and more
dependable systems also grows, and the resulting improvements often translate into more
sophisticated system designs.

Building such systems is an expensive process, and errors are often unacceptable and
‘sometimes even catastrophic (for example, in a mission-critical system). Therefore, deviation
from the requirements specification, i.e., the desired behavior, must be kept to a minimum.
However, it is impossible to detect the difference between the desired and the actual behavior
before building some working version of the system. Two major solutions for this problem are
prototyping and modeling. In prototyping, an experimental functional version, or prototype,
of the whole or part of the system is built. It is then tested to verify that it meets its
specifications. Even though it is less expensive to build a prototype than to build the fully
functional final version of the system, it can still be too costly in terms of time and money.

In modeling, a mathematical entity, or model (such as a fault tree or a Markov chain),
is used to represent the functionality of the system with some level of abstraction. Based
on the requirements specification, a number of measures of interest are also defined on the
model. Then, a model analysis algorithm computes those measures and shows the modeler

the extent to which the requirements specification is achieved by the model. By modeling

the different design alternatives and/or changing the parameters of the design, a modeler
can eventuaﬂy find the design that satisfies the goals of the system in an acceptable possible
manner.

Determining the level of abstraction at different stages of the modeling process is an art
and is left up to the modeler. If the modeler includes more details in the model, i.e., makes
the model less abstracted, the model becomes larger and more complicated, and its analysis
will be more difficult or even intractable. Analysis of such large models has motivated much
research in areas in which modeling proves more useful than prototyping.

Continuous time Markov chains (CTMCs) [87, 90] are a model type widely used in
modeling various types of computer and network systems of different complexities. A
CTMC consists of a set of states, called the state space, and a set of exponentially distributed
state transitions, each of which is specified by a source state, a destination state, and a rate.
One of the main advantages of using CTMCs is the vast amount of research that has been
done on discovering their properties and designing efficient analysis techniques for them.
Those techniques mean that a wide variety of requirements specifications can be verified by
CTMC-based modeling.

Since the states and transitions of a CTMC are too fine-grained to be mapped to elements
of a real-world system, CTMCs are rarely used directly to specify a system’s model in
a typical modeling process. Numerous high-level modeling formalisms (languages) have
been created to fill the gap between CTMC specification and system design specification.
Examples of tilose formalisms include variants of stochastic Petri nets [2, 24, 45, 69], variants
of stochastic process algebras [9, 13, 52, 55], and interactive Markov chains (IMCs) [51].
There are automated tools, called state-space generators (or ezplorers), that convert the
high-level specification of a model into its equivalent underlying CTMC.

There are two approaches to building models of systems using high-level formalisms. In
the first approach, a “flat” model is built monolithically, such that all parts of the system are

modeled as part of a single entity. As a result, a flat model cannot be divided into smaller,

logically distinguishable submodels. In the second approach, which is often used in practice,
a “composed” model of a system is built by combining a number of smaller interacting
submodels, each of which serves a specific function in the overall model. Generally, each
submodel models a part of the original system. By breaking a model into submodels, the
modeler makes the modeling process more manageable and easier to understand. Most
importantly, special analysis algorithms exist that solve composed models more efficiently.

Like the CTMC-based models themselves, measures related to the performance, avail-
ability, and dependability of a model can be specified both at the state level and using a
high-level formalism. For example, in Markov reward processes (MRPs) [50, 83] a CTMC
is defined along with a set of rate rewards (reward values associated with a state) for each
state of the CTMC. There are also high-level stochastic logics such as CSL [3] and CSRL [4]
that enable the modeler to define sophisticated measures on the model. Computation of a
wide variety of measures on a CTMC often requires reachability analysis (i.e., state-space
exploration), steady-state analysis, and transient analysis algorithms.

There are three approaches to performing steady-state and transient analysis of a CTMC-
based model: 1) closed-form analytical solution, 2) discrete event simulation, and 3) state-
based numerical analysis. The first approach is the fastest approach, but also the most
restricted. It works only with models that satisfy a set of strict structural properties. Sim-
ulation is the least restrictive approach, in the sense that it can be applied to models with
a wide variety of characteristics. However, it can be compﬁtationally expensive in the case
of rare events, which are due to different time scales in the model. State-based numerical
analysis techniques, or numerical analysis techniques for short, can compute a wide vari-
ety of measures for a relatively large class of models. All the techniques above have their
own advantages and disadvantages. In this dissertation, we will focus on relaxing some of
the practical limitations of solving high-level Markovian models using numerical analysis
techniques by improving upon and extending existing related work.

Despite many breakthroughs, numerical analysis is still limited by the state-space ezplo-

sion problem. The size of the model representation in the high-level formalisms grows as
the complexity of systems grows. However, a linear increase in the size of the high-level
representation of the model could cause an exponential increase in the size of the underlying
CTMC. For example, adding a single place to a stochastic Petri net can multiply the size of
the state space of the CTMC by a constant factor.

Furthermore, numerical analysis algorithms often require some representation of the state
transition rate matrix of the CTMC and one or more iteration vectors, each of which has
as many elements as the number of states of the CTMC. The main goal of research on the
topic of state-space explosion is to make the representation of the state transition matrix
and/or the iteration vectors as small as possible. The topic of this dissertation is to extend
and improve existing methods of attacking the state-space explosion problem.

It is worth mentioning that there are mathematical models that are more expressive than
Markov chains. In other .Words, they can be used to model some systems that are impossible
to model at the same level of abstraction using CTMCs. For instance, non-probabilistically-
specified non-determinism cannot be expressed using CTMCs. An example of the more
expressive modeling formalisms is the MoDeST language [35]. However, there is a trade-
off here: the more expressive a modeling language is, the more difficult it is to analyze.
Although some languages have more expressive power than CTMCs, a narrower spectrum
of measures can be computed for them than for CTMCs using existing analysis algorithms.
In particular, some measures that can be computed efficiently for a CTMC-based modeling
formalism would be impossible to compute for a more expressive modeling formalism. We
believe that CTMCs maintain an appropriate balance between expressiveness and analytical
power, since they have been used to model and analyze a wide variety of computer and

network systems.

1.2 Related Work

We classify existing construction and solution techniques for CTMCs built from high-level
formalisms into two categories: largeness avoidance and largeness tolerance. We describe

the related work in both categories below.

1.2.1 Largeness Avoidance

Many CTMC construction and solution techniques that have been developed for large
CTMCs can be classified as largeness avoidance techniques, in which certain properties
of some representation of the model (ranging from the high-level specification of the model
to the underlying CTMC itself) are exploited to reduce the size (in number of states and
transitions) of the underlying CTMC that needs to be solved to obtain the measures of
interest for the model. In fact, the amount of information at the level of the CTMC is often
too detailed for the computation of measures; therefore, minimal representations that still
give correct results for the measures are desired.

For example, state lumping (e.g., [12, 62]) is an approach that reduces the size of a CTMC
by considering the quotient of the CTMC with respect to an equivalence relation (ie., it
replaces a set of states with a single lumped state) that preserves the Markov property and
supports the desired performance measures defined on the CTMC. By solving the smaller
CTMQG, it is possible to compute exact results for the larger CTMC, and therefore measures
of interest for the model.

A state-level lumping technique is a lumping technique that exploits the lumping prop-
erties at the CTMC level. The main advantage of state-level lumping techniques is that
they generate the optimal (i.e., smallest possible) lumped CTMC. However, since they can
perform efficiently only on a sparse matrix representation of a CTMC, they have prohibitive
space requirements for very large CTMCs; therefore, they are usually used along with other

CTMC solution techniques. Buchholz [19] gives a state-level lumping algorithm with O(mn)

time complexity and O(m + n) space complexity for computing the optimal (i.e., coarsest)
lumping of a CTMC represented as a sparse matrix, where n is the number of states and m is
the number of non-zero entries of the generator matrix of the CTMC. For fairly large CTMCs
that can be stored in memory (a CTMC with roughly 107 transitions), the algorithm’s use
is limited.

Several authors have also addressed the problem of computing bisimilarity [70], which is,
in some ways, similar to the problem of state-level CTMC lumping. Kanellakis and Smolka
gave a partition refinement algorithm with time complexity O(mn) [61]'. They conjecture
that an algorithm exists that reduces the time complexity to O(mlogn). A few years later
Paige and Tarjan designed such an algorithm [76]. An implementation of Paige and Tarjan’s
algorithm can be found in [46]. Supposedly based on [76], O(mlogn) complexity has been
claimed without proof by Bernardo and Gorrieri [9] for CTMCs and by Huynh and Tian
[58] for discrete time Markov chains (DTMCs).

In contrast, model-level lumping techniques identify appropriate lumping properties by
operating on a higher-level formalism and directly constructing a lumped CTMC, rather than
by constructing the unlumped CTMC and then operating on it. The lumping equivalence
relation is established by the modeling formalism itself in some model-level lumping tech-
niques. That holds for stochastic well-formed nets (SWNs) [24] and replicate/join operators
in stochastic activity network-based composed models (SANs) [82] in which the lumping
results from equivalence of the replicas of a particular submodel. Extending the work of
[82], Obal proposes [60] the graph composition formalism and uses the symmetry detection
technique, a type of model-level lumping technique. The technique automatically identifies
and exploits all the structural symmetries that are due to the interaction between submodels
of a state-sharing composed model, that is, a model consisting of submodels that share a
subset of their state variables. Restricted versions of a symmetry detection technique similar

to the one described in [82] have also been used for process algebras in [47, 53]. Model-level

1For bisimilarity computation, m is the number of transitions.

lumping techniques have also been proposed for SANs (stochastic automata networks) [7],
hierarchical queuing networks [16], and hierarchically Kronecker representations [17]. Unlike
state-level lumping, model-level lumping techniques do not always find the optimal lumping,
because they are limited to those symmetries that can be identified from a given model
description and they do not operate at the CTMC level.

Other lumping techniques, which we call compositional lumping techniques, can be ap-
plied to composed models provided that the specific high-level formalism satisfies a partic-
ular set of assumptions. In these techniques, each of the individual interacting submodels
is lumped separately from the others using a state-level lumping algorithm, and is then
replaced in the overall model by its lumped version. Like model-level lumping techniques,
most compositional lumping techniques are formaﬁsm—dependent; specifically, they rely on
properties of the composition operator. For example, based on the fact that lumping is a
congruence with respect to parallel composition in a number of process algebra formalisms
and stochastic automata networks (SANSs), compositional lumping can be used in those
formalisms to generate lumped state spaces [13-15, 17, 18, 51].

Most of the work on compositional lumping applies only state-level lumping inside the
submodels. In some cases, in addition to the lumping of each of the submodels, the structural
symmetry of the interaction among the submodels may also be exploited to achieve even
smaller CTMCs. In other words, for some composed models, a lumping algorithm that
applies compositional lumping and model-level lumping techniques at the same time could
give an extra opportunity to shrink the CTMC. Therefore, a fairly general algorithm that
integrates the two techniques for a compositional formalism is desirable.

Another approach classified under largeness avoidance is called aggregation®. In this
approach, as in lumping, a set of conditions for partitioning the set of states of a CTMC is

given such that a smaller CTMC is constructed by replacing the sets of states in each block

2Different authors use the terms lumping and aggregation differently. In this dissertation, lumping is used
in the same sense as in [62] and aggregation is used as a general term for all other techniques for “fusing” a
set of states.

of the partition with a single state. Aggregation differs from lumping in that the solution of
the aggregated CTMC gives approximate results (with or without bounds) on the original
CTMC, as opposed to the exact results that would be obtained from the lumped CTMC.
Moreover, some aggregation techniques are applicable only to CTMCs that satisfy a strict
set of conditions. However, aggregation conditions could result in a coarser partition, and
therefore a smaller CTMC, compared to the lumping conditions. An aggregation technique
for steady-state analysis of a general CTMC has been proposed in [32, 33]. It gives the
best known bounds on the result but is computationally costly, and the bounds are tight
only if the matrix satisfies some strict constraints. Daly et al. [34] give a more general
aggregation technique that can solve for both steady-state and transient measures of general
CTMCs. They introduced a new partial order on the set of states of a CTMC that is
a generalization of the concept of lumping. However, in terms of time, the partial order
computation algorithm is still much more expensive than optimal lumping computation.

Further work on the algorithm to improve its running time is necessary.

1.2.2 Largeness Tolerance

Even a lumped CTMC can be extremely large, and further work on largeness tolerance tech-
niques is needed to practically support large CTMCs. In those techniques, new algorithms
are designed to manipulate large CTMCs while special data structures and/or representa-
tions are utilized to reduce the space requirements of the state space, the state transition
matrix, and the iteration vectors. Those techniques are usually, but not always, associated
with compositional modeling.

Binary [10] and multi-valued decision diagram [86] (BDD and MDD) data structures
have been successfully applied to efficiently explore and represent large unlumped state
‘spaces. The key idea is to encode states as paths in a directed acyclic graph. Techniques
that generate state spaces using decision diagrams are referred to as symbolic state-space

exploration and representation techniques (e.g., [23, 30]).

8

MDD data structures have been used in [29] to explore large state spaces of models builf,
using an action synchronization (a.k.a. action sharing) high-level compositional formalism
in which submodels interact by synchronized firing of a subset of their actions. Saturation, a
state-space exploration technique that was introduced in [25], improved the running time of
the algorithm given in [29] by up to a few orders of magnitude, thus enabling the exploration
of even larger state spaces. In [25, 29], it was assumed that the state spaces of individual
submodels were known a priori, i.e., the state spaces of the submodels computed by exploring
the submodels in isolation are finite and are the same as the state spaces that would result
if the submodels were explored in interaction with the rest of the model. This assumption
was relaxed later in [26]. Those state-space exploration techniques are applicable to action-
synchronization composed models that conform to a particular set of structural restrictions
called the logical product form property [29].

One approach in space-efficient representation of state transition matrices is to follow a
divide-and-conquer strategy and represent the matrix with a set of relatively small compo-
nent matrices that are appropriately combined. The earliest attempt using that approach
was made by Plateau [77, 78], who proposed a technique in which the transition matrix of a
CTMC generated from a specific compositional high-level formalism need not be explicitly
stored. Instead, the matrix is implicitly represented as a mathematical expression consisting
of Kronecker operators and a number of relatively small matrices derived from the structure
of submodels. Later, the “Kronecker representation” technique was extended to more gen-
eral formalisms, and a number of its shortcomings were resolved [11, 20, 21, 44, 45, 63, 87].
The approach is also applicable only to action-synchronization models that satisfy certain
structural constraints.

Another successful attempt was made by Miner and Ciardo [28], who proposed the matrix
diagram (MD) data structure to store the state transition matrix of action-synchronization
composed models. An MD is structurally similar to an MDD and, along with an MDD,

represents the set of states and transitions of a very large CTMC. Efficient algorithms to

manipulate MDDs and MDs have been given in [28]. One of the advantages of using MDs
and MDDs instead of Kronecker operators to represent large CTMCs is that the problem
of potential state space is solved without the logarithmic overhead generally incurred by
Kronecker representation techniques. In [28], the algorithm that generates the MD data
structure is time-efficient, but works only for composed models that hold the logical product
form property. Later, Miner [73] developed canonical MDs (CMDs), a proper subset of MDs,
and presented an algorithm to store virtually any matrix in the form of a CMD. In particular,
he used the algorithm to generate the CMD representation of the transition matrix of models
based on the generalized stochastic Petri net (GSPN) formalism, which is a fairly general
Markov modeling formalism. Since the algorithm added matrix elements to the CMD data
structure one by one, and without exploiting any structural information, its running time was
prohibitive. As mentioned above, both CMDs and MDs can represent virtually any transition
matrix regardless of the modeling formalism from which it is generated. The challenge is
then to develop algorithms that build (C)MD representations of transition matrices of other
formalisms in a time-efficient manner. See [71] for a recent overview paper on symbolic
representations.

The disk-based approach of [39] performs steady-state solution by storing the state tran-
sition rate matrix of the CTMC in the disk instead of the memory while using a variant
of block Gauss-Seidel as the iterative solution algorithm. To increase the utilization of the
CPU, the algorithm implementation concurrently fetches parts of the matrix from the disk
and performs computation on other in-memory parts of the matrix. By using disk instead
of memory to store the matrix, the technique enables the solution of CTMCs that are one
to two orders of magnitude larger than would be possible using only memory.

The “on-the-fly” technique of [40] completely avoids the storage of the transition matrix
by (re)generating the elements of the matrix as they are needed in an iterative solution
algorithm (steady state or transient solution). The elements are computed on-the-fly from

the model, which is given in a high-level formalism. Repetitive calculations of the elements

10

incur a substantial computational overhead.

The path-based approach is yet another largeness tolerance technique for performing
transient analysis of CTMCs while avoiding the storage of the CTMC and possibly the
iteration vector. In this approach, a limited number of paths (i.e., sequences of transitions) of
the CTMC that make a major contribution toward the measures of interest are enumerated.
Then, the reward is computed only for those paths. The first notable work based on that
approach was given by de Souza e Silva and Gail [36], and they later improved it in [37].
Later, Qureshi improved the numerical stability and computational complexity of [37] and
removed its Tequirement of generating the complete state space in [79]. Lam et al. [65]
use Kronecker operators to represent both the CTMC and the iteration vector to compute
approximate results for transient analysis of an action-synchronization composed model.
They also compute a bound on the reward using the information about the amount of
contribution of those paths to the reward [65]. Given enough computational resources, their

approach can theoretically tighten the bounds as much as desired.

1.2.3 Combination of Techniques

For each of the techniques we described so far to be applicable to a specific model, there
are always some requirements and restrictions that limit the applicability of the technique.
These factors may include, for example, the time and space complexities of the techniqﬁe,
the formalism to which the technique is applicable, or possibly a set of additional restrictions
on the formalism such as a special structure that the model should have or a special property
that the model should hold. Such requirements mean that each technique can exploit only
a limited subset of properties of a given model to make it more manageable to solve. We
can observe a rough analogy between the techniques and tools in a toolbox. Each tool in a
toolbox has its own strength, but it does not make other tools in the toolbox unnecessary
because it also has its own limitations.

In the ideal world, we would like to be able to combine all the techniques on any given

11

model. However, because of the very specific limitations of each technique, that is not pos-
sible. A more realistic approach is to study the largeness tolerance and largeness avoidance
techniques and study ways we can combine a subset of them. We can hope that that will lead
to new techniques that have fewer requirements and/or restrictions such that they enable us
to solve models that were impossible to solve before.

Quite a few researchers have successfully tried that approach. For example, compositional
lumping is combined with Kronecker representation for stochastic automata networks (SANs)
in [14, 18], for Markovian process algebra in [13], for hierarchical Markovian models in
[15], and for hierarchical Kronecker models in [17]. Recently, 2 combination of (model-
level) symmetry detection and Kronecker representation for the SAN formalism has been
studied in [8], where, as in [47, 53, 82], only structural symmetries that involve replicas of a
component are exploited. In [41], the symmetry detection technique of the SWN formalism
has incorporated MDD data structures and Kronecker operators to represent the set of
reachable states and the transition rate matrix, respectively.

We believe that the next breakthrough in the realm of largeness avoidance and largeness
tolerance techniques will be the development of a tool that, given a model, automatically
picks a number of techniques in the “toolbox” based on the properties of the model and also
the strengths and limitations of each technique. Then, it will apply those selected techniques
in the right order. In order to develop such a sophisticated tool, we at least need to formalize,
as precisely and thoroughly as possible, the requirements and the restrictions of all available

techniques and develop tools that automatically extract properties of a given model.

1.3 Owur Contribution

The focus of this dissertation is to extend, improve, and combine existing solutions of the
state-space explosion problem in order to make possible the construction and solution of very

large CTMCs generated from high-level models. In Section 1.2, we described how numer-

12

ous techniques based on largeness avoidance and largeness tolerance approaches have been
applied to solve very large CTMCs. Many of those primitive techniques were “orthogorial,”
meaning that they could be applied simultaneously to solve a single problem. In some of the
past work, the orthogonality was not exploited to increase the size of analyzable CTMCs. In
some of the other work, a few of the techniques were used at the same time, but the target
high-level formalism was fairly restricted in structure. We believe that there is a need to
design algorithms that incorporate as many primitive orthogonal techniques as possible and
are applicable to as many and as general high-level formalisms as possible. In particular, we

have:

e Demonstrated that the claim in the literature for the optimal CTMC (state-level)
lumping algorithm with a running time O(mlogn) [9, 54, 58] is not valid to the best
of our knowledge, and that the correct running time of those algorithms is in fact

O(mlog®n).

e Presented and implemented a new optimal CTMC (state-level) lumping algorithm that
improves upon previous work and is so far the fastest known, with a proven worst-case
running time of O(mlogn). The algorithm has far-reaching implications in that it
is also the fastest known algorithm for computing the coarsest lumping in DTMCs
(discrete-time Markov chains), the coarsest bisimulation in probabilistic models such
as WSCCS (Weighted Synchronous Calculus of Communicating Systems) [88, 89] and
PCCS (Probabilistic CCS) [5], and Markovian models such as PEPA (Performance
Evaluation Process Algebra) [55] and TIPP (Timed Processes and Performance Eval-
uation), and the coarsest Larsen/Skou-style bisimilarity [66] on general weighted au-

tomata.

e Proved a lower bound of Q(m + nlgn) for the state-level lumping problem. Although
that is not a very tight bound compared to the time complexity of our newly developed

algorithm, it gives us a sense of how difficult the problem is.

13

o Investigated, using experiments, the performance differences between the two variants
of our state-level lumping algorithm and the relationship between the running time of

the algorithm, its input CTMC, and its output (lumped) CTMC.

e Extended the previous work [28, 29, 72] on MDD and MD symbolic data structures
to state-sharing composed models that do not have some of the structural restrictions

required by previous approaches.

e Integrated, for the first time, the use of symbolic data structures with the model-level
lumping technique of [82], and developed a symbolic state-space exploration algorithm
for state-sharing replicate/join composed models. In particular, the algorithm gener-
ates the MDD representation of the lumped state space and the MD representation
of the state transition rate matrix of a replicate/join composed model. We formally

proved that our symbolic model-level lumping algorithm is correct.

e Devised an algorithm and a symbolic data structure, which we call the “sorting MDD,”

for efficient enumeration of the MD data structure mentioned above.

o Presented a new compositional lumping algorithm that is useful for exact and ordinary
lumping of Markov chains represented as MDs. The advantage of our algorithm over
other ;formalism-speciﬁc ones is that our formulation is simpler and easier to under-
stand. More importantly, it is applicable to an MD regardless of the formalism of the
model ﬁom which the MD has been generated. More specifically, it works for any
model formalism for which there is a state-space generation algorithm that generates
an MD or Kronecker® representation of the underlying CTMC’s state-transition rate

matrix [14, 28, 72, 73].

e Finished the implementation of the compositional lumping algorithm that uses sym-

bolic data structures to represent CTMCs.

8Since any Kronecker expression can also be represented as an MD.

14

e Integrated our implementation of the MD-based compositional lumping algorithm with
the implementation of our other algorithm that combines symbolic representation and
model-level lumping. Given a model based on sharing state variables, the resulting im-
plementation automatically and simultaneously applies the three techniques to reduce

the state-space size and also the representation of the CTMC that needs to be solved.

To understand the contribution of this dissertation, it is crucial to note that, with some
minor restrictions, all the techniques we will describe throughout this dissertation are orthog-
onal. More specifically, we can apply our compositional and model-level lumping techniques
simultaneously on a compositional model formalism and always keep the representations
symbolic. The result is that we will be able to exploit two types of lumping for a composed
model: 1) lumping due to the symmetries present among the various components of the
composed model induced by the replicate operator, and 2) lumping present in each individ-
ual component. That will enable us to generate potentially smaller MD representations of
CTMCs than would be possible using either of the techniques individually. Moreovef, the
combination is again orthogonal to our state-level lumping algorithm in the sense that any
partially lumped CTMC that is computed by the model-level and compositional lumping
algorithms can still be fed to the state-level algorithm to obtain the smallest possible lumped
CTMC.

1.4 Outline

As we mentioned earlier, the focus of this dissertation is extending, improving, and com-
bining existing solutions of the state-space explosion problem in order to make possible the
construction and solution of very large CTMCs generated from high-level models.

In Chapter 2, we present our notation, definitions, and properties of various concepts that
we are going to need in the rest of the dissertation, including CTMCs, MRPs (Markov Re-

ward Processes), two types of lumping on MRPs (namely, ordinary and exact lumping), and

15

three symbolic data structures, namely MDDs (Multi-valued Decision Diagrams), MTMDDs
(Multi-Terminal MDDs), and MDs (Matrix Diagrams).

In Chapter 3, we describe our new optimal state-level CTMC lumping algorithm and
prove that its worst-case running time complexity is O(mlogn). We show how the use of
splay trees [85] for transition rate sorting enables us to improve upon existing algorithms if
they use general balanced trees. Our proposed algorithm can be used in isolation or in any
compositional lumping algorithm, such as the one described in Chapter 5.

In Chapter 4, we extend the previous work on MDD and MD symbolic data structures
to state-sharing composed models. We also combine the application of model-level lumping
properties of state-sharing replicate/join composed models with symbolic data structures.
In particular, we present a symbolic state-space exploration algorithm that builds MDD and
MD representations of the state space and the state transition rate matrix of the lumped
CTMC, respectively. We also describe a technique for efficient enumeration of the MD data
structure for the purpose of numerical analysis.

In Chapter 5, we present a new compositional lumping algorithm that computes the
exact and ordinary lumping of Markov chains represented as MDs without knowledge of the
modeling formalism from which the MDs were generated. Our approach relies on local con-
ditions, i.e., conditions on individual levels of the MD. Since our algorithm locally processes
MD nodes which often have dramatically smaller sizes than the matrix represented by the
MD, it is computationally inexpensive. It uses the algorithm developed in Chapter 3 to
compute, for each level of the MD, a lumpable partition that satisfies the local conditions.

We conclude in Chapter 6 and point out the main contributions of this dissertation and
how they fulfill the goals of the ongoing research on the state-space explosion problem. A

number of ways to extend the work of this dissertation are also discussed.

16

Chapter 2

Background

In this chapter, we will present our notation, definitions, and properties of various concepts
that we are going to need in the rest of the dissertation, starting with CTMCs and followed
by MRPs. Then, we define the two types of lumping on MRPs that are the focus of our
dissertation, namely ordinary and exact lumpability. Finally, we describe the MDD (Multi-
valued Decision Diagrams) and MD (Matrix Diagram) data structures. These symbolic data
structures are used to compactly represent sets of vectors (or sets of states) and matrices
respectively.

We assume that the reader is already familiar with the following concepts: CTMC, state
space, transition rate matrix, probability distribution vector, steady-state and transient
analysis, steady-state and transient probability vectors, and state-based measures (or rate
rewards). For detailed coverage of those subjects, see, for example, [87, 90].

We use the following notations in the rest of the dissertation. All matrices and vectors
are typeset with bold characters (upper-case letters for matrices and lower-case letters for
vectors), and their rows and columns are indexed starting from 1. The element of matrix
Axm) (of size n x m) in row 4 and column j is referred to as A(4,j). For a matrix
Alxm) rs(A) = B ig a diagonal matrix (rs stands for row sum) such that B(3,i) =

2 1<j<m Al3,7); s stands for “row sum”. Finally, all sets are assumed to be finite.

17

2.1 CTMCs and MRPs

We specify a CTMC by a state space S = {1,...,|S|} and a state transition rate matrix
R, or a generator matrix Q = R — rs(R), in which R(¢,7) is the (positive) rate of the
transition that changes the state of the CTMC from ¢ to j. By definition, we have Q(z,7) =
— i R(E,5) and 35 15 Q(F,5) = 0. Let n = |S| denote the number of states of the
CTMC. The number of transitions of a CTMC is the number of non-zero entries of R.

Consider a partition P = {C4,...,Cx} of the state space S. Ci,--- ,Cy are the equiv-
alence classes of partition P, or in short, classes of P. Since the elements of the classes of
a partition P are actually states of the CTMC, we will sometimes use the words state and
element interchangeably when the meaning is clear from the context. Let [z]p denote the
(unique) class index 7 such that z € C;. Any two states z,Z in a class C; of P are called
equivalent, and that is shown by z =p %, or simply z = £ if P is obvious from the context.
Partition P’ is a refinement of partition P (or finer than P) if every class of P’ is a subset
of some class of P. P is said to be coarser than P’. Note that if P’ is finer than P, we can
refine P to P’ by partitioning some of P’s classes into smaller classes.

Given a CTMC, a partition P on its state space induces a quotient stochastic process
with regard to P, but not all partitions result in a process with the Markov property. In
the next section, we will see what sets of conditions on a partition can result in the quotient
CTMC being a Markov process.

Often, the final goal of a CTMC analysis is not the computation of the steady-state or
transient probability of its states. Instead, it is the computation of high-level measures such
as performance, dependability, and/or availability. Many of those high-level measures can be
computed using reward values associated with each state of the CTMC (i.e., rate rewards)
and the stationary and transient probability vectors [57]. By incorporating rate rewards and

an initial probability vector with the CTMC, we will have an MRP for which stationary and

transient measures can be computed.

18

Definition 2.1 A Markov reward process (MRP) M is a 4-tuple (S, Q,r, ™) where
o S={1,...,|S|} is the state space of a CTMC,
o QUSIXIS) s the generator matriz of the CTMC,
o 15D is g row vector of size |S| that assigns reward value (i) € R to state i, and

o 7(3) is the probability that the CTMC is in state ¢ at time 0 (1 <1 < |S)). =

Given an MRP and a number of high-level measures expressed in terms of r and 7™,
we can compute the measures by numerically solving the underlying CTMC. The larger
the state space of the CTMC, the more time-consuming that numerical solution will be.
Sometimes, as described in the introduction, a lumped CTMC can be used to obtain the
desired measures. For that to be possible, the MRP that is based on that CTMC should
satisfy a set of conditions. Three of the most important sets of conditions (and the types
of lumpings they lead to) are outlined in Definition 2.2. The lumped MRP, which includes
the lumped CTMC, is obtained using Theorem 2.2. Notice that each set of conditions may
result in a different lumped MRP.

2.2 Ordinary and Exact Lumpability

For a compact notation, we use the following identities:

AGC) =Y AG,5) ACH = AG7) alC)= al)

j€c ieC 1€C
where A is a matrix, a is a vector, and C is a set of valid column or row indices.

Definition 2.2 Consider an MRP M = (S,Q,r,n™) and a partition P of S. Then, with

respect to P, M is

19

a. ordinarily lumpable if and only if for all C,C' € P and all (equivalent states) s,5 € C,

r(s) =r(3) and (2.1)

Q(s,C") = Q(5,C) (2.2)

b. ezactly lumpable if and only if for all C,C" € P and all (equivalent states) s, € C,

w(s) = (8) and , (2.3)
Q(C,s) =Q(C,3) , (2.4)
c. strictly lumpable if M is ordinarily and ezactly lumpable with respect to P. |

Strictly speakiﬁg, Definition 2.2 defines lumping for an MRP and not for the CTMC
embedded in it. However, in the rest of the dissertation, we will also speak of lumping of
CTMCs or of their corresponding Q or R matrices, under the assumption that the reward
and initial probability vectors are such that they satisfy the requirements of Definition 2.2.

Definition 2.2 gives lumpability conditioﬁs in terms of the Q matrix of a CTMC. We will
use it in Chapter 3 in order to compute the coarsest lumpable partition of an MRP. However,
_in Chapter 5, when we discuss compositional lumping, we will need to check the lumpability
conditions and compute lumpable partitions in terms of R instead of Q. In Theorem 2.1,
we specify conditions that are both necessary and sufficient for ordinary lumpability of an

MRP in terms of R. However, the conditions given for exact lumpability are only sufficient.

Theorem 2.1 Consider an MRP M = (S,Q,r,n™) such that Q = R — rs(R), where R

is the state transition rate matriz of the CTMC of M. Then, with respect to a partition P,
M is
a. ordinarily lumpable if and only if (1) r(s) = r(5) and (2) R(s,C") = R(3,C") for all
C,C' € P (C+#C') and all (equivalent states) s,5 € C.

20

b. ezactly lumpable if (1) R(s,8) = R(5,8) and w™(s) = «™(3) and (2) R(C',s) =
R(C",8) for all C,C' € P and all (equivalent states) s,5 € C.

Proof. (a) If: We need to prove that Q(s, ") = Q(3,C") for all C,C" € P and all 5,5 € C.

If C = (', since the sum of elements in any row of any generator matrix Q is zero, we have:

Q(s,C) = —Q(s,S\C") = = > Q(s,C")

§

[since s € C"l] = — Z R(s,C")
C'ep

[sinceC"#C] = — Z R(5,C")

Crep
C”#CI

[since & ¢ C"'] = — Z Q(3,C")
crep

CII 14_ CI

= —Q(, 5\0?) =Q(3,C)

However, if C ¢ C', then s,§ & C'. Therefore, we have Q(s,C’") = R(s,C") = R(3,(") =
Q(5C").

Only if: We need to prove that R(s,C’) = R(3,C") forall C # C' € P and all 5,5 € C.
Since C # C', then s,s' ¢ C', and therefore, R(s,C") = Q(s,C") = Q(5,C") = R(3,C").

(b) If C + (', then 5,8 & C", and therefore, Q(C',s) = R(C’,s) = R(C", 5) = Q(C",).
Otherwise, Q(C', s) = R(C, s) — R(s,S) = R(C",) — R(5,8) = Q(C", 3) since R(C',5) =
R(C", 8) and R(s,S) = R(3,S). |

Note that condition (a2) above does not need to hold for C = C'. Moreover, condition
R(s,S) = R(3,S) in (b1) means that the total outgoing rates of equivalent states s and §
(or sums of all elements in rows s and 8) are equal. This condition was not required by (a).
Finally, the converse of Theorem 2.1(%) does not hold.

Now that we know when a partition satisfies the ordinary or exact lumpability conditions,

we need to know how to derive a lumped MRP, given the ofiginal MRP and a lumpable

21

partition P, that gives us the same results for the reward measures as the original MRP

does.

Theorem 2.2 Let M = (8,Q,r,n™) be ordinarily or ezactly lumpable with respect to a
partition P = {C4,...,Cz} of S. Then M= S,Q,7, F is the lumped MRP such that

Q@ G5) for arbitrary i € C; (ordinary)
Q(G;,7) for arbitrary j € G (ezact)

Proof. See [12]. B

Using Theorem 2.2, one can show that all reward measures of M that are based on r
and 7™ can be computed using ¥ and 7. In [12], there are also theorems on how the state
probabilities of M are related to those of M. The following proposition is the counterpart

of Theorem 2.2 in terms of matrix R instead of Q.

Theorem 2.3 Given the assumptions of Theorem 2.2, we have:

R(i,C;) for arbitrary i€ C; (ordinary) ifi#]
f{('z, 7) = R(C;,j) for arbitrary j € G (ezact) ifis]
0 by definition (both) ifi=j

S={1,...,7} T =rC)/IC] F{) =70

Proof. (a) Ordinary lumping: If % j, then CG;NC; = 0. Therefore, for an arbitrary i € G,

we have:

R(,3)=QG7) = Q6,0) =Y QG,5) = > R(i,5) = R(i, C).

JEC~ JEC’-

22

(b) Exact lumping: Similar to (a).]

2.3 Symbolic Data Structures

The goal of this dissertation is to devise new techniques that enable the analysis of large
Markovian models. These techniques, as we discussed earlier in Chapter 1, can be classified
as largeness avoidance and largeness tolerance techniques. Largeness tolerance techniques
include the use of symbolic data structures (e.g., [23, 30]) that give a compact representation
for the state space, the transition rate (or generator) matrix, and the reward vector of an
MRP. In the following, we give an overview of the three data structures, MDDs (Multi-valued
Decision Diagrams) [86], MTMDDs (Multi-Terminal MDDs), and MDs (Mé,trix Diagrams)
[28], that we are going to use to represent sets of states, reward vectors, and transition rate
matrices, respectively. For more information about these data structures and algorithms to

manipulate them, see [29)], [73], and [72].

2.3.1 (Multi-Terminal) Multi-valued Decision Diagrams

MTMDDs are a generalization of BDDs (Binary Decision Diagrams) [10]. They represent
functions of the form f: X7, S, — T in which the sets S, = {0,...,|S|/ -1} and T C R
are finite and ¢ € {1,...,m}. MTMDDs are ordered, i.e., the order of S,’s is fixed; we
consider the order Sy, ..., Sn-

In terms of data structure representation, an (MT)MDD is a rooted directed acyclic graph
with |T'| terminal nodes and one or more non-terminal nodes. Each of the |T'| terminal nodes
has an associated value taken from 7. The nodes are called {erminal because they do not
point to any other nodes. Each non-terminal node is associated with a variable z, € S, and
is a vector of |S,| pointers, each of which points to a node with a variable z» (¢ > ¢) or to
a terminal node. All nodes associated with variable z. constitute level ¢ of the (MT)MDD,
and any node in level ¢ of the (MT)MDD is called a level-c node.

23

The main advantage of (MT)MDDs is that a reduction operation is used to represent
isomorphic subgraphs only once. That reduction is based on a notion of equality and re-
dundancy for nodes; two terminal nodes are equal if they have the same value and two
non-terminal nodes are equal if they are in the same level and all their corresponding point-
ers point to equal nodes. A non-terminal node is redundant if all of its pointers point to the
same node. We follow [28] and consider ordered (MT)MDDs, for which equal nodes have
been merged and redundant nodes are retained only to ensure that a pointer of a level-c
node can lead only to a level-(c + 1) node or to a terminal node. The value of function
f(s1,-..,8m), where s, € S, for all ¢ € {1,...,m}, is derived by following a path in an
(MT)MDD graph starting at the root node and ending, after at most m edges (node con-
nections), at a terminal node that represents the resulting value in 7. At each non-terminal
level-c node, a successor node is selected according to s..

The case where T = {0,1} is a special one in which the data structure is ca;lled an
MDD (Multi-valued Decision Diagram). The function f could be used to encode a set of
tuples S € X7t S;; a tuple (s1,...,Sm), in which s, € S, is an element of S if and only
if f(s1,---,8m) = 1. Typical set operations like union, intersection, and difference can be
performed on MDDs efficiently, as described in [29].

We will use MDDs throughout the dissertation to represent a finite set of states of a
discrete-state Markovian model that (directly or indirectly) uses state variables to represent
its state. The widely used idea is that we partition the set of state variables into m classes.
For each class C.(1 < ¢ < m) of the partition, we enumerate all the possible valuations of
the state variables in C, and index them from 0 to |S.| — 1. With such a configuration, a
state of the model can be uniquely represented as a tuple (s, ..., Sn). Thus, as explained
above, we can use the MDD data structure to represent an arbitrary (finite) set of states of
the model.

(MT)MDDs are often enhanced by a so-called offset function p: S — {0,1,...,|S| -1},

in which the elements of S are given indices based on the (total) order induced by the <.,

24

(lexicographical order) operator. For two elements s = (s1,...,5m) and §' = (51,..-,8p,),

is called (lezicographically) smaller than or equal to s’ and denoted by s <, s’ if and only if
s=sor (i€ {l,...,m}:s1 =5, and --- and s;-1 = s]_; and §; < ;)

p is encoded through assignment of an additional weight pc(s1,...,) to each pointer of a

level-c node, and the offset of s is the sum of weights along the corresponding path in the

(MT)MDD, i.e., p(s) = Yooy Pe(81,-- -, Se)-

2.3.2 Matrix Diagrams

An MD [28] is a symbolic data structure that represents real-valued matrices, or equivalently,
functions of the form f : X7, (ScxS;:) — R. MDs are related to MDDs, edge-valued decision
diagrams [64], and Kronecker representations [78]. MDs have proven to be particularly useful
in representing large state transition rate matrices of compositional Markovian models. Like
(MT)MDDs, MDs are ordered, and we always consider the same order and the same &
sets as in the (MT)MDDs. That makes the MDs and (MT)MDDs that our algorithms in
later chapters generate compatible with one another. Our formal definition of MDs in the
following is slightly different from that in [28, 72, 73]. The resulting data structures remain
the same, but the formal treatment is more concise.

In terms of representation, an MD is a rooted directed acyclic graph with one or more
terminal nodes and zero or more non-terminal nodes. Nodes of an MD are matrices, whereas
nodes of (MT)MDDs are vectors. We assign a unique index to each node of an MD, and we
refer to the node with index n as R,. R; is the root node. As in (MT)MDDs, each node
(whether terminal or non-terminal) is associated with a variable z., all nodes associated
with variable z. constitute level ¢ of the MD, and any node in level ¢ of the MD is called a
level-c node. We use N, to denote the set of indices of level-c nodes. The top level (level 1)

has only the root node in it, i.e., N1 = {1}. For 1 < ¢ < m, all (non-terminal) nodes in level

25

¢ point to nodes in level ¢ + 1.

For level ¢ # m, matrix entries are finite formal sums

Rnc(Sm S::) = Z Tre,Net1 (567 3;) : Rﬂc+1

Tc+1€ENy1

with real values rp,n..,(Sc,s,) and references to nodes at level n..;. Terms of the form
Tremer (Ses St) * Rngyq With T p . (Se, s%) 7 0 correspond to a pointer from element (s, s7) of
R, to R,_,. At level c=m, R, (s.,s.) is a real value, and therefore R,, is a real-valued
matrix.

We assume that the MD is reduced, i.e., at any level ¢, no two nodes are equal. Otherwise,
one node can be removed, and references at level ¢ — 1 can be appropriately renamed. Two
nodes R,, and R, in level ¢ € {1,...,m — 1} are considered equal if for all n.; € N,
and all s¢, s, € Se, Treiness (Ser S2) = Tamess (8c, 8¢)- For level ¢ = m, two nodes R, and Ry
are equal if all their corresponding real-valued elements are equal. The assumption that the
MD has been reduced is the basis of the space efficiency of the MD data structure. In MD
theory, the removal of duplicates is called quasi-reduction.

Each MD node R, results in a real-valued matrix R,,. By definition, that holds for nodes
at level ¢ = m by definition. For level ¢ < m, we merge adjacent levels from the bottom
up. Observe- that for ¢ < m and n, € N;, Ry, is a block structured matrix in which each
block is defined as Rn (sc, S0) = 22, en,ry Teiners (Ses 82) " Ragyy - In other words, we replace
node reference-s with matrices and resolve the formal sum by scalar matrix multiplication
and matrix addition. We can thus merge levels ¢ through m by replacing nodes R, with
matrices R, (for all n, € N,) and removing all level ¢+ 1 to m without affecting the matrix

that the overall MD represents.

For ¢ = 1, we reduce the number of levels to one and end up with the real-valued matrix
R;, which corresponds with the root node R;. R; is a flat representation of the matrix the

original MD represents. R; has a nested block structure and its column and row indices are

26

each chosen from the set X, S.. Therefore, a row or a column index can be represented
as s = (S1,...,5m). When an MD is used to represent the R or the Q matrix of a CTMC,

s =(s1,---,5m) is a state of the CTMC, and we call s. a substate of s.

2.4 Summary

In this chapter, we defined the fundamental mathematical entities and introduced the nota-
tions that we will need throughout the rest of the dissertation. In particular, v?e presented
our notation for CTMCs, state spaces, and partitions. To be able to compute reward mea-
sures from a CTMC, we augmented the CTMC with a rate (i.e., state-based) reward and an
initial probability vector and called the package an MRP. Then we gave the conditions under
which an MRP is ordinarily and/or exactly lumpable with respect to a given partition of its
state space. We also mentioned how the lumped MRP can be computed given the original
MRP and the lumpable partition. Lumping of states enables us to compute the desired
reward measure by analyzing the potentially smaller lumped MRP instead of the original
MRP:; the coarser the partition, the smaller the lumped MRP and the faster the analysis will
be. In the next chapter, we will present an efficient algorithm that computes the coarsest
partition vﬁth respect to which a given MRP is ordinarily and/or exactly lumpable. Fi-
nally, we gave a brief overview of a few symbolic data structures, that is, MDDs, MTMDDs,
and MDs. As our main largeness tolerance technique, those data structures will be used in
Chapters 4 and 5 to represent large state spaces, reward vectors, and state-transition rate

madtrices.

27

Chapter 3 -

Optimal State-level Lumping of
MRPs

In this chapter, we present an optimal algorithm for state-level ordinary and exact lumping
of MRPs. By state-level algorithm, we mean an algorithm that operates directly, i.e., at
the state level, on the generator or transition rate matrix of the MRP. The algorithm has
worst-case time complexity of O(mlogn) and space complexity of O(m + n), where n and
m are the number of states and non-zero entries of the generator matrix of the underlying
CTMC, respectively. The algorithm is optimal in the sense that it computes the smallest
possible lumped MRP, i.e., a lumped MRP with the smallest possible state space. That
is equivalent to saying that it generates the coarsest possible lumpable partition, i.e., a
lumpable partition with the smallest possible number of classes. As we discussed in Chapter
1, the algorithm can be used in isolation or in any compositional lumping algorithm, such
as the one described in Chapter 5.

To the best of our knowledge, as of the writing of this dissertation, our algorithm is the
 fastest known (in terms of time complexity) algorithm for the lumping problem. At the other
hand, there are no results on a tight lower bound for the time complexity of the problem,
although we will later prove a loose lower bound of Q(m + nlogn).

In the remainder of the chapter, we focus on MRPs, which are based on CTMCs. How-
ever, the definitions, algorithms, and analyses can be extended in a straightforward manner
to a variety of related problems. In particular, our algorithm is the fastest known algorithm |
for computing the coarsest lﬁmping in DTMCs (discrete-time Markov chains), the coarsest
bisimulation in probabilistic models such as WSCCS (Weighted Synchronous Calculus of
Communicating Systems) [88, 89] and PCCS (Probabilistic CCS) [5], and other Markovian

28

models such as PEPA (Performance Evaluation Process Algebra) [55] and TIPP (Timed
Processes and Performance Evaluation), and the coarsest Larsen/Skou-style bisimilarity [66]
on general weighted automata.

The algorithm is based on the Paige/Tarjan algorithm for computing bisimilarity in la-
beled transition systems [76], and relies on the use of splay trees [85] to sort transition
weights. Its running time is an improvement over existing lumping algorithms (for instance,
see [19]), with a running time of O(mn). The O(mlogn) result for Markov chains (contin-
uous or discrete) is apparently known, since the result has been claimed by various authors
[9, 54, 58]. Nome of their publications, however, contain a proof of the O(mlogn) time
complexity, or a description of the algorithm that is sufficiently detailed to make the claim
obviously true. In [19], Buchholz mentions that CTMC lumping requires checking for iden-
tical rates that cannot be represented with binary relations as in labeled transition systems.
He concludes that the O(mlogn) algorithm for bisimilarity computation cannot be adopted
(as it is) for the problem of CTMC lumping.

Although the state-level lumping algorithm that we have presented in [42] works only
for ordinary lumping of CTMCs (and not MRPs), it works fundamentally the same way as
the one we will give here. In this chapter, we have extended it in two ways: 1) to support
exact lumping in addition to ordinary lumping, and 2) to work on MRPs as opposed to
CTMCs. The latter means that reward values and initial probability vectors are also taken
into consideration. Because of these extensions, the reader will notice slight changes in some
notations and details.

After starting with some definitions and notations in Section 3.1, we describe the core of
the lumping algorithm in Section 3.2. Then, in Section 3.3, we show that a naive algorithm
has a time complexity of O(mlog®n), and we do not know how to rigorously prove the
claimed better time complexity for the naive algorithm. We believe that such a proof would
require a clever way to sort weights that has not yet been devised, to the best of our

knowledge. By using statically optimal trees (e.g., splay trees) [85] for the sort operation,

29

we are able to attain the O(mlogn) worst-case time complexity. This new algorithm turns
the complexity bottleneck of the optimal MRP lumping problem from time to space. We also
prove a loose lower bound for the time complexity of the MRP lumping problem. In Section
3.4, we study the running time performance of implementations of the naive algorithm,
our new algorithm, and the algorithm in [19] by applying them on an MRP of a high-level
Markovian model of a hypercube multiprocessor system. Finally, we will summarize in

Section 3.5.

3.1 Background

We consider an MRP M = (S, Q, r, ™). We define a relation — C S X S such that i — j iff
Q(i,7) # 0. State ¢ is called a predecessor of state j and state j is called a successor of state
i. We use m to denote the cardinality of relation —, i.e., the number of non-zero entries of
Q, the generator matrix of the CTMC. We further define the forward and backward images
e,e”t: S 25 of — by e(i) = {j| i — 5}, and e71(3) = {4] j — }.

The partitions of § satisfying the conditions in Definition 2.2 form a complete lattice,
in which the trivial finest partition {{¢}| 7 € S} is the minimal element, and the coarsest
partition, corresponding to the smallest (i.e., with the smallest number of states) possible
lumped MRP, is the maximal element. This lattice is akin to the lattice induced on a labeled
transition system by the notion of bisimulation [55, 70], where bisimilarity is the maximal
element in the lattice of bisimulations. Like bisimilarity, the coarsest lumping partition can
be characterized as a fixed point of successively finer partitions; this characterization is the
basis of the algorithmic procedure we will discuss. For bisimilarity, Kanellakis and Smolka
have given such a partition refinement algorithm with time complexity O(mn) [61]. They
conjectured that an algorithm exists that reduces the time complexity to O(mlogn). A few

years later Paige and Tarjan designed such an algorithm [76].

30

3.2 Algorithm Description

In this section, we describe our algorithm for coarsest ordinary and exact lumping. Like
other algorithms that claim the O(mlogn) time complexity, our algorithm is based on Paige
and Tarjan’s partition refinement algorithm to compute bisimilarity of labeled transition
systems. The proof of the correctness of the algorithm is not given here, but can be adapted
from [51].

Based on the different conditions of ordinary and exact lumping (see Definition 2.2), one
can tell that each type of lumping requires a separate algorithm. However, since the idea
of both algorithms is the same, a unified algorithm is presented as a number of procedures
that combine the similar parts of both algorithms. When a procedure needs to perform
differently for ordinary and exact lumping, we provide two versions of it.

In some cases, we provide two versions of a procedure that produce exactly the same
results: a “simple” and an “efficient” version. The simple version is easier to understand
but not time-efficient. The efficient version is used for the purpose of computing time
complexities.

The pseudocode of our lumping algorithm is given in Figure 3.1. LUMPMRP takes the
original MRP M as its orﬂy parameter and returns the lumped MRP M as its output. It
" uses the conditions of Definition 2.2 for computing the initial partition and for the repetitive
refinement of the initial partition, and uses Theorem 2.3 to compute M.

The algorithm works in three stages. The first stage (line 1) computes the initial par-
tition P™ based on the reward vector r for ordinary lumping (céndition (al) of Definition
2.2) or based on initial probability distribution 7™ for exact lumping (condition (b1) of
Definition 2.2). The second stage (line 2) is the main and novel part of the algorithm. The
CoMPUTECOARSESTPARTITION procedure computes the coarsest partition P with respect
to which MRP M is lumpable (condition (a2) or (52) of Definition 2.2) by repetitive refine-
ment of P™, In the last stage (lines 3-5), the lumped MRP M is computed according to

31

LumMPMRP(M)
1 P := CoMPUTEINITIALPARTITION(M)
2 P := CoMPUTECOARSESTPARTITION(Q, S, P™)
3 R := CompuTELUMPEDCTMC(R, S, P)
4 §:={1,...,|P|}
5 Compute T and #™
6 return M = (R — rs(R), S, T, ™)

Figure 3.1: Pseudocode of the lumping algorithm

Theorem 2.3 by construction of each of its components. Finally, M is returned in line 6.

CoMPUTEINITIALPARTITION computes the coarsest partition P™ that satisfies condition
(al) of Definition 2.2 for ordinary lumping and condition (b1) for exact lumping. More
formally, P is computed such that it is the coarsest partition of S that satisfies the following
condition:

for ordinary lumping: VC € P™,s5,5 € C:1(s) =r(8) (3.1)

for exact lumping: VC € P®,s,8 € C: w(s) = w'™(3)
To compute P™, CoMPUTEINITIALPARTITION simply sorts the states based on an appro-
priately chosen key. For ordinary and exact lumping, the sorting key of a state s is r(s) and
7vi8i(s), respectively. The pseudocode for COMPUTEINITIALPARTITION is not given here.
Note that any refinement of P™, particularly the result P computed by COMPUTECOARS-
ESTPARTITION, also satisfies condition 3.1.

The pseudocode for the COMPUTECOARSESTPARTITION procedure, the second stage
of the overall algorithm, is given in Figure 3.2. Lines 1-3 do the necessary initializations
and lines 4-7 repetitively refine P until it satisfies condition (a2) or (52) of Definition 2.2.
Finally, line 8 returns the resulting partition.

Line 1 initializes P to P™ because the desired partition has to be a refinement of P,
Line 2 assigns to L (a list of sets) the classes of the initial partition P™. Line 3 allocates a

vector o of size |S|. The roles of L and o will become clear below.

32

CoMPUTECOARSESTPARTITION(Q, S, P™)
1 P:=pH
2 L:=pi

allocate (15D

while L #

5 U := Pop(L)

6 CompUTEKEYS(Q, ¥, L, o)

7 SpuIT(P,L, L, o)

8 return P

> O

Figure 3.2: Pseudocode for computing the coarsest lumpable partition starting from a given
initial partition P

P may be refined in each iteration of the while loop in Figure 3.2. Refining is a step
in which at least one of the classes of P is partitioned into at least two (smaller) classes. L
plays the role of a list of “potential” splitiers of P. A splitter ¥ with respect to a partition

P is a set that satisfies the following condition:

for ordinary lumping: 3ICEP, 5,5 €C s.t. Q(s,7) # Q(s,) or (3.2)

for exact lumping: 3JCEP, 5,5 €C st. Q(T,s)# Q(T,s), (3.3)

which means that the condition (a2) or (52) in Definition 2.2 is violated by the pair s, s,
and hence C needs to be split.

To make the unification of the ordinary and exact lumping algorithm easier and also to
extend the algorithm in a way that is needed in Chapter 5, we define a function K(Q, s, 7).
Its arguments are respectively the generator matrix Q, a state index s, and a set of state
indices ¥. By choosing this function appropriately, we can customize the algorithm to
compute partitions that satisfy a set of desired conditions. The range of K can be any‘

arbitrary “data type”! T on which equality testing is well-defined.

1We do not formally introduce data types here because we do not believe it would improve the readability
of the material. A concept of data types similar to that in the C language suffices for our discussion.

33

Based on Equations (3.2) and (3.3), we define K as follows:

Q(s,¥) for ordinary lumpin

K(Q,s, V)= (59 ¢ (3.4)
Q(7,s) for exact lumping

That means that data type T, the range of K, is the set of non-negative real numbers,

R2°, on which equality testing is obviously well-defined. With such a definition of K, both

‘Equations (3.2) and (3.3) can simply be put as
ICeP, s,s'eCst. K(Q,s,7) # K(Q,d,T). (3.5)

In Chapter 5, when we describe compositional lumping algorithms on the MD data structure,
we will need to apply our lumping algorithm to individual nodes of an MD. That necessitates
more sophisticated deﬁnitibns of function K that results in a different data type for T

The while loop of lines 4-7 refines partition P with respect to all potential splitters
¥ € L. Line 5 picks a splitter from the list of potential splitters L, deletes it from L,
and assigns it to . The order in which the splitters are picked from L does not affect
the correctness or the time complexity of the algorithm. For each splitter ¥ € L, line 6
(ComPUTEKEYS) computes K(Q, s, ¥) for each state s in some subset of S and stores it
in o(s), which is of data type T. Then, SPLIT partitions each class C € P that satisfies
Equation (3.5) into subclasses according to vector . SPLIT may also add a number of new
potential splitters to L. When L is empty, P has been refined w.r.t. all potential splitters,
and the while loop finishes. The list of states L', which is computed by CoMPUTEKEYS
and is used by SPLIT, is the set of all states whose corresponding element in vector o we
need to examine for refinement purposes in SPLIT.

Figure 3.3 gives the simple version of the pseudocode of COMPUTEKEYS for ordinary
and exact lumping. In Figure 3.3(a), L’ is assigned the set of all predecessors of states in ¥,

i.e., Uyey €72(5), Wheress in Figure 3.3(b), L' is the set of all successors of states in ¥, i.e.,

34

CoMPUTEKEYS(Q, VU, L', o) CompPUTEKEYS(Q, VU, L', o)
1 I i=Ueq €7(5) 1 L' i=,eq e(s)
2 foreach s € L' 2 foreach s € I/
3 o(s) :=K(Q,s,7) 3 o(s):=K(Q,s,7)
(a) Ordinary lumping (b) Exact lumping

Figure 3.3: Simple version of COMPUTEKEYS for ordinary and exact lumping

ComMmPUTEKEYS(Q, ¥, L/, o) CompPUTEKEYS(Q, ¥, L/, o)
1 L':=0 1 L':=90
2 foreach s U 2 foreach s€ ¥
3 foreach predecessor s’ of s 3 foreach successor s’ of s
4 o(s):=0 4 o(s) =0
5 foreach s ¥ 5 foreach s ¥
6 foreach predecessor ¢ of s 6 foreach successor s’ of s
7 o(s):=oa(s)+Q(s,s) 7 o(s') :=o(s)+Q(s,)
8 L' =L U{s} 8 L':=L'U{s}
(a) Ordinary lumping (b) Exact lumping

Figure 3.4: Efficient version of COMPUTEKEYS for ordinary and exact lumping

U, €(s). Figure 3.4 shows the efficient version of CoMPUTEKEYS. Notice how L’ and
o(s) are computed.

The pseudocode for the SPLIT procedure is given in Figure 3.5. It refines PP with respect
to splitter ¥, and may also add a number of new potential splitters to L. More specifically,
SPLIT finds every class C € P that satisfies condition (3.5), and splits each such class C into

subclasses {C?,...,C*} such that

Vi<c<k Vs, §eC, o(s) =o(s)

Vi<c#d <k VseCseCr, o(s) # o(s),

and adds all subclasses of C except the largest one to L. If there is more than one subclass
of maximal size, we add all of them except for one.
Line 1 of SpLIT initializes L”, which is the list of all classes of P that are partitioned

in a refinement step. Lines 2-6 split each class C based on the value of o of its elements.

35

Sprit(P, L, L, o)
1 L':=0
2 foreachse L’
Let C be an alias for Cjy,,
delete s from C
INSERT(Cr, (0°(5), 8))
L'=L"uC
foreach C € L”
C' := largest class of {C, Vg, ... » Viiop t
L:=LU {C, Vigs oo s V}glc’rl} —{C"}
10 Pi=PU{C Vi, -, Voo }

O 00 3O Ut ih W

Figure 3.5: Pseudocode of refinement step

Each class C' has a corresponding binary search tree (BST) Cr, which we call the subclass
tree. Each node of Cr stores the list of elements of C that have the same value of o. Any
implementation of a BST data structure (e.g., the red-black tree [31]) can be used as the
subclass tree. In Section 3.3, we will see how exploiting the full potential of an appropriate
BST helps us achieve the O(mlogn) running time for LuMPMRP.

The set of nodes of Cr is denoted by {k,..., kjcp}. Each node k; of Cr contains a key

‘ sum,CJ and also a set V}c (k S ‘V-set) of states, each of which has the same value in vector o
(Figure 3.6). Accordingly, the set of V-sets of C7’s nodes is denoted by {V4,, ..., Viop }- For
any node k; and any s € Vj;, we have sumy, = o(s) = K(Q,s,¥). INSERT(Br, (0(s), 5))
in line 5 adds s to the Vi, whose key is equal to o(s), i.e., sumg, = o(s).

For any element s € L' and s € C, we will have o(s) = 0; s will not be removed
from C, and therefore will not be inserted into Cr either. All such elements (if any) will
remain in C, and, along with the V-sets of Cr, constitute the subclasses of the original
class C. Lines 7-10 update P and the list of potential splitters L by adding to L all the
subclasses of a class except for (one of) the largest one(s)?. Excluding the largest subclass
from the set of potential splitters is similar to the “process the smaller half” strategy given

by Hopcroft [1, 56]. The difference is that in Hopcroft’s strategy a set C is partitioned

2There could be two or more subclasses that have the largest size.

36

bumz | Vi
——>|.91 |32 |33 }34 |35 |

ky k
Vi, Vi

——=> T T —> 1 1 1] | |

—=> T T 11 411111

Figure 3.6: The subclass tree Cr associated with each class C

into two subsets, while in our case, C' can be partitioned into more than two subsets. The
similarity is that in both approaches the largest subset is not processed, ensuring that for
each subset A C C to be processed, |4| < |C|/2. We can neglect the largest class (or any
other single class), because its power of splitting other classes is maintained by the remaining

subclasses. For example, in Figure 3.6, V4, is the largest V-set (having 6 states); therefore,

= = ~“whichever islarger, V4, ~or the set of remaining-elements-of €C; will be the only-subclass-that -~ ~ - - -

is excluded .from the set of new potential splitters that are added to L in line 9.

After the lumping partition is computed by COMPUTECOARSESTPARTITION in line 2 of
LumMPMRP (Figure 3.1), the next stage is to compute the R matrix of the MRP lumped
with respect to P. That computation is based on Theorem 2.3. Figure 3.7 shows the simple
and efficient- versions of the CoMPUTELUMPEDCTMOC procedure for ordinary lumping.
Similarly, Figure 3.8 shows the simple and efficient versions of the same procedure for exact
lumping (7 = |P| < n). It is not difficult to see why the simple and efficient versions of each

procedure produce the same results.

37

CompuTeLuMPEDCTMC(R, S, P)
1 foreach:e€ {1,...,7}

e

2 R(z,7) :=0

3 foreachi,j € {l,...,Ai},i#7

4 s := arbitrary element of C; € P
5 R(J)=K®R,sC5)

6 return R

(2) Simple version

CompUTELUMPEDCTMC(R, S, P)
1 allocate matrix R®*®)
initialize R to zero
foreach i € {1,...,7}
s := arbitrary element of C; € P
foreach successor s of s

ol
RG,7) = RG,5) + R(s,)

return R
(b) Efficient version

00 ~1 Oy O s W b

Figure 3.7: CoMPUTELUMPEDCTMC’s pseudocode for ordinary lumping
3.3 Time Complexity

In this section, we will prove that when we use splay trees [85] as the subclass trees, the
lumping algorithm, that is, the LUMPMRP procedure, runs in O(mlogn) time. In order
to show how the properties of splay trees (compared with other balanced BSTs) affect the
running time of the algorithm, we are going to analyze the running time of LuMPMRP
in two configurations. In the first configuration, we use a general balanced BST for the
subclass trees. We assume that insertion and query of a node in a general balanced BST
take O(logk) time in the worst case, where k is the number of nodes in the tree. For
the first configuration, we will show that the worst-case running time of the algorithm is
O(mlog®n). In the second configuration, we use a splay tree for the subclass trees. Using
the static optimality property of splay trees, we show that we can take an O(logn) factor out
of the time complexity we obtained when we used a general balanced BST; in other words,

we achieve the O(mlogn) running time. Since the subclass tree is only used in stage 2

38

CompuTELUMPEDCTMC(R, S, P)
1 foreachie {1,...,7}
2 R@E7):=0
3 foreachi,j€{l,...,A}i#]
4 s := arbitrary element of C; € P
5
6

R(i,j) = K(R,s,C;)
return R
(a) Simple version

ComPuTELUMPEDCTMC(R, S, P)
1 allocate matrix R®™*™)
initialize R to zero
foreach j € {1,...,7}
s := arbitrary element of C; € P
foreach predecessor &' of s

i=lsle
R(i,5) = R(i,5) + R(¢, s)

return R
(b) Efficient version

CoO -3 O O i W D

Figure 3.8: CoMPUTELUMPEDCTMC’s pseudocode for exact lumping

of LuMPMRP (i.e., the CoMPUTECOARSESTPARTITION procedure), the choice of the tree
data structure affects only the time complexity of that stage. As our algorithm is a variant
of the one proposed by Paige and Tarjan, both of our running time proofs are based on the
running time proof given in [76].

Knowledge of the data structures we use to represent the entities in our algorithm is
essential to the time complexity proof. Except for the tree data structure used for the
subclass tree, all of the data structures are common between the two configurations. A
partition is stored as a doubly-linked list whose elements are the classes. Each class points
to a doubly-linked list whose elements are the elements of the class. Each element (state)
has a pointer to its class. Therefore, finding the class Cjg, of an element s, or adding or
deleting a class or an element of a class, takes constant time. The sets L, L', and L” are
also stored as doubly-linked lists.

The Q matrix can be stored in any data structure that gives access to the elements of

39

a specific row or column of the matrix in O(k) time, where k is the number of elements in
that row or column. An example of such a data structure is adjacency lists in which each
vertex (state s) has two associated linked lists: one for successor vertices (given by e(s))
and one for predecessor vertices (given by e~!(s))3. The transition rates in Q are stored
as edge weights in the adjacency list data structure. However, if the data structure used
for the representation of Q gives access to a specific row or column with a time complexity
larger than what was mentioned above, then the algorithm still works correctly but does
not achieve the O(m log) time complexity. A matrix diagram is an example of such a data
structure.

Since only COMPUTECOARSESTPARTITION (line 2 of LUMPMRP in Figure 3.1) is af-
fected by the choice of the subclass tree data structure, we first analyze the running time of
all lines of LUMPMRP except line 2. As we explained before, COMPUTEINITIALPARTITION
in line 1 performs a sorting operation on a set of n numbers. That will take O(nlogn)
time. Lines 1 and 2 of CoMPUTELUMPEDCTMC (Figure 3.7(b) or Figure 3.8(b)) take
O(m) time because the matrices are represented as adjacency lists. The foreach loop of
lines 3-7 executes 7 times. The foreach loop of lines 5-7 executes at most m times because
each edge s — &' of R is considered at most once. Therefore COMPUTELUMPEDCTMC
takes O(m +) time. Line 4 of Figure 3.1 does not actually take any time; it is shown for
' the sake of clarity. Based on Theorem 2.2, line 5 takes O(n) time.

Lemma 3.1 LuMPMRP ezcept line 2 (COMPUTECOARSESTPARTITION) takes O(nlogn+

m) time to ezecute.

Proof. As we showed above, COMPUTEINITIALPARTITION takes O(nlogn) time, CoM-
PUTELUMPEDCTMC takes O(m + i) time, and lines 4-6 take O(n) to execute. Therefore,
LuMPMRP except line 2 takes

O(nlogn) + O(m + 1) + O(n) = O(nlogn + m)

3In the actual implementation, only one of the lists is actually stored at any given time.

40

time to execute. ||
CoMPUTEKEYS is the last procedure of the lumping algorithm whose running time is

independent of the subclass tree data structure.

Lemma 3.2 The ordinary and ezact lumping versions of the COMPUTEKEYS procedure in

Figure 8.4 take 3 .q O(1+ |e71(s)]) and Y oo O(1 + |e(s)]) time to ezecute, respectively.

Proof. (a) Ordinary lumping: The foreach loop of lines 2-4 of Figure 3.4(a) executes [¥|
times and the foreach loop of lines 3 and 4 executes |e~1(s)| times for each s € ¥. Therefore,
lines 2-4 take O(|¥| + 3, g le7(s)|) time to execute. In the implementation, each element
s’ has a flag that shows its membership in L, so line 8 takes constant time. Therefore,
lines 5-8 also take O(|¥|+ X, le7*(5)|) time. Finally, note that O(|¥|+ 3y le72(s)]) =
5 s O+ e (5)]).

(b) Exact lumping: Consider Figure 3.4(b). The proof is the same as the one for case
(a) except that we need to replace function e™! with function e. [|

The rest of our proofs and discussions in this section deal with the time complexity of
the CoMPUTECOARSESTPARTITION procedure of the ordinary lumping algorithm. Its time
complexity for exact lumping can be proved with only minor changes; Lemma 3.2 is one

example of such a change.

3.3.1 Using General Balanced BSTs

In the balanced BST configuration, we choose an arbitrary balanced BST as the subclass
tree. We assume that the selected data structure provides insertion and query in O(log k)

time in the worst case.
Lemma 3.3 If general balanced BSTs are used, SPLIT(P, L, L', o) takes Y g O(le™(s)]
(1+logn)) time.

Proof. Line 1 takes constant time. The foreach loop of lines 2-6 of SPLIT executes

|L'| times. L' in SPLIT is computed in COMPUTEKEYS. From Figure 3.3, we can see that

41

|L'] < Y ,exle”(s)]. Lines 3 and 4 take constant time. By our assumption regarding
general balanced BSTs, it takes at most O(logn) to execute line 5. By using the same
technique used for L', we can execute line 6 in constant time. Therefore, lines 2-6 take O((1+
logn) Y eyl (s)]). Note that at the beginning of line 7, |L”] < L] < Y cple7(s)]-
Lines 7-10 add all the new potential splitters to L. The number of new potential splitters
is bounded by |L/|; the worst case happens when each element in L' constitutes its own
V-set. Finally, note that the foreach loop of lines 7-10 executes |L"| < 3 .4 |e71(s)]
times. Therefore, lines 7-10 take O(3 .y €7 (s)]) time. Thus, SPLIT takes a total of
O((1 +1logn) Y .cq e (s)]) = Xper Ole™2(s)|(1 + log n)) time to execute. [|

Lemma 3.4 Regardless of the subclass tree data structure, any element s can appear at most

[lg(n + 1)] times in any potential splitter U in all executions of SPLIT.

Proof. Let C be the class to which s belongs at some point in the algorithm, and assume C
is partitioned. Then, s belongs éither to the largest subclass (which is no longer considered
a splitter) or to any other subclass, in which case the subclass is considered a potential
splitter. In the latter case, the size of the subclass is at most |C|/2. In the worst case, each
time its class is partitioned, s ends up in a subclass that is not discarded as the largest, and
hence has at most half the size of the original class. Moreover, in the initial partition, none
of the classes, including s’s class, will be larger than n. Therefore, for any n and k& € N such

that 25— < n < 2%, s belongs to at most k potential splitters. We will then have,

2 l<n<2d = k-1<lgln+1)<k = k=[lgln+1)]
Therefore, the running time of all executions of SPLIT is

Z ZO(I+|€“1(S)|(1+logn)) = O(lg(n+1)Z(l+|e"1(s)|(1+logn))>

all spé'itters seY 3ES
= O(logn X (n+m(1+logn)))
= O(mlog?n)

42

Notice that the range of the second summation is s € ¥ and that of the third summation

is s € S. Hence,

Lemma 3.5 If general balanced BSTs are used as the subclass trees, all ezecutions of SPLIT

take O(mlog®n) time.

Similarly, based on Lemma 3.2, the running time of all executions of COMPUTEKEYS is

Z ZO(l+le‘l(s)l) = O(lg(n+1)Z(1+[e'1(s)])>

all spé’itters se¥ sES
= C)(logn x (n+ m))

= O(mlogn)

Lemma 3.6 If general balanced BSTs are used as the subclass trees, all executions of COM-

PUTEKEYS take O(mlogn) time.

Theorem 3.1 If general balanced BSTs are used as the subclass trees, COMPUTECOARS-

ESTPARTITION takes O(mlog?n) time.

Proof. Lines 1 and 2 of Figure 3.2 take O(|P™™|) = O(n) time. Line 3 takes constant
time. For each iteration of the foreach loop of lines 4-7, line 5 takes constant time. Based
on Lemmas 3.5 and 3.6, lines 6 and 7 take a total of O(mlog®n) time for all iterations.

Therefore, the whole procedure takes O(mlog®n) time. |

Theorem 3.2 If general balanced BSTs are used as the subclass trees, LUMPMRP takes

O(mlog®n) time.

Proof. Use Lemma 3.1 and Theorem 3.1. |
The part of the lumping algorithm that increased the complexity from O(mlogn) to
O(mlog? n) is line 5 of SPLIT (Figure 3.5). In the next section, we will show how a statically

optimal tree (e.g., a splay tree) will allow us to perform a tighter analysis.

43

3.3.2 Using Splay Trees

In the second configuration, we use splay trees to represent subclass trees. Based on the
“splaying” heuristic, a splay tree is a BST for which only one restructuring operation, the
splaying step, is defined. Each time a node is inserted, deleted, or queried, a number of
splaying steps are performed to restructure the tree. For more details see [85].

The key property of splay trees that lets us do a tighter analysis of the running time of

the algorithm is given by the following theorem:

Theorem 3.3 (Static Optimality Theorem [85]) Suppose that T is an initially empty
splay tree and that o sequence of q accesses (insertion, deletion, or query) to n different
elements is to be done on T. Also, suppose the number of accesses to element i is g; > 0

(q=> 1) Then, the total time to perform the sequence of accesses is

O(q+§n:qilog(%)) .

i=1

If we amortize the total time given above over all the accesses we will have:

Corollary 3.1 Given the assumptions of Theorem 3.3, an access to element i takes O(1 +

log(Z)) = O(1+1logg — logg;) amortized time.]

According to the analysis given in Lemma 3.3, in an execution of SPLIT, lines 1-10 mi-
nus line 5 take O(3_,.q le™2(s)|) time. Thus, using Lemma 3.4, we observe that lines 1-4
and lines 6-10 take a total time of O(mlogn) during the execution of COMPUTECOARS-
ESTPARTITION. Therefore, in order to prove that COMPUTECOARSESTPARTITION runs in
O(mlogn), it is enough to prove that line 5 of SPLIT takes a total time of O(mlogn) over

all executions of SpLIT.

Lemma 3.7 When splay trees are used as the subclass trees, all ezecutions of SPLIT in

CoMPUTECOARSESTPARTITION take O(mlogn) time.

44

Proof. Consider an element s € S. If s € L/, it will be inserted into a subclass tree in line
5. It will then be put into a (possibly smaller) class. In fact, lines 2-6 partition some of the
classes into smaller classes (the smaller classes replace the previous ones). Suppose s’s class
is partitioned j times during the execution of COMPUTECOARSESTPARTITION. Let C* be
the it class to which s belongs (C® 2 C* D ... D C¥). In order to partition C*(0 < i < j)
into its subclasses, we create the tree Ck, into which at most |C?| elements will be inserted.
The number of accesses to a node k; of Ct will be |V, |; that is the size of the V-set of k;, and
also equals the size of the subclass associated with k;. The subclass of s is C#+1; therefore,
by applying Corollary 3.1 to accesses to Ck, it takes O(1 +log |C*| —log |C**|) time to insert
s into C#, i.e., to perform line 5 in SPLIT.

We break this running time into O(1) and O(log [C*| ~log |C**|). As we showed earlier,
line 5 is executed O(mlogn) times during the runtime of COMPUTECOARSESTPARTITION,
i.e., for all elements of S and for all possible values of 4. Therefore, the O(1) part takes
O(mlogn). The O(log|C?| — log |C*|) part of all executions (i.e., for all i, 0 < i < j) of
INSERT(CE, (0(s), s)) takes

-1

ZO(logICi[— log |C**Y]) = O(log |C°| — log | C¥]).

i=0
Since 1 < |C¥| < n, we have log|C°| — log|C?| < logn. Therefore, the O(log|C*| —
log |C**|) part of all executions of INSERT(CY, (o (s),s)) takes O(log n) time and conse-
quently O(nlogn) time for all elements of S. Hence line 5, and therefore SPLIT, takes a
total of O(mlogn) time. [

Now, we can state the following theorem, which is the counterpart of Theorem 3.2 for

splay trees.

Theorem 3.4 Under the assumptions of the second configuration, i.e., if splay trees are
used as the subclass trees, COMPUTECOARSESTPARTITION, and consequently LUMPMRP,

takes O(mlogn) time.

45

Proof. Use Lemmas 3.1, 3.6, and 3.7. |

3.3.3 Lower Bound on Complexity

The question that naturally comes to mind after analyzing the running time of the algorithm
is whether that algorithm is the fastest possible. The answer is that we do not know. To the
best of our knowledge, it is the fastest algorithm published to this date. Moreover, there is
no known result that shows a tight lower bound for the state-level CTMC lumping problem.
Nevertheless, we will prove a loose (m +nlogn) lower bound for the time required to solve
the problem, which we hope will give us a sense of how hard the problem is. The model of

computation we consider here is a k-ary decision tree where k is a constant.

Theorem 3.5 A lower bound for the time complezity of the CTMC lumping problem is

Q(m + nlogn).

Proof. The main output result of the lumping algorithm is the partition P with respect to
which the MRP is lumpable. What we are interested in is the number of all possible values
of P. In other words, we would like to know the number of all possible ways a set of n
elements can be partitioned. That number is known as the Bell number B,, and according

to [92):

InB, Inlnn 1 1 /Inlnn\?2 Inlnn
=lnn—Inlnn— 4= —=)
n noinmno nn | lon 2<1nn) +O((1nn)2>

By disregarding the terms smaller than In7, we could say that log B, = O(nlogn), which
is the minimum height of the computation tree that gives the partition P at its leaves.
Moreover, all the non-zero entries of Q have to be accessed at least once by any lumping
algorithm. Therefore, any algorithm takes at least Q(m + nlogn) cémputational steps to

solve the lumping problem. |

46

3.4 Performance Results

Apart from the theoretical importance of the better time complexity of our algorithm com-
pared to the ones known before, we are also interested in the running time of the implemen-
tation of the algorithm in practice. In particular, we investigate the effect of using splay
trees and general balanced BSTs on the running time of the lumping algorithm’s implemen-
tation. Moreover, we compare the performance of the implementation of Buchholz’s lumping
algorithm [19] with the implementation of our algorithm given in this chapter. Finally, we
study the effect of the size of the resulting lumpable partition on the running time of the
two variants of our algorithm and that of Buchholz’s algorithm.

The specific general balanced BST that we have used in our implementation is the red-
black tree [31]. It satisfies our requirement that it perform any insertion or query operation
in O(log k) worst-case time, where k is the size of the tree. Specifically, we have used the
STL’s (Standard Template Library) [75] implementation of the red-black tree data structure.
For the splay trees, we used a slightly improved (by a small constant factor) version of the
splay tree implementation of [91].

We have performed all of our experiments on a PC with an Athlon XP 2400 processor
and 1.5 GB of RAM. We have used the gece 3.3 compiler and the -O3 optimization set-
ting. Our implementation is based on the Mdbius modeling tool [38, 48]. We obtained
the implementation of the algorithm in [19] directly from its author. That implementation
was compiled using the same compiler and settings we used for our implementation. In all
the experiments, the generator matrix Q is represented in memory using the sparse matrix

representation. Therefore, accessing all k elements of a row or a column takes O(k) time.

3.4.1 Example Model

To provide a number of MRPs on which we can test the implementations, we have two

options: 1) to build MRPs at the state level, or 2) to build high-level Markovian models and

47

then generate the underlying MRP. Using the first approach for very large MRPs is obviously
not practical. Moreover, using the second approach, we can automatically generate a large
number of MRPs with various degrees of lumpability. Therefore, the second approach is
preferable.

The model that we consider here is the model of a hypercube multiprocessor system.
We used the Mobius tool to model the system using the SAN (stochastic activity network)
[84] formalism. In the following, we give a high-level view of the model; the complete SAN
specification of the model is given in Section A.1l. Note that the selection of the formalism
is arbitrary; what we ultimately need is some representation of an MRP that we feed to our
lumping algorithm. Therefore, any other high-level Markovian model formalism could be
used.

The hypercube system consists of 8 cube-connected processors, an input pool of jobs that
are waiting to be serviced, and an output pool of jobs that have already been serviced by a
processor in the system (Figure 3.9). The system takes jobs from its input pool, processes
them using its processors, and passes them to its output pool. By superimposing the input
pool and the output pool, we have made the system closed in the sense that there is always
a constant number J of jobs in the system.

All the processors have the same behavior (given they are in the same state) except
for two processors A and A’ (Figure 3.9(a)). A and A’ have the same behavior as each
other but are special (with respect to the other hypercube processors) in that they receive
jobs from the input pool as described later. Processors in the hypercube can fail, and are
repaired by a single repair facility that picks processors to repair uniformly from the pool of
failed processors?. A failed processor keeps its jobs in its queue unless they are transferred
to a neighbor processor by the load-balancing scheme described below. The subsystem is
considered unavailable when two or more processors are down.

Each processor has a queue with capacity J. Jobs enter the processors’ queues via a

4Failure and repair behaviors of the system are not shown in Figure 3.9.

48

\ enabled if
tra,xé%fer - -- load balancing is required
J and destination server is up

load~balancing
job dispatcher

input
pool queue 2
(a) Connection between processors (b) Load-balancing between each two neighbor-
ing processors
output pool
__ service
queue enabled if

server is up

(c) Service in each pro-
cessor

Figure 3.9: Hypercube system (triangles specify enabling functions for transitions)

dispatcher that picks a job from the subsystem’s input pool and assigns it to either processor
A or A’ with a probability distribution that favors the processor that has fewer jobs in
its queue (Figure 3.9(a)). Another load-balancing scheme that governs the distribution of
jobs among the processors is that whenever a processor has > 1 more jobs than any of its
neighbors, it sends one of its jobs to one of those neighbors, again assigning higher probability
to processors with fewer jobs (Figure 3.9(b)). That is how jobs are distributed among all
processors. Finally, if a processor fails, it transfers jobs in its queue one by one, with an
exponentially distributed delay, to a neighbor processor that is not down.

As we can see from the model specification, the lumpability of the MRP generated

from the hypercube model is due to the model’s symmetrically-connected equally-behaving

49

processors. The symmetry in fact generates an MRP that is strictly lumpable (i.e., ordinarily
and exactly lumpable) with respect to some partition of the state space (see Theorem 3.4
of [17] for a proof). Moreover, all MRPs that are lumpable only due to symmetry of their
underlying models (like the hypercube model) have the property that the coarsest partitions
with respect to which the MRP is ordinarily, exactly, and strictly lumpable are all the same.
‘Therefore, in all our experiments, we apply only the ordinary lumping algorithm to the
MRPs generated from the hypercube model.

As we mentioned earlier, we intend to study the effect of output size (i.e., the size of
the lumpable partition) on the running time of the algorithms. In order to perform this
study, we need to have a number of MRPs of the same size that have the same — relation,
except that they are different only in the rates of their Q matrices. The lumped versions of
those MRPs will possibly have different sizes, due to their different Q matrices. By running
lumping algorithms on such MRPs, we can learn how the running time of the algorithm
changes depending on the size of the computed partition.

To generate such MRPs, we start with the original hypercube model that we described
above. It has the maximum degree of symmetry, and therefore leads to the smallest lumpable
partition. By changing the service and repair rates of some of the processors, we can achieve
different degrees of symmetry up to the point that there is no symmetry in the model.
Hence, the coarsest lumpable partition is of the same size as the state space, i.e., no lumping

is possible.

3.4.2 Performance Results

First, we compare the performance of three implementations of MRP lumping algorithms:
1) the implementation of our algorithm that uses the red-black tree data structure for the
subclass trees, 2) the implementation of our algorithm that uses the splay tree data structure
for the subclass trees, and 3) the implementation of the lumping algorithm given in [19] by
Buchholz.)

50

Table 3.1(a) shows the sizes of the original and the lumped MRPs resulting from the
hypercube model. The second and third columns are the number of states (n) and non-zero
Q matrix entries (m) of the original MRP, and the fourth and fifth columns are the number of
states (%) and non-zero Q matrix entries () of the lumped MRP. Obviously, the computed
lumped MRPs do not depend on the implementation used, since all the algorithms generate
the same output.

The second through fourth columns of Table 3.1(b) show the running times of the three
implementations that we mentioned above for each MRP. All times are in seconds. The
fifth and sixth columns show by how much the red-black implementation is faster than the
splay and Buchholz implementations, respectively. The seventh column gives the average
size of the subclass trees created during the running time of our implementation. Note that
subclass trees are used only by the red-black and splay tree implementations.

In Table 3.1(b), we can see that the red-black implementation is faster than the splay
tree implementation by 6.6% to 9.1%. At the first look, the result appears to contradict the
time complexities that we proved in Section 3.3. However, by looking at the average sizes of
the subclass trees, which are very close to 1, we recognize that almost all the subclass trees
generated during the running time of the algorithm are of size 1. Because of the extreme
smallness of the subclass trees, the constant factors that are dropped in the theoretical
time complexities in the two configurations have become a dominant factor. In fact, the
source code of the red-black tree and splay tree implementations (not given here) verifies
the relatively larger constant factor of the running time of the splay tree operations.

All in all, the smaller constant factor of the time complexity of the red-black tree opera-
tions and the very small subclass trees causes the red-black implementation to be faster than
the splay tree implementation for our example. Our experience with other models shows

that the very small average size of the subclass trees is typical for virtually all models®.

SNonetheless, it is possible to handcraft MRPs for which the splay tree implementation performs faster
than the red-black implementation. '

51

(a) Specification of the lumped and unlumped MRPs

7 unlumped MRP lumped MRP
n m n m

3 10,725 65,075 943 5,822

4 32,175 224,585 2,967 20,265

5 83,665 | 651,131 | 7,753 | 58,305

6 195,195 | 1,657,707 | 17,893 | 146,539

7 418,275 | 3,815,007 | 37,816 | 333,478

8 836,550 | 8,098,050 | 74,762 | 701,831

9 | 1,580,150 | 16,087,540 | 139,856 | 1,385,062

10 | 2,844,270 | 30,238,454 | 249,782 | 2,590,165

(b) Running times and comparisons
running time (s) red-black is faster average size
J by a factor -of of subclass
red-black | splay | Buchholz — splZy vs. Buchholz trees

3 0.07| 0.076 0.20 8.6% 2.9 1.009
4 033 0.36 4.03 9.1% 12.2 1.0066
5 1.10 1 1.19 30.05 8.2% 27.3 1.004
6 3.12| 3.37 170.7 8.0% 54.7 1.0028
7 8.07 | 8.67 803.6 7.4% 99.5 1.0025
8 18.85 | 20.22 3369 7.3% 178.7 1.0021
9 41.30 { 44.08 | 13380 6.7% 324 1.0018
10 85.33 | 90.99 | 47260 6.6% 553.8 1.0017

Table 3.1: Performance comparison of three different implementations of state-level lumping
algorithms
. Therefore, it is preferable to use the red-black tree implementation in practice.

From Table 3.1(b), we can also observe that our red-black implementation is between 2.9
and 554 times faster than Buchholz’s algorithm, depending on the size of the original MRP.
The speedup is attributable to the ratio of the time complexities of the two algorithms:
O(mn)/O(mlogn) = O(n/ign). That ratio also explains the fact that as the size of the
original MRP grows, the speedup becomes larger too.

Our second study examines the effect of the size of the lumpable partition computed by
those implementations on their running time. As we explained before, we generate a number

of MRPs with the same size but with different degrees of symmetry from the hypercube

52

lumped MRP running time
config n m red-black | splay
1 37,816 | 333,478 807 | 867
2 75,607 | 666,947 891 | 9.89
3 214,380 | 1,936,463 13.26 | 15.52
4 418,275 | 3,815,007 19.62 | 23.66

Table 3.2: Running time of red-black and splay implementations for MRPs with different
degrees of lumpability

model. Table 3.2 shows a number of different configurations of an MRP with 418,275 states
and 3,815,007 non-zero Q entries. For each configuration, the number of states (%) and
non-zero Q entries (/) of the lumped MRP and the time to generate the lumpable partition
for each implementation are given. The first configuration, which is the one used in Table
3.1 (J = 8), has the most symmetry. The last configuration does not have any symmetry,
i.e., is not lumpable.

We can see from Table 3.2 that the larger the computed lumpable partition is (i.e., the
less lumpable the MRP is), the more time it takes to generate the partition. That trend was
predictable, because the algorithm starts with a coarse initial partition and refines it until
it reaches the resulting lumpable partition. The finer the resulting partition, the larger the

number of refinement steps needed to compute the result, and the more time the algorithm

takes.

3.5 Summary

We gave an algorithm for computing the coarsest ordinarily and exactly lumped MRPs. We
presented the algorithms in such a way that they can be reused in Chapter 5 in compositional
lumping algorithms. We showed that with the use of splay trees, the time complexity of the
algorithm is O(m logn). We also showed that a “naive” selection of a data structure for the
subclass tree (e.g., any general balanced BST) leads to an algorithm with O(mlog®n) time

complexity.

53

We also introduced the open question of the lower bound time complexity of the MRP
lumping problem. Although we could prove the Q(m + nlogn) lower bound, there is still
a relatively large gap between that lower bound and the O(mlogn) time complexity we
proved for our algorithm, which is the fastest known algorithm for the problem.

To understand the practical implications of our theoretically faster algorithm, we also ran
two implementations of our algorithm and another one with time complexity of O(mn) [19]
on a number of MRPs that were built from a model of a hypercube of processors. We first
showed that the splay tree implementation, although theoretically faster, is virtually always
slightly slower than the red-black tree implementation, because almost all the subclass trees
generated during refinement are of size 1. Moreover, we showed that our implementation
is significantly, and in some experiments more than two orders of magnitude, faster than
Buchholz’s. Finally, we observed that the larger the resulting lumpable partition is, the
more time each of the implementations will take, due to the larger number of refinement
steps necessary to compute the result.

Our algorithm can use any compact representation for the generator or transition rate
matrix that provides column and row access. Nevertheless, even the use of compact repre-
sentations for the generator matrix does not make our algorithm applicable to an MRP with
arbitrary size, because the algorithm would still need memory proportional to the size of
the state space. In practice, our implementation can handle MRPs with up to about 30 mil-
lion states using compact representation for the generator matrix on a modern workstation
with 1.5 GB of RAM. For larger MRPs, other techniques, such as compositional lumping
and symmetry detection, come into play. Compositional lumping techniques use lumping
algorithms as subroutines and integrate them with compositionality to lump even larger
MRPs. A technique that combines symmetry detection and symbolic data structures will
be described in Chapter 4. In Chapter 5, we will exialain another approach that combines a

compositional lumping technique and symbolic data structures.

o4

Chapter 4

Symbolic CTMC Construction and
Numerical Analysis

In this chapter, we extend previous work on MDDs and MDs to composed models that
share state variables and support next-state and weight functions that are state-dependent
in general’. Furthermore, our work combines model-level lumping techniques, which have
been applied to state-sharing composed models, with largeness-tolerance techniques that
use MDDs and MDs. In particular, we present a new algorithm that symbolically generates
the state space of a hierarchical model (which is built using join and replicate operators
[82]) in the form of an MDD. The replicate operator imposes symmetries that create regular
structures in the state space, and therefore make symbolic exploration of the state space
efficient with MDDs. By using symbolic data structures, we make the representation of the
state space and the state transition rate matrix orders of magnitude smaller, so that most
of the available memory will be left for the storage of iteration vectors.

We also designed an algorithm to obtain an MDD representation of the lumped state
space from the MDD generated by the state-space generation algorithm. The lumping
algorithm, which reduces the size of the state space, also reduces the regularity of the
MDD, whose representation becomes larger as a result. However, that increase is negligible
compared to the space used for an iteration vector in the subsequent numerical analysis of
the lumped CTMC. We obtain an MD representation of the lumped CTMC as a projection
of the MD of the unlumped CTMC on the lumped state space. In performing a numerical

analysis on that MD, one must use extra care in matching states with their corresponding

! Approaches based on action synchronization typically impose restrictions on actions that are synchro-
nized.

55

lumped states in the lumped CTMC.

We begin in Section 4.1 with some definitions and notations we need to specify the
Markovian modeling formalism we use. In Section 4.2, we describe how we define MRPs
based on Markovian models and prove that the MRPs are ordinarily and exactly lumpable
with respect to partitions that depend on the structure of the model. Then, in Section
4.3, we present the symbolic state-space exploration algorithm by extending previous work
[25, 26, 28, 29] on MDDs to state-sharing composed models that do not have some of the
structural restrictions required by previous approaches. We also describe how the algorithm
generates the unlumped state space as an MDD. In Section 4.4, we present our approach
of constructing the lumped state space from the unlumped state space by integrating the
model-level lumping technique of [82] with symbolic techniques, which has never been done
before. Section 4.5 discusses how the algorithm constructs an MD for the state transition
rate matrix of the lumped CTMC and how to enumerate the elements of that structure
for numerical analysis. The proposed approach has been implemented and used for the
numerical analysis of a highly redundant fault-tolerant parallel computer system [67, 81].
We also consider a well-known performance model of a communication protocol [93]. Results
for the models are presented in Section 4.6. Finally, we will summarize and present possible

future work in Section 4.7.

4.1 Background

4.1.1 Hierarchical Model Specification

In this chapter, we develop a representation of the CTMC of a hierarchical composed model
that is built by sharing state variables (SVs) among submodels. This composition operation
is the same as the one used in SAN-based reward models [82], but is different from action-
synchronization composition, which has been used in superposed generalized stochastic Petri

nets, (stochastic) process algebras, and stochastic automata networks. In order to describe

56

precisely how hierarchical composed models of discrete event systems are constructed, we
start with the definition of a model and the composition operators that we use to build those
models. Note that the actual modeling formalism used to describe the models we compose
together can take many forms, including stochastic extensions to Petri nets, stochastic pro-
cess algebras, and “buckets and balls” models, among others. Our intent is not to create
yet another modeling formalism, but simply to specify a simple model type that allows us
to describe our technique. In reality, it will work with any discrete-event formalism that
has the characteristics described below, including composed models with constituent models

expressed in different formalisms.
Definition 4.1 4 model M is an 8-tuple (V, Vs, Vi, A, s™, 8, w, prio) in which

o V is a finite, non-empty set of SVs. D, is the set of possible values v € V can take

and X, oy D, is the set of all possible states of M.
e V; is a set of shared SVs (V; C V).
e V, is a set of exported shared SVs (V; C V;).
e A is a finite, non-empty set of actions.

o s e X, ., D, is the initial state.

o §: Ax (X, ey Dy) = (X, oy Dy) is the partially defined next state function that

specifies a successor state for a given action and state.

o w: Ax (X, oy Dy) — R defines a non-negative weight for an action given the

current state.

o prio: A — Ny (Ny is the set of non-negative integers) defines a priority for an action

using a finite subset of N.

For ease of notation, 6(a,s) and w(a,s) are denoted by 6,(s) and w,(s), respectively. M

87

Note that we do not impose restrictions on § and w, as is typically done for formalisms
using action synchronization. For instance, action synchronization requires that enabling
conditions and state changes of synchronized actions be conjunctions of local conditions
and local effects, e.g., the requirement called “product-form” decomposition in [29]. Since
we compose models by sharing state variables, we can allow §,(s) to be defined in a non-
decomposable, rather arbitrary manner; e.g., 0,(s) may be defined only for states where
> wev Sv = @, for some constant a. 'We compose models by sharing SVs. There are two
ways to do so. If M itself consists of submodels and results from some composition of
those submodels (composition operators will be defined below) then V; contains SVs that
are shared among those submodels. In addition, if M is subject to composition itself, then
certain SVs of M may be shared with other models; set V; identifies those externally shared
SVs within V5. The usefulness of subsets Vi and V, of V; will become more clear after
composition operators are defined below.

We will limit ourselves to consideration of models whose behaviors are Markov processes
by enforcing the following two restrictions. 1) For any state s and action a, 8,(s) can be
defined only if there is no action a’ such that §4/(s) is defined and prio(a’) > prio(a). If §,(s)
is defined, we say that a is enabled in s. 2) If prio(a) > 0, then a is called immediate and
action a takes place (fires) with probability wa(s)/ >_,ep(s) War (), where E(s) C A denotes
the set of actions that are enabled in s. If prio(a) = 0, then a is timed and action a takes
place after a delay that is exponentially distributed with rate w,(s).

Function ¢ induces a reachability relation among states. Consider two states s,s’ €

X, v Dy. We use s — s’ to denote a transition from s to s’ in model M. Relation ~ is the

veEV
reflexive and transitive closure of —. In other words, s ~» s’ and we say s’ is reachable from s,
if and only if s = &’ or there is a sequence of one or more transition(s) s — --- — §'. A state
s is vanishing if there is an action in E(s) that has a priority greater than 0. A tangible

state is a state that is not vanishing. Starting from the initial state s™, the relation ~

results in the observable state space of M. We restrict ourselves to models that have a finite

58

observable state space starting from a tangible initial state s™ and have a structure that
allows us to perform on-the-fly elimination of vanishing states. The tangible reachable state
space, or simply state space, S of model M is defined as S = {s|s™ ~> s, and s is tangible}.

The transition rate matrix of the underlying CTMC is R, where R(s, §') (s, s’ € S) gives
the sum of rates of all timed actions whose firing leads from s to s/, possibly including a
subsequent sequence of immediate actions whose probabilities are multiplied by the rate of
the initial timed action. In the following, we will focus mainly on using MDs to represent R
rather than Q = R — rs(R) since the derivation of rs(R) is straightforward.

In order to build models of complete systems from smaller and simpler models, we define
two composition operators, “join” and “replicate,” which are based on sharing of the SVs of
the models on which they are defined [82]. The join operator combines a number of (possibly
non-identical) models by sharing a subset of their SVs, while the replicate operator combines
a number of copies (replicas) of the same model by sharing the same subset of all of the
models’ SVs. The definition of “join” uses the notion of substate sw, the projection of s on

a set of state variables W C V. Also, s(v) is the value of state variable v in state s (v € V).
Definition 4.2 The join operator J(Vy,My, ..., M,) over models M; = (V;, Vz;, Vij, Aj, 82,
8;,wj,prio;), j € {1,...,n} with V; C U}, V,; yields a new model M = (V, V5, V5, A, s g,
w, prio) with
o V=Ur,Vs; U w?=1‘G\ng,2 where an appropriate renaming of SVs in V;\V;; ensures
unique names such that the union is over disjoint sets, and where Uj_;Vs; means that

SVs with the same names are indeed superimposed.

® V; = VJ.
o A=ul_A;, where an appropriate renaming of actions in Ay, ..., A, ensures that the

union is over disjoint sets.

24 denotes the union of disjoint sets.

59

o §%(v) = sF(v) if v € V;\Vyj, and §™(v) = mag; s¥(v) if v € V5.

0a(s) = &' if there ezists § such that a € A;, bja(sv;) = Sy, and sy\y; = SIV\VJ- .

wa(s) = X if there exists j such that a € A; and wia(sv;) = A

prio(a) = prio;(a) for all j and all a € A;.
We call My, ..., M, the children of model M. [|

We now more precisely identify the role of V; and V; in M. Elements of V; are SVs shared
among the children of M. Suppose model M has two children M; and M;, each of which has
an SV z. If z € Vs, then M contains a single SV z shared by M; and Mj. On the other
hand, if z ¢ V; then z is renamed in M; and My (e.g., as z; and z;) such that M contains
two different SVs. Furthermore, if M itself is used as a child in a subsequent join operator,
only the SVs in V;, are visible and can be shared with other children of that join operator.

By convention, we use the maximum initial value of the shared SVs as the value of the

resulting shared SV. Note that the join operator is a commutative operator.

Definition 4.3 The replicate operator R,(V;, M) yields a new model M/ = J(Vi, My, ..., Mp)
with M; = M for all j € {1,...,n} and V; C Vom. We call M the child of model M', and n

the cardinality of the operator. n

The replicate operator is a special case of the join operator, in which all children are
identical; for that reason, it exhibits desirable properties with respect to the lumpability
of the CTMC that its resulting model generates. We will precisely state and prove these
properties in Section 4.2.

Note that the set of models is closed under the join and replicate operators, meaning
that the result of each of the operators is a model itself, and therefore can be a child of
another join or replicate operator. This property enables us to build composed models that

are hierarchical. Such composed models require a starting set of “atomic” models that act

60

as building blocks. Atomic models are built without the use of replicate or join operators
and have V; = V/ since there is no reason to have shared SVs that are not externally visible.
For analysis of a single atomic model as such, classical CTMC analysis applies. Hence, in
the following, we are interested only in composed models that contain at least one join or
replicate operator.

For a composed model that is given in terms of possibly nested join and/or replicate
operators, we call each occurrence of an atomic model or the result of each occurrence of an
operator a component. Note that every component is a model. For a model that contains
m components we can define an indez chosen from {1,2,...,m} over the components of a
term from left to right after expanding replicate operators into join operators. We use RC
and AM to denote the set of all component indices that correspond to replicate operators

and atomic models, respectively. For example,
M = Ro(Vy', J(V;, M/, M")) = J(V}, J(Va, M, M"), J(V;, M/, M"))

obtains indices as in

= J1(V3, J2(Vy, Mg, My), J5(V7, Mg, M7))

where m = 7, RC = {1}, the farthest-left join operator corresponds to the component with
index 1, the next-to-farthest-left join operator has index 2, and the last component is M”
to the right with index 7. Obviously, V; and V; do not receive indices, because they are
not components. In the rest of the chapter, the set of SVs, the set of shared SVs, the set
of exported shared SVs, and the set of actions of component ¢ are respectively denoted by
Vey Ve, Vae, and A, and the set of SVs of model M is denoted by V. In the following, we
consider only the non-trivial case m > 1. The motivation for this indexing scheme is that
we wish to partition the set of SVs V into m disjoint subsets as follows. If component ¢
corresponds to a join operator, then V, = Vz,\Vy.. If component ¢ is an atomic model, then

V, = V,\V,.. The partition is denoted by Il = {V1,...,Vn}, and we call V.'s (1 < c < m)

61

the classes of I1.3

For any component c, we can define an injective mapping g. : X vev, Du = Np that
gives an index number to any setting of SVs in V,. Since we consider only models with
finite state spaces, the domain of g, is finite. Clearly, many such mappings exist. At
this point the only condition on the mapping is that it be injective such that any state
s=(s1,---,8m) € X (X ey, Do) of a model, where s. = sy, has a unique representation
as a vector v = (g1(51),.--,9m(sm)} € NJ*. The cth component of the vector v, which is
denoted by v, is in fact the index of substate sy,. To simplify our notation, we will overload
the symbol s and use it to represent a state, a state index, and a vector of substates, whenever
it is clear from the context. Similarly, we overload s, to represent a substate and also the
corresponding substate index g.(s.).

Consider an action a € A, of an atomic component ¢. By definition, a may depend not
only on SVs in V, but also on shared SVs in other V sets. The partition IT determines I, the
set of indices of V sets in which the SVs in V, are encoded. In particular, I, = {c/| Vo NV, #
@}. Therefore, V., C Uyer, Vo

The set I. gives the set of substates that action a may affect or by which it becomes
affected. In éther words, action a may change only the substates whose indices are given
in I, and the changes in those substates depend only on themselves (and not on any other

substates). More formally, V s,s' € NI',a € A.:

bo(s) =8 =>Vidl :5 =5 (4.1)
s 1€l

(0a(s)=6,08,(3) =8, Viel,:5=5)=5= (4.2)
S; i i -[c

$Depending on the composed model, some of the classes of II may be empty. For the sake of simplicity
of the presentation, we assume that all classes are non-empty. However, the degenerate cases are addressed
in our implementation.

62

Observe that if an action a is not in the set of actions of a replicate model ¢ (i.e., a & A)
then there exists an atomic component ¢’ € AM such that ¢ € 7, and a € Ae. In that case,
action a does not affect or become affected by any substate s; (i € 7¢), that is, Io N 7. = 0.

If we consider all actions not in A., we conclude

VdeAM,d ¢r.: I.N1.=10 (4.3)

4.2 Lumping Properties of the Replicate Operator

An important property of the replicate operator is that it yields a behavior that enables
lumping on the associated CTMC of a model [82]. The ordinary lumping property of replicate
operators has been discovered and proved in [80]. In [60], Obal proves ordinary lumpability
for models that have a general type of symmetry (covering the replicate operator as a special
case). In this section, we will cover both ordinary and exact lumpability for MRPs that are
based on models that we described in Section 4.1. Our formulation is similar to that of
[60] in that the notion of state permutation has been used to determine state equivalence.
Therefore, our approach is also extensible to general types of symmetry. However, we discuss
only symmetries that are due to the replicate operator.

The idea emanates from the observation that a replicate operator constructs a model
that has identical copies of another given model. For example, consider a model M =
Rs(Vy, M), where M’ is an atomic model. When unfolded as described above, we will have
M = J(V;, M',M,M). M has 4 components, and hence, any one of its states can be rep-
resented as a 4-tuple (s1, S2, 53, S4) in which So, 83, and sy correspond to the three replicas.
Now consider two states s = (2,1,1,0) and s’ = (2,1,0,1). In both states, the replicate
component is in substate 2, two of the replicas are in state 1, and the other replica is in 0.
Therefore, based on the assumptions that we do not need to distinguish the replicas and

that they behave identically, the stochastic behaviors of those two “equivalent” states are

63

the same. In other words, the two states have transitions with rates that are equal to those
of other “equivalent” states. The state s” = (2,0, 1,1) is another state that is equivalent to
s and s’. Notice that s, ', and §” can be converted to each other by a permutation on their
state representations.

In this section, we are going to formalize the notion we just described and prove that
“equivalent” states like the ones above form classes of partitions with respect to which the
MRP (constructed upon the CTMC of model M) is lumpable according to Definition 2.2.
We do so by first introducing some notations and a number of definitions that help us define
R, which is the equivalence relation defined on S and induced by a replicate component
¢ € RC, and its corresponding partition P,. We then compose the equivalence relations
of all replicate components (all R.’s) to construct another equivalence relation R (with a
corresponding partition P) that relates two states if they are related via an arbitrary number
of constituent equivalence relations (R.'s). Finally, we prove that an MRP defined based
on S and Q of the model (with some conditions) is ordinarily and exactly lumpable with
respect to all P.’s, and more importantly, with respect to P, according to Definition 2.2.

For a replicate operator R, (Vy, M) with component index ¢ € RC and cardinality n., let
I be the number of component indices used for a single replica of M. Then, by construction,

all component indices in 7. = {¢,c+1,...,c+ n.l.} are associated with R, (V7, M).

4.2.1 c-State Permutations and RC-State Permutations

We define a permutation p to be a bijective function p: {1,...,k} — {1,...,k} for a given
keN. pi(i)=1diforalli € {1,...,k} is called the identity permutation. If two permutations
p and p’ are both defined on the set {1,...,k}, then their composition is denoted by pop’
and defined as pop/(¢) = p(p/(¢)). The set of all permutations on the set {1,...,k} with the
composition operator form a group in which p; is the identity element and p~! is the inverse
of p.

A c-permutation p, corresponding to a replicate component ¢ € RC is a permutation

64

with k equal to n., the cardinality of the replicate component. A c-permutation permutes
the replicas of a replicate operator. A state permutation sp is a permutation with k = m; it
permutes the substates of a state s = (s1, ..., 8n). The application of a state permutation sp
on astate s = (s1,..., 5n) is denoted by a(sp, s) = (Ssp(1); - - - » Ssp(m))- Note that a(sp, s) = s’

is equivalent to a(sp~?,s’) = s. We can now define a special state permutation on which the

definition of K, is based.

Definition 4.4 For any replicate component c, a c-state permutation sp. is a state permu-

tation such that

. . o iZe or i>cHmnele
sp(i) =1 if
(or equivalently i & 7.)

. o 1<EkZn. and 1<j< e
spe(c+ (k—Dle+7) =c+ (pe(k) = V)l +5 of

(c+ (k—1)l.+j) €)
in which p. is a given c-permutation. "

Observe that
e the second condition covers all values of 7 € .
o sp.(i) € o foralli € 7.

e for a given ¢ € RC, there is a one-to-one correspondence between the set of c-

permutations and the set of c-state permutations.

e ofsp,, s) is in fact a state derived from s through permutation of the children of repli-

cate component c.

In the following, we prove that for a given ¢, the set of c-state permutations with the

composition operator form a group.

65

Lemma 4.1 For a given c, the set of c-state permutations with the composition operator

form a group.
Proof.

a. Associativity: Trivial to see from the definition of the operator.

b. Identity: The c-state permutation corresponding to the identity c-permutation is the

identity permutation.

c. Inverse: Suppose p. is a c-permutation and sp, is its corresponding c-state permuta-
tion. We prove that sp! is equal to the c-state permutation corresponding to the
c-permutation p;l. Suppose sp, is the c-state permutation corresponding to p;t. We
will prove that spl(sp.(¢)) =1 for all ¢ € {1,...,m}. Similarly, sp.(sp.(¢)) = ¢ can be

proven, and thus, sp}, = sp;!. We have:

spl(i) =1 if i<cor i>c+ndd

spllec+ (k=1 +7)=c+ (p;Hk)—1)l.+j if 1<k<n. and 1<j<],

If ¢ & 7., then spl(i) = 7 and sp.(¢) = ¢, and therefore, spl(sp.(7)) = i. Otherwise,
t=c+ (k—1).+ j where 1 < k < n.and 1 < j < I.. Therefore, sp,(sp.(?)) =
spe(c+ (Pe(k) — Dle + 5) = ¢+ (P71 (pe(k)) ~ Dl +j = c+ (k= L)l +j = i.

d. Closure: suppose p.; and p.s are two c-permutations and sp.; and sp.o are their
corresponding c¢-state permutations, respectively. We prove that sp. = sp.i105p.2 is
equal to the c-state permutation corresponding to the c-permutation p. = p.10p.2.

Suppose sp., is the c-state permutation corresponding to p,. We will prove that sp.(i) =

spe(t) for all 7 € {1,...,m}, and thus, sp] and sp, are actually the same permutations.
We have:
sph(i) =1 if ig7,

sphic+ (k—1)l.+3) =c+ (Peopea(k) =l +7 if 1<k<n, and 1<j<;

66

If i & 7., then sp.(i) = i = sp.(i). Otherwise, sp.(t) = spc1(spe2(?)) = spei(c+
(Pea(k) = Dl + 5) = e+ (pea(pe2(k)) — Dle + j = spi(i). -

Definition 4.5 An RC-state permutation sprc is a composition of a sequence of cy-state

permutations where 1 > 1, k € {1,...,i}, and ¢; € RC, i.e., SDrC = SP¢;© - .. 08Pc; -

Verify that the set of RC-state permutations with the composition operator forms a group.
The next step is to define the equivalence relations R, and R that give us the partitions with

respect to which the CTMC of a model is ordinarily and exactly lumpable.

4.2.2 Equivalence Relations R, and R

Definition 4.6 For any c € RC, the relation R, € S x S is defined such that (s,s’) € R.

if and only if there ezists a c-state permutation sp. such that a(sp.,s) =s'. [|
Theorem 4.1 For any ¢ € RC, R, is an equivalence relation.

Proof.
a. Reflexivity: For any s € S, a(ps, s) = s. Therefore, (s,s) € R..

b. Symmetry: Assume (s,s’) € R.. Then, there exists a c-state permutation sp. such that
o(sp., s) = s', and hence a(sp;1,s') = s. By Lemma 4.1, sp;! is a c-state permutation.

Hence, (¢, s) € R..

c. Transitivity: Assume (s,s'),(s',s”) € R.. Then, there exist two c-state permutations
sp. and sp,, such that a(sp.,s) = s’ and a(spl,s’) = s". Therefore, a(sp,osp., s) = ¢,

in which, by Lemma 4.1, sp.osp], is a c-state permutation. Hence, (s, s") € R.. -

In a given model M, we have | RC| replicate components, and therefore | RC| equivalence
relations R,. Each state s € S has a number of equivalent states in each of those equivalence

relations. We would like to build another equivalence relation R in which two states s and

67

s’ are equivalent if they are “connected” through a number of equivalent states in any set
of R.’s. For example, let s,5,t,t' € S and ¢, ¢, ¢” € RC such that (s,s') € R, (¢,t) € Ry,
and (¢,t) € Rx. We would like to build R such that all states s, s',¢,¢ are equivalent.
More formally, we define the relation R by combining all equivalence relations implied by

the replicate operator as follows:

Definition 4.7 The relation R C S x S is defined such that (s,s') € R if and only if there

exists an RC-state permutation sprc such that s' = a(spre, 3)-
Theorem 4.2 R is an equivalence relation.

Proof.

a. Reflexivity: for any s € S, a(pr, s) = s. Therefore, (s,s) € R.

b. Symmetry: Assume (s,s’) € R. Then, s’ = a(spre, s) for some RC-state permutation
spre- Therefore, s = o(spgs,s’), in which sppp is itself an RC-state permutation.

Therefore, (s, s) € R.

c. Transitivity: Assume (s,s),(s’,s") € R. Then, s' = a(spre, s) and s” = aspgq, &)
for some RC-state permutations spre and splpo. Therefore, s” = a(sppoospre, 8), in

which sproospre is itself an RC-state permutation. Therefore, (s,s’) € R. -

Since R, (resp., R) is an equivalence relation, it induces a partition P, (resp., P) on S.
Based on Definition 4.6 (resp., Definition 4.7) any state of S can be transformed to any of
its equivalent states, i.e., a state in the same class of P, (resp., P), by a c-state permutation

(resp., RC-state permutation).

4.2.3 Ordinary and Exact Lumpability

We also would like to show that two equivalent states in a class of P, or P behave exactly
the same. More specifically, we would like to prove that equivalent states have transitions

with the same rate to (other) equivalent states.

68

Lemma 4.2 Consider a model M = (V, V3, V,, A, s, 6, w, prio), ¢ € RC, a c-state permu-
tation sp., a € A, and s,s' € NP. If §,(s) = &, then there ezists an action o’ € A such that

prio(a’) = prio(a), wy(a(spe, s)) = wa(s), and du(a(spe, 5)) = asp,, §').

Proof. The idea of the proof is simple, and it is based on Egs. (4.1), (4.2), and (4.3)
and Definitions 4.2 and 4.3. The seeming complexity comes from the fact that the proof
is primarily involved with different substates of s and s; that makes the notation appear

heavy. There are two cases depending on whether a € A, or not.

a. a € A;: Let a’ = a. We immediately conclude that prio(a’) = prio(a). Moreover, note
that sp, permutes only substates with indices in 7, and that the value of w, does not
depend on those substates because a ¢ A.. Therefore, wy (@ (spe, 8)) = wa(a(spe, 8)) =
we(s)-

We further need to prove that é,{a(spe,s)) = a(spe,). Let ¢ = §a(a(sp,, s)). Since
a € A, then there exists ¢ € AM such that aVE Ay and ¢ € 7.. According to
Eq. (4.3), Io N7, = B. Therefore, for all ¥’ € I, we have i’ & 7, and by Definition 4.4,
' = sp.(i'). Using Eq. (4.2) and replacing ¢, §, and & by ¢, a(sp., s), and ¢/, we have:

s} 1€l
£ = g (4.4)

(aspe, 5))i = Sspe(i) % &I

We will show that ¢ = a(sp., s') by proving that Vi ¢, = (a(sp, §')); = sgpc(i). There

are three cases:

(a) i € 7.t By Definition 4.4, we have sp.(¢) € 7, and by Eq. (4.3), we have sp.(i) &
Iy; using Eq. (4.1), we conclude that sg,) = s’apc(i). Since i € T, then i & I,
and according to Eq. (4.4), t; = Sg.(;), and hence, ¢; = s, (.

(b) i & 7 and i € I: By Eq. (4.4), we have ¢} = s}, and by ¢ & 7. and Definition 4.4,

we have ¢ = sp.(i). Therefore, ¢; = s{, ().

69

(c) i € 7. and i & I: Similarly, we have t; = 54,) = ;. Using Eq. (4.1), we have

Si—°—"82=

). Thus’ t; = S;pc(i).

!
§ speli

b. a € A;: Let M, be the model represented by the replicate operator, M.; be its ith
child (1 < 4 < n.), and A,; be the set of actions of M,;. a € A, means that there
exists an ¢ such that a € A.;. Therefore, there exists an action a’ € A.; (j = p.(7)) in
model M.; that corresponds to a in model Mc;. From Definition 4.2, we immediately
conclude that prio(a’) = prio(a).

To prove by (c(spe; $)) = a(spe, §'), assume that u = sy, and w' = sy, where V, is
the set of SVs of M,. In other words, u is the projection of the state s of the overall
model on the SVs of the replicate model. Therefore, 6,(s) = s’ in the context of M
implies 6,(u) = o’ in the context of M., because a does not affect any variable in
V\V.. By Definitions 4.2 and 4.3, we have io(uy,;) = u§,m. in the context of M,;
and upn\y,; = u{,\vc’i (where V,; is the set of SVs of M,;) because a € A,;. By using

permutation p. to permute the children of the replicate model, we obtain

— ! : . — !
Ope(i)a' (TV, poyy) = T, ey 1D the context of Mep.) and zv\v, , ., = Ty, et

where z = ty, ' = 1y, t = a(spe,$), and ¥’ = a(sp, s’). Bquivalently, d;.(zv, ;) =
Zy, ; in the context of Mc; and zv\v, ; = Z}y, . Therefore, using Definitions 4.2 and
4.3, we have 6,(z) = z’ in the context of M,. Finally, because a does not affect any

variable in V\V;, we have é,(t) =t'.

Similarly, assume that w,e(s) = A. Therefore, we have w,,(u) = A where w, is the
weight function of M.. Hence, based on Definitions 4.2 and 4.3, w.;0(uyv, ;) = A where
We,; is the weight function of M.;. By permuting the children of the replicate model
using permutation p., we have Wep, (i) (uv,,) = A, and therefore, we ;. (Tv, ;) = .

By Definitions 4.2 and 4.3, we will have w,4(z) = A. In the context of M, that implies

70

Waq! (t) = A B

Corollary 4.1 Consider a model M = (V,V;,V,, A, s, 6, w, prio), RC-state permutation
Spre, o € A, and states s,5' € N§*. If §,(s) = &, then there exists an action o' such that

6o (a(spre, 8)) = a(spre, §'), wa(a(spre, 8)) = wa(s), and prio(a’) = prio(a).
Proof. Use Lemma 4.2 and induction on ¢ where sprc = Spg;© ... 08D¢,- [|

Lemma 4.3 Consider a model M and two states s,s',s" € NI* such that s — s’ and s ~ s".

Then, for any RC-state permutation sprc and any c-state permutation sp. (c € RC),
a. s is tangible = a(sprc, 8) is tangible = a(sp., s) is tangible.
b. a(spro,s) — ospre, s') and asprc, s) ~» a(spre,).
c. a(spe,s) — a(spe,s’) and a(spe, s) ~ asp,).

Proof.

a. Corollary 4.1 implies that for each action a € E(s) there is an action ¢’ € F(a(spre,s))
such that prio(a) = prio(a’), and vice versa. That means s is tangible if and only if
a(spre, s) is tangible. Similarly, Lemma 4.2 implies that s is tangible if and only if

a(sps, s) is tangible.

b. a(sprc,s) — a(spre,s’) follows from Corollary 4.1 and also implies a(sprc,s) ~

a(spre, s”) using induction.
c. Follows from (b) because any c-state permutation is also an RC-state permutation.

||

Lemma 4.3 shows that reachability and tangibleness are preserved by c-state and RC-
state permutations. In other words, equivalent states have transitions to states that are
themselves equivalent. Now, we need to prove that the rates of those transitions are also the

same. The proof is given in the following two lemmas (one for R and one for R.).

71

Lemma 4.4 Consider a model M with state space S, transition rate matriz R, generator
matriz Q, the partition P (as defined in Definition 4.7), and initial state s € Cy € P. If

Co = {s™7}, then for all 5,5’ € S, and all RC-state permutations spgc,

a(spre, s) € S, a(spre,s’) € S,
R(s,s") = R(a(spre, 5), a(spre, §)), and

Q('S: Sl) = Q(a(SpRCa 5)’ a(spRC: sl))

Proof. Since s € S, then s™ ~- s and s is tangible, and by Lemma 4.3, a(spge, s) is tangible
too and a(spre, s™) ~» a(spre,s). By the definition of P, we have a(sprc,s™) € Cp.
However, |Co| = 1, and hence, a(spre, s™) = s™. Therefore, s™ ~ a(sprc,s), which
leads to a(spre,s) € S. Similarly, a(spre,s’) € S. Finally, by Corollary 4.1, R(s,s') =
R(a(spre, s), a(spre, §')), since the weight and priority functions all have the same value
for states s and a(spre,). Q(s,s") = Q(a(spre, s), a(spre, §')) follows directly from Q =

R —-rs(R). =

Lemma 4.5 Consider a model M with state space S, transition rate matriz R, generator
matriz Q, ¢ € RC, the partition P, (as defined in Definition 4.6), and initial state s™ €

Co € Pe. If Co = {s™}, then for all s,s' € S, and all c-state permutations sp.,

a(spe, s) € S, a(sp.,s') €S,
R(s,s') = R(a(sp,, 8), a(sp., §')), and

Q(S; 3,) = Q(a(spca s), (5P, S,))

Proof. Observe that if Cy is a singleton set, then the class containing s™ in partition P will
also be a singleton set. Moreover, every c-state permutation is also an RC-state permutation.

Therefore, by Lemma 4.4, the desired result follows. |

72

To define an MRP M on a model M (as defined in Definition 4.1), we need to specify a
reward vector r and an initial distribution probability vector '™, in addition to the state
space S and generator matrix Q that we have already specified. Since M explicitly specifies

the initial state s™, we have:

_._sini

O -
0 otherwise
Notice that for any c-state permutation sp, a(spc, s™) = s because by Definition 4.3, each
child of the replicate component ¢ has the same initial state and permuting the children does
not change the initial state of the replicate component. Therefore, assuming that Cg is the
class of P, that contains s, we have |Co| = 1. Since a(sp.,s™) = s™ holds for any
¢ € RC and any c-state permutations sp., a(sprc,$™) = s also holds for any RC-state
permutation spro. Therefore, the class of P that contains s is g singleton set.

The definition of M does not restrict r. However, for the MRP M to demonstrate the
ordinary lumpability property, we place a condition on r. We call r c-symmetric (c € RC)
if for any c-state permutation sp., we have r(s) = r(a(sp.,s)). If r is c-symmetric for all
¢ € RC then we call it RC-symmetric. In other words, r is RC-symmetric if for any RC-
state permutation sprc, we have r(s) = r(a(spre, s)). At the state level, those definitions
mean that the rewards for two equivalent states (with respect to relation R. or R) are the
same. In terms of the high-level model, they mean that the value of the reward must not
distinguish the replicas of a replicate operator.

Before we state and prove the two main theorems of this section, we need one more
lemma, which shows that the application of an arbitrary c-state permutation (resp., an RC-
state permutation) to all the states of a class of P (resp., P) generates all the elements of

that class. More formally,

73

Lemma 4.6 (a) For any c € RC, class C € P,, and a c-state permutation sp.,

Useo{a(spe, s)} = C,

i.e., the range of function a(sp,.): C — C is equal to C. (b) For any class C € P and an
RC-state permutation spre,

UsEC{a(SpRC; 5)} = Ca
i.e., the range of function a(spre,.) : C — C is equal to C.

Proof. To prove (a), verify, using the definition of P., that a(sp.,.) and a(sp;?,.) are both
injective functions on C. Therefore, a(sp,, s) is also bijective, i.e., injective and surjective.

(b) can be proved in the same way. [|

Finally, we have all the tools to prove that the MRP M that we defined on the model M
is ordinarily and exactly lumpable with respect to all partitions P, (¢ € RC) and also with

respect to partition P.

Theorem 4.3 Consider an MRP M = (S, Q,r,n™) defined on model M, and partition P
(Definition 4.7). Then,

a. M is érdz'nam’ly lumpable with respect to P if v is RC-symmetric.

b. M is-ezactly lumpable with respect to P.

Proof. Consider C,C’ € P and two (equivalent) states s, § € C. Since s and § are equivalent,

there exists an RC-state permutation spre such that § = a(spre, s).

74

a. r(s) = r(8) because r is RC-symmetric. Moreover,

> Qs,s)

s'eC’
[by Lemma 44} = Z Q(a(spro;); (spre; 5'))
s'ec’
= > Q(3a(spro,)
s'eC’

[by Lemma 4.6] = Z Q(3,5") = Q(5,C")

S”EC’

Q(s, C")

b. If s = s then s = s = § because C is a singleton set, and we have, 7™%(s) =

wi(5) = 1. If s # 5™, then § # s™ and we have 7(s) = w™(3) = 0. Moreover,

Q(C,s) = Y Q(C,s)

geC’

[by Lemma 4.4] = Z Q(a(spre, '), a(sprc, s))
s'eC’

= Z Q(a(spre, '), 3)

geC’

by Lemms 48] = 3 Q(s",5) =Q(C',3)

sII ecl .

Theorem 4.4 Consider an MRP M = (S,Q,r,n™) defined on model M, ¢ € RC, and
partition P, (Definition 4.6). Then,

a. M is ordinarily lumpable with respect to P, if r is c-symmetric.

b. M is exactly lumpable with respect to P,.

Proof. Similar to Theorem 4.3. |
Partition P, and Theorem 4.4 are interesting from the theoretical point of view; we do
not (directly) use them to lump the MRP. Instead, we use Partition P and Theorem 4.3 to

lump the MRP in the rest of the chapter and in our implementation.

75

4.3 Symbolic Generation of the Unlumped State

Space S

In order to compute performance measures of a composed model, we need to construct a
CTMC representing the behavior of the model. Our main goal is to extend the size of
composed models that can be handled on a typical computer system by using the structural
properties of a model both to reduce the number of states that need to be considered and
to compactly represent the states that need to be considered. With that aim, we chose
to use MDD and MD data structures, respectively, to represent the set of states and the
set of transitions of the CTMC associated with a composed model, and use the structural
characteristics of the model to lump equivalent states.

In this section, we will give a detailed description of our new algorithm for symbolic
generation of the unlumped state space of a composed model M. We describe the state-
space generation (SSG) algorithm that does not take lumping properties into account, and
therefore generates the MDD representation of the unlumped state space S. In the next
section, we give an algorithm that uses the lumping results we proved in Section 4.2 to lump
S and constructs the MDD representation of S.

A symbolic SSG algorithm is similar to a traditional one in the sense that both algorithms
start with the initial state of the model and keep firing actions until all reachable states have
been explored. The difference is that in a traditional algorithm, each time an action is fired
only one state is visited, while in a symbolic algorithm, a (potentially large) set of states is
visited. In our SSG algorithm, we use MDDs to represent sets of states. In order to design
an efficient symbolic algorithm for composed models, we identify key structural properties
of a model, and based on those properties we determine the “meaning,” with respect to
the composed model structure, of each level of the MDD. In particular, when we use an
MDD to represent the set of states of a model, we use a vector to represent each state of

the model. This vector representation is determined by partition IT of the set of SVs. More

76

formally, for each component 1 < ¢ < m, level ¢ of the MDD represents substates of the
form s. (enumerating the values of SVs in V,). In other words, we define S, the set of
possible values of a level-c node, such that |S,| = |[{s.|s € S}|. That also means that level ¢
corresponds to

An action a is called independent of a set of SVs W (in the context of a model M) if a’s
next state function § and weight w are evaluated independently from the value settings for
SVs in W; otherwise, a is dependent on W. To support our SSG algorithm, we partition the
set of actions A, of an atomic component ¢ into A.; and A4, which are the sets of local and
global actions of component c, respectively. a is global if it is dependent on any shared SV,
and it is local otherwise. More formally, a € A, if and only if a is independent of V;\V..

In order to design an efficient state-space generation algorithm, we consider a restricted
class of composed models in which all global actions are of the lowest priority, i.e., they
are timed actions. There are no other restrictions on how actions are enabled or change
state, i.e., d,(s) can be an arbitrary function on its atomic model’s SVs. This generality
implies that a distinction between acyclic and cyclic dependencies as discussed in [87] does
not apply. There is no restriction on local actions. The slight restriction on global actions we
do have has two important implications that enable us to design an efficient SSG algorithm:
1) the elimination of vanishing states can take place locally, i.e., in each atomic component,
and on the fly, i.e., without storing intermediate vanishing states, and 2) atomic components
that share SVs cannot stop one another from proceeding locally. The latter property gives
us the ability to use an approach similar to saturation [25] (in firing local actions) and
generate a subset of the state space of an atomic component independently from other
atomic components as long as the fired actions are independent from the shared SVs of that

component, i.e., the actions are local.

7

SSSE(s™)
1 & :={s™}
2 U:={s™}
3 whiletd #0
4 LocALSSE(U)
5 GLOBALSSE(U)
6 U=U-=~
7 S=8vlU
8 return &

Figure 4.1: Pseudocode for the overall symbolic state-space exploration algorithm

4.3.1 The Overall Algorithm

We first describe SSSE (Symbolic State-Space Exploration), the algorithm we employ to
generate the unlumped state space S of a composed model (shown in Figure 4.1). SSSE
calls two procedures: LOCALSSE, which explores the state space by firing local actions, and
GLOBALSSE, which does the same by firing global actions.

‘We keep an MDD representation of two subsets of S: &' and Y. SSSE starts by initializ-
ing &' and U to {s™}, the starting state of the system, in lines 1-2. At the beginning of each
iteration of the while loop (line 3), two invariants hold true: &’ is the set of states that have
been reached so far and I is the set of reached but unexplored states. Both sets contain only
tangible states as we eliminate vanishing states on the fly. Thus, ¢/ C &’. In lines 3-7, actions
are repeatedly fired on states in U, and U/ and &’ are updated aécordingly. Fach iteration
of the while loop preserves the invariants. Therefo:e, the algorithm terminates when U = 0,
i.e., the firing of actions no longer generates any new states. At that point (line 8), &’ is the
set of reachable tangible states of the composed model, that is, S.

The important point about this algorithm‘is the way it efficiently fires actions on states
in 4. As we will describe below in detail, we handle the firing of local and global actions
separately because we exploit the unique way each type of action modifies the MDD of the
state space. LOCALSSE(L/) adds to U the set of states that can be reached from any state

in U by a (finite) sequence of local action firings. Note that the immediate actions are taken

78

care of by on-the-fly elimination of vanishing states. GLOBALSSE(!/) adds to ¢ the set of
states that can be reached from any state in I/ by the firing of a single global action followed
by a (finite) sequence of immediate (local) action firings.

LocALSSE and GLOBALSSE do not take into account the lumping properties of replicate
operators. Instead, they treat replicate operators as join operators with identical children.
Moreover, they consider firing actions of atomic components only, because join and replicate

operators do not introduce new actions of their own.

4.3.2 Firing Local Actions

By definition, a local action a € A.; is independent of V;\V,, and therefore d,(s) depends
only on sy,. Furthermore, by the restriction we introduced earlier, all immediate transitions
are local. Finally, note that all SVsin V, are encoded in level ¢ of the MDD. These properties
imply that in order to generate a set of states that are visited by completion of action a, we
only need to manipulate the nodes in level ¢ of the MDD.

Suppose that a (tangible) substate s, can lead to a tangible substate s, by a sequence
of actions in A.;. Hence, if state (s1,...,Sc-1,5c;Sc+1;---,5m) is reachable, then state
(S1y++-18c1;8h Set1y - - - » Sm) is also reachable. To implement this local state exploration on
the MDD, we perform the “saturation” operation on all nodes u in level ¢: u[sl] := u[scJUul[s,]
for all possible values of s, and s., where u is a non-terminal node and u[s.] (called a child
of node u) denotes the node to which the ssth pointer of u points. In that operation, values
of s;’s (j # c) are implicit; all state paths that go through node u constitute all states of
the form (s1,. .-, 8c~1,8¢, Sctls-- -3 5m)-

Figure 4.2(a) shows LOCALSSE, which explores the state space using only local actions
A, of every atomic component c. Therefore, LOCALSSE iterates through all nodes . of
levels that correspond to atomic components in depth-first search (DFS) order. For each
node u. that encodes a set of substates of the form s, it saturates wug,;, the node that is

to be the saturated version of u., by calling SATURATE(sg,:) in line 4. Finally, in lines 5-6,

79

SATURATE(u)

Lfcj;;‘iiflgz)on—ro t node u visited 1 ¢:=level of u in the MDD
° 2 Y:={0,...,|S| -1}

in a DFS order starting from K
from node r, root of U 3 while Y #§

X 4 ick s, from Y
2 c := level of u in the MDD 5 ?ore;:ch s, st. B(s,,sl) =1
. c U c\°C “¢c) —

2 if ce AM 6 ' = ufs.] Uulsl]

Usgy = copy of u 7 if o' # ufs])]
5 SATURATE (Usat) R

: 8 ufsl] == u
6 lfu#usat) 9 Y:=YU{SI}
7 replace u with g, 10 Y =Y — {s:}

Mai docod
(a) Main pseudocode {(b) Saturation pseudocode

Figure 4.2: Pseudocodes for the local state-space exploration

u. is replaced by its saturated version ug,:.? The reason for iterating through all nodes in
DFS order is that implementation issues make it necessary for us to ensure that a node is
saturated after all its children have been saturated.

SATURATE(u) (shown in Figure 4.2(b)) fires local actions until no further local action
firing can add any substate to the set. Lines 3-10 perform the above mentioned saturation
operation on u in a “symbolic” manner, i.e., for each s/, lines 6-8 add all states of the form
(81y-++38c~1,Shy Sct1,- - - ,Sm) to U. Notice that during the saturation operation, we may
need to increase the size of u (i.e., the number of its pointers), since we do not know the
final value of |S,.| in advance. The important point is that due to the locality of the actions,
" we can expand the set of reachable states of the system only by (local) changes to u.

Repetitive computations related to local state exploration might occur, since the same
substate may be explored many times for different nodes throughout the execution of SSSE.
In order to avoid the extra computations, we need an efficient data structure for each atomic
component ¢ that stores the reachability relation among substate indices of that component.
More formally, we need to know, for every s, the set of all substate indices s} that we can

reach from the substate with index s. by a (finite) sequence of local action firings. We can

4In the actual implementation, u. is not replaced by usa; in one step. Instead, u. is replaced by ug,; for
each of the pointers coming from the upper level. Hence, eventually, no node will point to u., u, will be
garbage-collected, and therefore u. will essentially be replaced by usat.

80

determine that by computing the reflexive and transitive closure of a square Boolean-valued
matrix denoted by B,. B, is defined on the (reachable tangible) state space of M., which
means that B, has |S.| rows and columns. B.(s., s,) = true if and only if, starting from
substate s., there is a sequence of local action firings (in which the first is timed and the
others, if any, are immediate) that leads to substate s,. Otherwise, B.(s., s.) = false. Let
B} be the reflexive and transitive closure of B.. That means Bi(s,, s,) = true if and only
if there is a (possibly empty) sequence of local action firings that takes component ¢ from
substate s, to s..

Entries of B, are updated as we explore the atomic component state space, and computing
the transitive closure from scratch is expensive; it takes O(|S,|*) time for each update of B..
That excessively large running time is the reason why we use a simple but rather efficient
online algorithm given by Ibaraki and Katoh [59] to maintain B as we update B.. Their
algorithm takes at most O(|S,|?) for at most O(|S.|?) updates to B.. Notice that O(|S,|?)
is the maximum possible number of updates.

The pseudocode of INSERTELEMENTANDUPDATE for computing B?, which is based on
the algorithm given in [59], is shown in Figure 4.3. INSERTELEMENTANDUPDATE(s,, 5.)
sets B.(s,, s.) to true and updates B? accordingly. One way to understand how INSERTELE-
MENTANDUPDATE is called by our algorithm is to assume that accessing Bi(s,, s.) in line
5 of SATURATE causes a function call if substate s. has not already been explored. That
function explores substate s, by firing actions in A.;, computes one row of B, as defined
above, and calls INSERTELEMENTANDUPDATE for each element of B, that is set to true.
Note that only B is stored in memory during the running time of SSSE and there is no

need to store B,; this is explained here to make the above discussion easier to understand.

4.3.3 Firing Global Actions

Figure 4.4(a) shows GLOBALSSE, which explores the state space using only global actions

A, g of every atomic component c. GLOBALSSE iterates through all atomic components

81

INSERTELEMENTANDUPDATE(s,;, 5.)
1 forz:=0to|S,]—1
2 if B(z, s.) and (not B}(z, s.))
3 fory:=0to S, -1
4 B:(z,y) = Bi(z,y) or Bi(s,,)

Figure 4.3: Pseudocode for computing B} using Ibaraki and Katoh'’s algorithm

GLOBALSSE(lf)

1 foreachce AM

2 allocate arrays ug.1,), 40..|Le|

3 ug[to] := root of U

4 U' := FIREALLGLOBALS(c, 1,4, 1)
5

U=uul
(a)
FIREALLGLOBALS(c, k, Ug_|L.j, %0.]L.|)

1 U =0

2 foreach node w of level L.(k)

3 U =W

4 if MDDCONNECTOR (g1 [tk—1], ux) 7 0

5 if (k<|Ll) T':=0

6 for j =0 to |Sz.)| — 1

7 k=7

8 if (k <|L.|)

9 T':=T'UFIREALLGLOBALS(c, k + 1,u, 1)
10 else U’ := U’ U FIREONEGLOBAL(c, u,1%)
11 u=uut
12 return U’

(b)
Figure 4.4: Pseudocode of the global state-space exploration procedure

c € AM. For each one, the recursive procedure FIREALLGLOBALS in line 4 generates the
set of tangible states that are reachable from states in I/ by firing one action in A.,. Finally,
in line 5, the states are added to Y. The roles of arrays of nodes u and array of substate
indices 7 are described below. They are allocated in GLOBALSSE but initialized and used
in the recursive calls of FIREALLGLOBALS.

Consider a global action a € A, of an atomic component ¢. As we mentioned in Section

4.2, I, is the set of indices of V sets in which the SVs in V, are encoded. Due to the order we

82

chose on V sets, ¢ < ¢ for all ¢ € I.. In order to impose an order on the elements of I, we
use L, to denote the sequence of elements of I, sorted in ascending order. In other words,
if the kth element of a sequence L is denoted by L(k), we have |L.| = |I|, L.(k) € I for all
1<k <|L,and L(k) < Lo(k+1) for all 1 <k < |L].

It is important to note that, in terms of changes that need to be applied on the MDD,
firing a global action in state-sharing composed models is inherently more difficult than
firing a synchronizing action in an action-synchronization model, as discussed in [25]. The
reason is that in the latter case, the sets of SVs of atomic submodels are disjoint, and due
to the product-form behavior [25], the changes that need to be applied on a node v (in the
level corresponding to an atomic model) during saturation depend only on the information
present in v and the action a to be fired, regardless of whether d is local or synchronizing.
However, in the former case, some SVs are shared among atomic models, so that firing a
global action a on a node v requires not only the information in v but also the information
in other levels of the MDD. That makes the saturation approach inapplicable to the firing
of global actions in state-sharing composed models. One may suggest that we could avoid
this problem by assigning the shared SVs along with the non-shared ones to one level of the
MDD. That approach will not work, because the shared SVs belong to two or more atomic
models in the system (corresponding to two or more levels of the MDD).

Now that we know what levels of the MDD are affected by action a, we discuss how they
are affected. To fire action a, we need to add the state (s}, sv\v,) to U for each state s € U
where §,(s) = s’. To realize this state addition operation on the MDD, we have to consider
the paths corresponding to all such states s. Then, for each path, we have to update nodes
in appropriate levels. However, considering the paths one by one is not the best way to do
so. To describe the better method we have developed, we first need to define the concept
of an “MDD connector.” An MDD connector between two nodes w and w' is a subgraph
of the MDD that includes only sub-paths of the MDD that start from w and end with w'.

MDD connectors connect the nodes of levels in I, if they differ by more than one level.

83

To illustrate this, consider the example in Figure 4.5, in which |L,| = 3. ug is an imaginary
node such that uolig] is equal to the root of U° (line 3 of GLOBALSSE). It is used to avoid
case-by-case analysis, and thus to simplify the presentation. uy is a node in level L.(k) of the
MDD fork € {1,...,|L.|}. The left side of the figure shows all paths of the MDD (before the
firing of action @) that pass through all u's. Let I be the set of all states that these paths
represent. Let Up be the MDD connector between w_;[ix—1] and uy where i = 9e(SL.(k))-
FIREONEGLOBAL, which is called by FIREALLGLOBALS (Figure 4.4(b)) generates another
MDD that represents the set of states reachable from by the firing of all actions a € A,
that is, /' = {(shysmv)ls € U,04(s) = §',a € Agg}. Notice that in order to generate
U', we do not need to change the nodes in any of the Ug’s (k € {1,...,]|L|}), because
action a is independent of the SVs encoded in the levels corresponding to Ug’s. Instead,
FIREONEGLOBAL, for each %, 1) makes a copy of each U, 2) computes i}, = gc(sj;c(k)) and
creates a new node uj, and for each enabled action in A.g4, and 3) connects all the new nodes
as shown on the right side of Figure 4.5 in order to build 2. Because of limited space, the
pseudocode of FIREONEGLOBAL is not given.

To generate states reached by firing actions in A., from all states in I/, we have to
consider all distinct sets of nodes {us,...,ur} (ie., nodes with index levels in L) and
their corresponding indices: iy,...,%,). For each of the distinct sets of nodes and indices
we have to consider the corresponding U and generate the corresponding U’ as described
above. Generation of all such If"’s is the role of FIREALLGLOBALS(c, k, ug.|z.}; %0.|L.|), Which
recursively iterates through all nodes in the levels L.(k), ..., Lq(]L.|) (line 2) and all substate
indices (line 6) of those nodes. In each recursive call, MDDCONNECTOR in line 4 checks
whether there is an MDD connector between two neighboring nodes, i.e., between ug_;[ix_;]
and ug. If there is one, the procedure goes deeper down in the MDD via a recursive call;

otherwise, it tries the next substate index in ug or the next node in level L.(k). When

SStrictly speaking, no such ug exists, because there is no node that points to any level-1 node, including
the root of L4.

84

u level indices u

0

(imaginary node) uo

1 through L.(1) - 1

Le(1)

L(1)+ 1 through Lc(2) - 1

L(2)

Lc(2) +1 through L.(3) — 1

L(3)+ 1 through m

terminal node

Figure 4.5: Computing the set of next states for global actions using MDD connectors

k = | L| the algorithm is at level L(|L.|), which means that all the substate indices necessary
to rebuild the state of an atomic model are known and stored in array i. Moreover, the
nodes in each of the levels L.(1),...,L.(|L.|) are stored in array u. In that situation,
FIREONEGLOBAL in line 10 fires all actions in A., that are enabled in the substate given
by array %, builds U', and adds the states of I’ to I’. Finally, we compute the union of all
the resulting U’ sets and add it to U.

Given S and a number of small rate matrices (corresponding to each component) that we
could build during the SSSE procedure, we could obtain an MD of the unlumped CTMC,
and apply known approaches for the MD-based numerical analysis of CTMCs [28]. Part of
our goal, however, is to reduce the number of states in the resulting CTMC by lumping it;

therefore, as discussed in the next section, we compute S.

85

4.4 Symbolic Construction of the Lumped State
Space S

In the SSG algorithm described above, we treated the replicate operator as a join operator
with identical children, without considering lumping properties. The final step we take is to
lump the state space according to the partition induced by the structure of the composed
model as discussed in Section 4.2. In fact, we want to compute S=S§ /R, the quotient of
the unlumped state space S with respect to the lumpable partition R.

Before we give the details of our approach, we define the extension of the equivalence
relations R and R, (c € RC) to the potential state space S = X7, S, € NP Observe that

ScCS.

Definition 4.8 The relations R, C S xS (c € RC) and R C 8 x § are defined as follows:
a. (s,5) € R, < Jsp,: ' = afsp,, 5).
b. (s,8') € R Ispre: s’ = ospre, s).

As we can see, the only essential difference between the pair of relations R and E. and
the pair R and R, is that the former pair are defined on S and the latter pair on S. As for
R and R., we can prove that R and R, are equivalence relations, and hence, they induce
partitions P and P, on S.

In order to compute S from S , we pick a specific element of each equivalence class as the
representative of the class. The choice of that representative is arbitrary because all states
of the class behave identically. We would like to choose a state whose vector representation
has a mathematical property that simplifies the computation of S. In particular, among a
set C of equivalent states, we choose the one whose vector representation is lexicographically
the smallest (refer to the definition of <., in Chapter 2.

We can now formally define the notion of the representative state of a class of a given

partition 7 on a set of states Y C Nf*. We define the function mins(s) : Y — Y, which

86

gives the representative state of the class of 7 to which s belongs, as follows:
ming(s) = s & s~rs and V" mg 51 8 < 8"

In plain English, s’ is the smallest of the states equivalent to s. We have mings(s) = minz(s')
for all s ~7 5. For simplicity, we use min. and min to denote minz_ and ming, respectively

(c € RC). Observe that
min(s) =5 & Vc € RC: min.(s) = (4.5)

Given any state s, the corresponding class representative min(s) can be computed by

appropriate sorting operations on s. Notice that for every equivalence class C € P, there

exists only one s € C (that is, the representative state) such that min(s)=s. T6 compute

the MDD representation of S, , we eliminate from the MDD representation of & all paths
(states) that do not satisfy min(s) = s. That computation is translated, in terms of MDDs,
to the computation of S N R, where R = {s € S| min(s) = s}. Hence, the problem of
computing S is reduced to that of building R based on the definition of min.

However, the definition of min(s) imposes a strict relationship among the various com-
ponents of the vector representation of s, which implies a tight coupling among levels of R
in terms of MDDs. Therefore, the number of nodes of R grows very quickly in terms of the
number of levels involved in the definition of min(s),® and this makes the direct computation
of § N R problematic.

To avoid that large memory consumption, we can express the large MDD of R in terms
of a small number of considerably smaller MDDs, and instead of computing S N R directly,
we compute the intersection of S with a large set expression that is equal to R. As the first

step, using Eq. 4.5, we can see that R = N,crcRe, Where R, is the set of all states s € S that

6In the case of nested replicate operators, the number can be exponential in terms of the cardinality of
the inner replicate operators.

87

satisfy minc(s) = s. That implies SNR = (---(SNR,)N---NR,,), where RC = {c1,..., ¢}
Since in general, each of the R.’s involves tight coupling among far fewer levels than R does,
each R, is significantly smaller than R. Hence, computing (- --(SNR)N---NR,,) is much
faster than computing S N R directly, because the efficiency we gain by using smaller-sized
R.’s outweighs the extra time we have to spend to compute 7 intersection operations rather
than one.

Still, we can do better. The next phase is to divide each R, into many MDDs, each
of which has tight coupling between only two levels. As an example, suppose [, = 1 for a
replicate component c. Then R, is the MDD representation of the set of states s € S that
satisfy sc41 < ... £ Setn., and therefore, R, involves coupling among 7. levels. However, we
have R, = R 1N NRep.—1, Where R4 (1 < d < n.) is the set of states that satisfy s q <
Sc+a+1- Now, instead of computing SNR, directly, we compute (- -+ (SNRe1)N-+ - NRepo—1)-
For cases in which [, > 1, the same technique is still applicable, and generally, it can be shown
that indirect computation of S N R, involves building O(nl.) small MDDs and performing

O(ncl.) MDD set operations (i.e., union and intersection).

4.5 State Transition Rate Matrix Generation and

Numerical Analysis

In this section, we describe how to perform an iterative numerical analysis based on an
MD representation of R. Its basic step is a matrix-vector multiplication, which requires
consideration of several issues if it is performed with an MD. We start with the generation
of an MD from the local transition rate matrices generated during state-space exploration.
In Section 4.3 only Boolean matrices B, of state transitions are mentioned; however, it is
easy to obtain corresponding rates (possibly scaled by probabilities of paths of subsequent
immediate transitions) that yield matrices R.. With the MD representation of the unlumped

CTMC at hand, we need to focus on S as the set of rows. Matrix entries in those rows will

88

refer to columns s’ whose correspondence to min(s’) must be established. Finally, there
are cases in which the MD will generate multiple elements that must be added for a single

matrix entry in R. These issues are resolved in the remainder of this section.

4.5.1 State Transition Rate Matrix Generation using MDs

Formally, we first derive a generalized Kronecker representation of the rate matrix R that
gives us an unlumped MD in a straightforward manner, and then use the MDD representation
of S to obtain a projection on the lumped state space. Conceptually, MD generation with
the help of a Kronecker representation and MDD projection follows the approach of [28].
However, it differs in important aspects. In particular, the Kronecker representation we
derive contains functional transitions [87] that are subsequently resolved to constant values
in the MD. The MD that finally results requires additional, specific algorithms to describe
the rate matrix of the lumped CTMC. Note that an implementation directly generates an

MD based on the local transition rate matrices obtained during state-space exploration.

A Kronecker representation for R. A Kronecker structure makes use of the matrix
operator Kronecker product ® to combine small component matrices into a large matrix.
~ The building blocks of the Kronecker representation are matrices R, that represent the
effect of timed action a on atomic component c.” Let 7. : & — Xyey. Dy be a mapping
that provides the state in terms of its SVs for an atomic model M, with component index
c € AM. Also, let 1. = |range(v.)|- In fact, Ro. € R™*™, and R, (sv,, s},.) is the weight
of a at sy, multiplied by the probability of reaching s, via some sequences of immediate
actions in M., where sy, and s}, are states of atomic component c.

Note that the difficulty in the derivation of R, is not in calculating entries, which is
done using the definition of M.. The difficulty is in finding the set of reachable states of M,,

since sharing state variables with other models causes other models to generate new states

"Immediate actions are used only during the on-the-fly eliminations of vanishing states.

89

as well®. This difficulty is overcome by using S as described below. Specifically, for each
timed action a and atomic component ¢, we define m matrices R;',C, c €{1,...,m}, where
Rg’,c denotes the projection of R, on Sy X Sy. In fact, Rg" . denotes the “effect” of R, . on

level ¢/ of the MD representation of R. More formally, RS, € R%*% and

1 ifd#cand3s=(s1,...,5m),8 =(s},...,8, €S
_ such that R, o(7:(s),v.(s")) # 0
R:’,C(Sa,s;) =< fo fd=candIs=(s1,...,8m),8 =(s},...,8,) €S
such that Rgc(7:(s),7:(s")) #0

{ 0 otherwise

where f, : S x§ — R is a functional transition that evaluates to R, (7.(s),7.(s")) for given
states s, §'; see [87] for the definition and treatment of Kronecker representations that are
generalized with respect to functions as matrix entries. Notice that Rg"c is simply an identity
matrix if ¢’ € I, where, as defined before, I, is the set of indices of MDD levels in which the
SVs in V. are encoded.

With those matrices, we obtain a Kronecker representation to describe a state transition
rate matrix R. Its basic operation, the Kronecker product C = A®B, is defined for matrices
Alnxm) BEXD) and Ckxml) a5 Clayk + by, agl + ba) = A(ay, az) - B(by, by). We define R of
size I, |S;| x 112, [S;| as

R=) Y &R, (4.6)

M.€AM a€A.
where AM is the set of indices of atomic components. We briefly explain why R is a sub-
matrix of R. Consider an entry R{(s1,...,5m),(s},...,5.)) = A. Since several actions
may contribute to A, we have A = 3° p.) Aa(s, '), where A(s,s') is wa(s) possibly mul-

tiplied by the probability of a subsequent sequence of immediate actions yielding s’. For

8Formally, one may consider those new states as a set of initial states that may grow as a result of the
firing of other models’ global actions.

90

any term Aq(s,s’) > 0, we defined Ri (8¢y8) = A¢ > 0. Since only A. # 1 we have
[T0-1 A¢ = Ac = fo = Rao(7e(5),7e(s")). By the definition of Kronecker product, ®7_ RS
contributes A, = [Ty R (s, s%) to R((s1,...,5m),(s},...,5")). Ris a submatrix of R

1 m
since S C X7, Sy.

MD counstruction for the lumped state-transition rate matrix. Transformation of
a Kronecker representation into an MD is immediate. For each term ®Z‘=1R§: - we define
an MD with one node per level; the node at level ¢ contains matrix Rg',c, and its nonzero
entries point to the node at level ¢ + 1. In the case of ¢ = m, the nonzero entries formally
point to terminal node 1. Since addition is defined for MD, we can sum the resul_ting MDs
of all terms in the two sums in Eq. 4.6. Note that the functional transitions that appear in
Rg"c can be resolved to constant values in the MD, because sets Vs are ordered such that the
sets that contain shared SVs of an atomic model M., all have lower indices than ¢, and thus
those sets appear at a higher level of the MD. Hence, if a path through the MD reaches level
¢, the values of all shared SVs are known. Resolving functional transitions into constant
values may require the splitting of matrices that were otherwise shared in the MD.

The advantage of an MD over a Kronecker representation is that we can restrict the MD
to the S x & submatrix contained in a Kronecker representation. In order to do that, we
simply project the set of rows and columns of the MD on S. In the following, we describe
how the projection operation transforms the MD representation. Assume that we refine the
definition of matrices as Rgf (5151 80-1), (84, .- -y 8h_;)] € R5¢*5¢ 50 that it will depend

on the subset of states (sy,...,8¢-1),(sl,--.,5%_;), namely:

91

thzi,c[(sh SRS Sc’—l)a (537 vy S,c’—-l)](sc'ﬂs’c’) =

1 if ¢ # c and
Is=(s1,...,8m),8 =(s},...,8,) €S
] such that Ro,e(7e(s), 7(s')) # 0
Reoc(7i(s1,- .-y 8e),Ye(sh,y ..., 80) ifd=c
0 otherwise
where . is the same as -, but defined on components 1,...,c, which is possible since all

(shared) SVs of component ¢ appear at components ¢ < ¢ and a is independent of SVs
at components ¢+ 1,...,m. Hence, for any (s3,...,5n) € S the equality v.(s1,...,5.) =
Ye(81,- -+, 5m) holds. To build an MD data structure out of these matrices, we let an entry
in RE [(s1,...,8¢-1), (8L, ...,5%_1)](5,) point to matrix RS (1., 8¢), (85, -, 8%)]
if ¢ < m. Pointers from nonzero entries at level m point to terminal node 1. To keep the
definition of those matrices readable, we oversized their dimension as Sy x Sy ; hence, some
rows and columns in the matrices of the MD contain only zero entries and can safely be
removed.

By constructién, it is fairly clear that any path in the MD corresponds to a tuple

((s1y---+8m), (81,--.,s,,)) that describes the effect of action a in M, and that its value results
from the product of values along the path. Since all numerical values except R, .(7.(s),7.(s'))
are 1, it is clear that the resulting value gives the appropriate entry corresponding to a (pos-
sibly followed by some local immediate actions in M,).

The MD of the overall model is then obtained by addition of the MDs for each timed
action of all atomic models. Local actions of a model have room for optimization; for
instance, their matrices can be summed up to a single local action to reduce the number
of actions to be considered. So far, our presentation has followed a top-down approach to
generate an MD; that gives us a natural way to verify the correctness of the MD construction.

Clearly, during the construction of the MD, the reduction operator for matrix diagrams is

92

applied to minimize space requirements of the overall structure.

We need to compute the elements of ﬁ, which has its transitions from & to S. The first
(incorrect) solution that comes to mind is to follow the approach of [27, 28, 73] and project
the rows and columns of the MD we have built so far on S. The reason why that approach
does not work in our case is that not all transitions of R starting from a representative
state end in another representative state. In other words, there are some states that are
reachable but not representative of their class. Hence, by projecting both rows and columns
on S , we would remove all transitions from any state in S to any state in S. The solution
to the problem is to project the rows and columns of the MD to S and S , respectively.
The resulting MD provides rates of state transitions from s € Stos €8. As we said, '
may belong to S\S, i.e., s’ # min(s’). In that case, a straightforward option is to sort the
vector representation of s’ to obtain the representative state min(s’) € S of its equivalence
class. Performing the sort operation on each access to a transition like that is not efficient
because each state s’ ¢ S may need to be sorted many times. We will devise a more efficient
approach to this problem below.

A recursive DFS procedure enumerates all matrix entries encoded in the MD as triples
(s; s',A), where) results from the product of values found on a path from the root node
to a leaf node in the MD. The procedure was inspired by the Act-RwCl algorithm of [20],
formulated for matrix diagrams in [74]. DFS gains its efficiency by following paths through
all entries of a matrix R} . before returning to level ¢ — 1. In ‘that way it amortizes the
cost of following a path in the MD and increases locality of access to data structures. Note
that the construction ensures that all but one of the entries along a path are 1, so in
fact no multiplications are required to cbmpute the product of values along a path in the
MD. The state s = (s1,...,5m) € S must be mapped to the corresponding index value in
{0,..., lg — 1|} to support a matrix-vector multiplication. Other MD approaches perform
that mapping by an offset function p encoded in an MDD [27, 28, 73]. In our case, we can
look up p(s) from the MDD of S with the help of the offset computation known for MDDs.

93

Repetitive sorting is avoided if we construct a new “sorting” MDD whose offset function
¢ is modified to fulfill p/(s") = p(min(s’)). That means that states of the same equivalence
class will evaluate to the same offset value. To generate the sorting MDD, we can start
from an unreduced MDD in the form of a tree for set S. A valid initial way to encode
the mapping is to assign p,(s1,...,5m) = p(min(sy,...,sm)) and 0 to all internal values
ph(s1,...,8c),¢ < m. In order to allow for sharing, we perform a bottom-up procedure.
Let u(s1,-..,8.) = ming {p.(s1,--.,5:)}; then new offset values are p,_,(s1,...,8.-1) =
p(s1y---58c) and pl(s1,...,8) = pi(s1,...,8c) — p(s1,...,8:). The changes leave p'(s) =
S Pu(s1,- .+, S) invariant, but reduce the ranges of numerical values at lower levels of
the sorting MDD to allow for sharing. The space used for the sorting MDD depends on the
degree of sharing; however, the offset computation for s’ € S can take place at the same
cost as for s € 8. That cost is O(m) for a single state considered individually, because we
have to traverse m nodes in the sorting MDD, but since we traverse the MD, the MDD for
S, , and the sorting MDD simultaneously and in a DFS order, we profit from locality and let

the cost be amortized.

Accumulation of multiple entries Assume a model has a replicate component ¢ € RC.
If & out of n. replicas are in the same local state, any action performed by one of the k
replicas can be performed by all of them, resulting in k triples (s,s’,A) that need to be
summed for the matrix entry of R. In the case of a single replicate operator, if k is known,
we can scale A, the rate of a, by a factor k£ and consider it only once. In the case of nested
replicate operators, the procedure is more complicated, as we need to consider products of
state-dependent scaling factors that result in a function scale(s) for state s. Then, scale(s)-A
gives the corresponding entry for the lumped system.

However, for many applications, accumulation of entries may be desirable for numerical
accuracy but is not a necessity for the algebraic operations performed on the matrix. For

instance, a matrix-vector multiplication does not require accumulation, since multiplication

94

distributes over addition. In the current implementation, we do not perform accumulation

of multiple entries to save the overhead in performance.

4.5.2 Numerical Analysis

So far, we described how to enumerate all matrix entries of R as triples (p(s), p(min(s')), A)
in the order imposed by the DFS procedure on the MD, which implies that we do not observe
matrix entries being ordered by rows or by columns. However, it Vis possible to obtain an
order by submatrices, since the top-level node of the MD imposes a block structure on the
resulting matrix, which is naturally followed by the DFS enumeration procedure. Following
[43], the enumeration of matrix entries suffices to implement matrix-vector multiplication
x- ﬁ, which in turn is essentially what is needed to perform iterative solution methods
like the Power method or Jacobi’s method for steady-state analysis and uniformization for
transient analysis. Some iterative methods require access by submatrices (e.g., Block-SOR,
IAD, and Takahashi’s method), which also can be efficiently supported. Only efficient access
of columns of ﬁ, required for Gauss-Seidel or SOR, remains as an open research problem.
The inefficiency results from the poor locality of data accesses, and therefore poor use of
the hardware cache, in the algorithm that accesses the MD by columns. In particular, we
implemented the column access algorithm given in [28] along with the proposed column
caching scheme, and we observed about one order of magnitude slower running times than
we did when accessing the elements of the MD in DFS order. As a side remark, we note
that we can also use the current enumeration of entries to create an additional,l canonical
MD [73] and use existing MD multiplication schemes for that canonical MD.

Finally, in order to complete our representation of an MRP, we need some representation
of the reward vector T in addition to the representation of S and R. Since we have an MDD
representation of S, , the simple and space-efficient solution is to use MTMDDs. To build
such an MTMDD, we traverse the MDD representation of S in DFS order and for each state

s€S we compute the value of the reward in that state, i.e., T(s), possibly by evaluating

95

a high-level reward specification given along with the model specification. The DFS order
allows us to build the MTMDD in a bottom-up manner while eliminating redundant nodes,
which leads to the space efficiency of the representation. In the actual implementation, that

process is repeated for each of the reward specifications defined by the modeler.

Related work We have described a method to compute an MDD and MD for a lumped
CTMC of composed models that share state variables. Existing results of Ciardo and Miner
[25, 27—29] for MDD and MD generation of composed models that share actions are related
and have been used here; the concept of a local transitive closure has been discussed in
different contexts [22, 25, 29]. The novelty of our approach is in the encoding of a different
composition operation into symbolic data structures and the treatment of general next-
state and weight functions for global actions. The dynamic generation of state spaces for
atomic components has been developed independently of the recent result in [26], which
is nevertheless conceptually closely related. Note that the encoding of matrix entries we
selected in the MD implies that the weight of a state transition results from a product of
values of which only one is some number other than 1, so that no real multiplications are
required. That is an advantage in terms of efficiency. Furthermore, we exploit the fact that
replicated atomic models can share the same matrices in the state space. The definition of
a sorting MDD has not been considered before, and it illustrates how an arbitrary function
could be encoded as an offset function of an MDD. In summary, the consideration of a
different composition operation and its combination with lumping techniques required us to

develop several innovations that go beyond existing work.

4.6 Performance Results

As stated in the introduction, the goal of our work was to create CTMC generation algo-

rithms that simultaneously exploit the synimetries in models to reduce the number of states

96

that need to be considered and make use of MDD and MD data structures to compactly
represent the states and transitions. While the previous sections show that our approach is
indeed possible from a theoretical point of view, the concrete evidence of their utility comes
from their implementation and use on example models. In this section, we briefly describe
the implementation we have made, and illustrate its use. The results show that symbolic
generation and representation of the lumped MRP of composed models with shared state
variables are indeed practical, and enable us to solve much larger composed models than

would be possible using lumping or symbolic representation techniques alone.

4.6.1 Implementation in Mébius

In order to test the efficiency of the developed algorithms, we implemented them within
Mobius [38, 48]. We have completed the implementation of the MDD-based state space (SS)
generation, the lumping algorithm, and the MD-based generation of the lumped CTMC for
composed models that consist of an arbitrary number of replicate and join operators. We
also implemented the A11Edges iterator to support numerical analysis using the Mébius
state-level AFI (Abstract Functional Interface) [43]. The Al1Edges iterator gives access to
the elements of R with no specific order. We also implemented the Column iterator, which
gives access-to any given column of R. As we mentioned before, the time efficiency of the
Column iterator was about an order of magnitude worse than that of A11Edges; therefore,
we did not include the Column iterator in the Mdbius tool. Since the Al1lEdges iterator
is supported, all the numerical solvers in Mébius that support that iterator can be used.
Finally, we implemented the algorithm that generates MTMDDs for all the rewards defined
on the model.

The SSG implementation interacts with the component models using the Mébius model-
level AFI [38], thus supporting any atomic model type that Mébius supports, including
stochastic activity networks, PEPA (Performance Evaluation Process Algebra), and Buckets

and Balls, and accepts composed models generated by the Mébius Replicate-Join composed

97

model editor. All the code involved in the experiments was compiled using the gec 3.3
compiler with the -O3 optimization option. All experiments were conducted using an Athlon
XP2400 machine with 1.5 GB of main memory.

In developing efficient algorithms, many enhancements are small from a conceptual point
of view, but can have a large practical impact. One obvious and effective technique we used
was to automatically remove levels of the MD/MDD data structures whose corresponding V,
sets are empty. In the second example model we describe below, that technique reduced the
number of levels by about 50%, which made traversing the MDDs and MDs, and therefore
the CTMC solution, faster. The other technique that we used was to convert dynamic data
structures into static ones after the data structures have been constructed and have ceased
to be modified, e.g., we converted all the linked lists that were created for each of the MD
nodes during MD construction to arrays. According to our experiments, that decreased the
solution time by about 10 to 15 percent.

We now present the results from two models to illustrate the time and space character-

istics of our implementation.

4.6.2 Example Models

Courier protocol. We first consider a SAN model of a parallel communication software .
system [93]. The model is parameterized by the transport window size TWS, which limits the
number of packets that are simultaneously communicated between the sender and receiver.
In order to retain a significant number of actions, we considered a model in which all actions
are timed. To form a composed model, we have broken the original model (see Appendix
A.2) into 4 atomic models, one for each of the following parts of the model: 1) the receiver’s
session layer, 2) the receiver’s transport layer, 3) the sender’s session layer, and 4) the
sender’s transport layer. Figure 4.6 shows a graphical representation (similar to those from
the Mobius tool) of how those atomic models are composed using the join operator and

how state variables are shared among them. Thick-lined and thin-lined boxes represent join

98

VJ = {Ps,pg}

~

Vy = {p23, 924, p25}

i

sender’s session layer

Vi = {p36,p37}

sender’s transport layer

_

receiver’s transport layer

receiver’s session layer

Figure 4.6: Composed model structure of the Courier model

state space SSG

TWS # of final mem (KB) | time
states # nodes | final | peak | (sec)

3 2,381,184 23 13 224 1.1

4 9,710,208 29 31 725 4.8

5 32,404,608 35 68 |- 1970 21.0

6 93,301,632 41| 135 | 4760 85.4

7 239,651,712 47 | 254 | 10600 | 325.3

8 561,818,880 53 | 453 | 21900 | 1020.0

Table 4.1: State-space sizes and generation times for the Courier protocol model

operators and atomic models, respectively. Since the replicate operator is not used in the

model, lumpability induced by structure is not present, and therefore the lumping algorithm

is not applied to the state space produced by the SSG algorithm.

Table 4.1 shows the size of the state space, the state-space generation time, and the
solution time (per iteration) for different values of TWS. Since each atomic model has a
nonempty set of local actions, the atomic models all have some local behavior that makes

use of the saturation technique. As we can see, the final size of the MDD representation of

the state space does not exceed 500KB.

In Table 4.2, we have compared the performance of transient solutions using two repre-

99

transient solution
TWS | (sec/iteration) | slowdown
MxD | APNN
3 1.26 0.89 1.42
4 5.54 3.76 1.47
5 19.15 12.76 1.50

Table 4.2: Solution times (per iteration) for the Courier protocol model

sentations: (1) a Kronecker representation generated by the APNN toolbox [6], and (2) a
matrix diagram representation generated by the algorithm given in this chapter. CTMCs
represented by both representations have been solved using a state-level AFI-compliant tran-
sient solver. The numbers shown in the second and third columns of the table are the times
to complete one iteration for each of the representations. For TWS > 5 the total size of the
probability vectors required for the CTMC solution was too large to fit into the memory
of the machine. As we can see, our implementation of iteration on matrix diagrams is at
most 1.5 times slower than APNN’s iteration on the Kronecker representation, in which an
efficient variant of the Act-RwCl algorithm of [20] is used. Notice that the APNN toolbox
is not able to exploit structural symmetries in the model in order to lump the underlying
CTMC. Therefore, a direct comparison between the APNN toolbox and our algorithm is
possible because the Courier model does not have any symmetries to be exploited by our
algorithm. However, for the next example model for which lumping is possible, APNN has
to operate on the unlumped CTMC, which is dramatically larger than the lumped CTMC

on which our algorithm operates.

Fault-tolerant parallel computer system. As a second test, we consider a model of
a highly redundant fault-tolerant parallel computer system [67]. This model uses both
replicate and join operators, and hence provides a more complete test of our algorithms and
implementation. The model was first published in [81] where the model has been thoroughly
described and specified using the SAN (Stochastic Activity Network) formalism. Therefore,

we do not present a full specification of the model in this dissertation and suffice to give a

100

V1 = {computer.failed,
imports, errorhandler,
cpus, memory-failed}

AN

cpu module error handlers I/O port handlers

memory module

Figure 4.7: Composed model étructure of the parallel computer system

high-level description of the model here®.

We built a composed model for the entire system by first defining atomic models using
the SAN formalism [82] to represent the failure of various components in the system. We
then used the replicate and join operators to construct the complete composed model shown
in Figure 4.7. The thick-lined shaded boxes represent the replicate operator. The leaf nodes
of the tree, whiéh are labeled “memory module,” “cpu module,” “I/O port handlers,” and
. “error handlers,” correspond to the atomic models of the reliability of the computer’s memory
module, its 3 CPU units, its 2 I/O ports, and its error-handling mechanism, respectively.
The memory module is replicated 3 times, which equals the number of memory modules
in one computer. The replicate component is then joined with the I/O ports model, the
CPUs failure model, and the error-handler model to create a join component that models a
computer. Finally, the model of one computer is replicated N times to generate the complete
composed model of the multiprocessor system.

Table 4.3 shows the number of states in the unlumped and the lumped state spaces, the

9The complete Mobius model is also included with the distribution of the tool and can be obtained from
http://www.mobius.uiuc.edu.

101

of unlumped # of lumped | reduction in | total generation

N . .
states states state-space size time (sec.)

1 414 116 3.59x10° 0.027
2 256,932 10,114 2.54x10* 1.30
3 124,075,800 463,268 2.68x10° 25.1
4 55,039,441,680 14,773,967 3.72x103 200
5 23,549,313,739,104 | 366,912,104 6.40x10% 1310
6 | 9,908,244,947,184,192 | 7,530,481,244 1.31x10° 5250

Table 4.3: Unlumped and lumped state-space sizes and generation times

reduction in the size of the state space due to lumping, and also the total time it takes to
generate the MDD representation of the unlumped and the lumped state spaces and the
MD representation of the lumped CTMC from the composed model representation. As we
can see, lumping reduces the size of the CTMC that must be solved by up to 6 orders of
magnitude. Due to the efficient technique we use to compute lumped SS from unlumped
SS, the lumping operation takes less than 0.3% of the total time for the example model. It
means that the time to generate the lumped SS is essentially equal to the time to generate
the unlumped SS. Note that this example is a “worst case” input, in terms of speed, for
our state-space exploration algorithm. By “worst case” we mean that none of the atomic
components of the model have any local action. The lack of local behavior is caused by
the tight coupling that exists among the atomic models of a computer module; in terms of
modeling, that coupling is realized by sharing of all the SVs in the join operator of the model.
Not having local actions means that the techniques described in Section 4.3 cannot be used
to generate any new state based on local behavior of the atomic models. Nevertheless, the
generation times reported are reasonable, and show that the times required to generate the
Ilumped CTMCs are small, even for state spaces of extremely large size.

Table 4.4 shows the amount of memory the MDD and MD representations (except for
sorting MDD) take. The number of MDD nodes used to represent the state space and the
amount of memory taken by the nodes in kilobytes (KB) are given for each form (i.e., lurnped

and unlumped) of the state space. The peak memory use of the MDD nodes is also given.

102

For the MD representation, the number of nodes and the memory use of the data structure
are shown under the column labeled “MD (final/peak),” since the peak values are equal to

the final values for the MD representation.

unlumped SS (MDD) lumped CTMC
MDD (lumped SS MD (final/peak
N | 7 of e final # : mzm (KE)B) # of({nem :
nodes (KB) of nodes | final | peak | nodes | (KB)
1 14 1.5 20 2 15 39 5
2 43 4.5 342 45 | 118 997 160
3 99 10.3 1496 | 194 | 441 4100 652
4 167 17.3 3397 | 424 | 1050 { 9640 1550
5 247 25.5 5726 | 705 | 2050 | 17500 2820
6 339 34.8 8483 | 1040 | 3560 | 27500 4440

Table 4.4: Space requirements of MDD and MD representations of unlumped and lumped
CTMCs

Note that the amount of memory that a lumped SS takes is larger than the amount of
memory that the corresponding unlumped SS takes. That happens because from each of the
equivalence classes of the state space, we eliminate all except one representative state. That
causes the set of states after lumping to be less “structured” than before lumping, and hence
the size of the MDD grows after the lumping operation. However, even after lumping, the
size of the final MDD is still very small (< 1.1 MB) for all considered values of N. Since our
goal is the numerical solution of the resulting CTMC, in addition to considering the time and
space constraints on the CTMC generation, we also have to consider the limitation we have
on the size of the solution vector, which grows linearly with the number of states. Therefore,
reducing the number of states of the CTMC is crucial, and is a significant advantage of
our technique over symbolic techniques that do not support lumping. In that respect, it is
important to observe that the number of states in the lumped state space (Table 4.3) does
not grow as fast as the number of states in the unlumped one for increasing values of N.

Finally, we measured the performance of our implementation in enumerating the elements

of an MD-based state-transition rate matrix and compared it, this time, to the performance

103

N # of # of S;l: r/nlf era’tlorslp(;f:g slowdown
states | transitions & . factor
agram matrix
2 11.01x10%] 5.51x10% | 1.39x1072 | 2.83x107° 4.91
3 [4.63x10° | 3.51x10° | 9.59%107* | 1.75x107* 5.48
4 [148x107 | 1.43x10% | 4.42x10* - -

Table 4.5: Lumped CTMC characteristics and solution times (per iteration)

of enumeration of a sparse-matrix-based (traditional) state-transition rate matrix. Both
state-transition rate matrices correspond to the lumped CTMC. We make the comparisons
via the numerical solution of the lumped CTMC. As we are measuring the reliability of the
parallel computer system, we use the uniformization method, as implemented in Mobius,
for transient solution of the model. Table 4.5 shows the sizes of the lumped CTMCs and
the solution times using two different representations (MD representation and sparse-matrix
representation) of the lumped CTMC, and the ratio of the two solution times. Remember
that the current implementation does not use the accumulation technique described in Sec-
tion 4.5, and therefore, the number of transitions represented in the MD representation is
larger than the number of transitions in the sparse-matrix representation. For the example
model, the number of transitions processed in the MD representation is 39% to 42% greater
than the number of actual transitions, i.e., the number of transitions in the sparse-matrix
- representation. Therefore, the slowdown we are experiencing is due to the increased number
of transitions to be enumerated and also the greater processing time needéd to compute
each transition; that is the cost we pay for compact representation. As can be seen in the
table, the slowdown we are experiencing is less than 6 for large matrices. It is important to
notice that compact representation of a lumped CTMC whose number of states is 3 orders
of magnitude smaller than the number of states of its corresponding unlumped CTMC (for
N =4) is gained only at the cost of solution times that are about 6 times slower.

The available 1.5 GB of main memory in our machine limits the numerical solution. In

particular, the sparse matrix solver causes thrashing of virtual memory for N = 4 due to the

104

sorting MDD
N 7 of # of mem gen. time
states | odes | (KB) (sec)
2 | 1.01x10% | 1.50x10° | 1.56x10° 0.066
3 [4.63x10° | 3.47x10% | 4.00x10° 481
4 | 1.48x107 | 6.91x10° | 8.38x10* 235

Table 4.6: Sorting MDD memory requirement and generation time

space needed for the sparse R matrix. The MD-based solver causes thrashing for N = 5, due
to the space needed for the solution vectors. The size of the MD and MDD data structures
(except the sorting MDD) is insignificant, relative to the size of the solution vectors. We
exercised different implementations of the offset computation, as discussed in Section 4.5.
In particular, we employed two methods to compute p(min(s’)): 1) using the sorting MDD
and 2) sorting s’ and obtaining p(min(s')) from the MDD of Siympes- The latter shows a
higher locality in accesses to hardware caches and performed better if the enumeration was
forced to proceed in row order. We have not yet come up with a satisfying performance for
that enumeration scheme. The former method is superior from a conceptual point of view
and performs very well with the DFS (on MD nodes) enumeration procedure. Consequently,
we used the first option to obtain the numbers given in Table 4.5.

Table 4.6 gives the size of the sorting MDD and its generation time. Numbers in that table
indicate that the size of the sorting MDD is on the order of one solution vector. However,
the time to construct that MDD is rather negligible compared to the overall solution time
for a CTMC. In fact, there is a trade-off between the space and time complexities of the
sorting MDD construction. We claim that by using a more sophisticated algorithm that
exploits a modified notion of equality in the generation of an MDD, we can reduce the space

complexity of the sorting MDD.

105

4.7 Summary

We described a model composition that is built upon shared state variables by replicate and
join operators. The major advantage of state variable sharing in replicate-join composed
models is that the replicate operator imposes symmetries in a way that allows an associated
CTMC to be lumped. Then, we combined symbolic and model-level lumping techniques to
design a symbolic exploration algorithm that generates symbolic structures, namely a multi-
valued decision diagram for the state space and a matrix diagram for the state-transition
rate matrix of the lumped CTMC, that correspond to the replicate/join composed model.
We explained how to obtain the lumped CTMC and how to access elements of its generator
matrix Q without ever explicitly generating Q in storage. To reach our goal of building an
efficiently enumerable MD), we resolved a number of technical issues, such as the development
of methods to map state descriptors to indices and scale entries in the case of multiple
transitions. The algorithm has been fully implemented and integrated into the Mébius tool.

Possible future work includes further study of the order of components used for the MDDs
and MDs. In this chapter, we focused on an order that follows the nesting of operators from
top to bottom. This choice allows the symmetries induced by replicate nodes that cause
the lumping to impose symmetric patterns on the MDDs as well, such that more nodes
are shared in the MDD representation. Clearly other orders are possible, and since the
order of components is known to have an impact on the efficiency of the MDD approaches,
such orders should be taken into consideration. A second ordering, motivated by the model
structure, is to assign low index values to sets of shared variables and high index values to
remaining variables of atomic models. Since the atomic models show stroﬁg regularities in
the case of replicate operators with corresponding potential for sharing, it makes sense to
locate them closer to the terminal nodes of an MDD than to its root node.

Our experiments showed that using the sorting MDD along with DFS enumeration (the

Al1Edges iterator) of the elements of the MD improved the time efficiency of enumeration

106

of R by an order of magnitude over the column-oriented MD enumeration. The cost was a
rather significant amount of memory (almost as large as the solution vector for the second
example model) that the sorting MDD takes. It would be worthwhile to investigate other
combinations of data structures and algorithms that can compute p(min(s)) for s € S\S

with improved, or at least different trade-offs between time and space requirements.

107

Chapter 5

Compositional Lumping of Matrix
Diagram Representations of

Markovian Models

There are only a few results that address the problem of lumping of Markov chains repre-
sented as MDs. In Chapter 4, a model-level lumping technique is proposed for MDs that
result from state-sharing compositional models. Like other model-level lumping techniques
that can exploit only lumpings that occur due to symmetric composition of components, our
technique in Chapter 4 can find only symmetries fhat occur in MD levels that correspond to
identical components of a model. To the best of our knowledge, there is no algorithm that
can exploit lumpings in the individual levels of an MD.

In this chapter, we present a new compositional lumping algorithm that is useful for
exact and ordinary lumping of Markov chqms represented as MDs without knowledge of the
modeling formalisms from which the MDs were generated. Our approach relies on local con-
ditions, i.e., éonditions on individual levels of the MD. Since our algorithm locally processes
MD nodes which often have dramatically smaller sizes than the matrix represented by the
MD, it is computationally inexpensive (compared to state-space generation and numerical
solution) at the price that it does not necessarily achieve an optimal lumping for the overall
CTMC. Our approach is similar to formalism-specific compositional lumping approaches in
that they both compute a lumped CTMC by locally applying a lumping algorithm to a part
of the model description and replacing that part with its lumped version.

However, the advantage of our algorithm over other formalism-specific ones is that ours
is applicable to an MD regardless of the formalism of the model from which the MD has
been generated. More specifically, it works for any model formalism for which there is a

state-space generation algorithm that generates an MD representation of the underlying

108

CTMC'’s state-transition rate matrix [28, 72, 73|. Considering the fact that any matrix rep-
resented using Kronecker operators can also be represented using an MD, our compositional
lumping algorithm is also applicable to all compositional model formalisms whose underlying
CTMGs are specified by Kronecker representations. For example, the compositional lumping
algorithms for SANs (Stochastic Automata Networks) [14] and the hierarchical Kronecker
representation can be derived from our algorithm.

The important advantage of our compositional technique is that it is complementary to
the model-level lumping developed in Chapter 4. In other words, we can apply compositional
and model-level lumping techniques simultaneously on a compositional model formalism in
which composition is done through sharing state variables. The result is that we will be
able to exploit two types of lumping for a composed model that we build using the join
and replicate operators of Chapter 4: 1) lumping due to the symmetries present among
the various components of the composed model induced by the replicate operator, and 2)
lumping present in each individual component. That will enable us to generate potentially
smaller MD representations of CTMCs than would be possible using either of the techniques
individually. Moreover, either of the two techniques or their combination is complementary
to the state-level lumping algorithm developed in Chapter 3 in the sense that any partially
lumped CTMC that is computed by the model-level and compositional lumping algorithms
can still be fed to the state-level algorithm to obtain the smallest possible lumped CTMC.
Remember from Chapter 3 that the state-level algorithm is applicable if the number of states
of the input is not prohibitive; that is, if it is less than 30 million states using 1.5 GB RAM.

As we will see in Section 5.4, our algorithm significantly reduces the space and time
requirements of MD-based numerical solution algorithms while incurring a negligible time
overhead. Our work is related to [49] in that we argue on the level of a block structured
matrix to observe lumpability, but unlike the work in [49], it is not limited to Kronecker
matrices and stochastic automata networks. It is also related to [14] in that we have a local

condition but do not separate local and synchronized actions ‘as was done for the automata

109

theoretic approach in [14].

The rest of the chapter is organized as follows. We begin, in Section 5.1, with a slight
extension of our notation of the MDs and also explain why we can, without loss of generality,
focus on three-level MDs instead of MDs with an arbitrary number of levels. Then, in
Section 5.2, we present the main results of the chapter, two theorems in which lumpability
conditions on the matrices of a single level of an MD are proved to be sufficient to prove that
the entire MD is lumpable. Then, in Section 5.3, we give an efficient algorithm that, based
on the theorems in Section 5.2, compositionally lumps a CTMC represented by an MD. To
demonstrate the applicability of our approach and how it can facilitate the analysis of large
models, we use it in Section 5.4 to study the model of a tandem multiprocessor system. We

finally summarize in Section 5.5.

5.1 Preliminaries

In Definition 2.2, we used the term “lumpable” in reference to MRPs. We also mentioned
that if the reward and initial probability vectors satisfy the definition’s conditions, we can
also speak of a “lumpable” CTMC, its R, or its Q matrix. In this chapter, we deal with
lumping of the MD representations of R matrices. Therefore, it also makes sense to talk
about “lumpability” of MDs. Moreover, since we will define a set of conditions on individual
nodes of the MD that leads to the lumpability of an MD (and the MRP we have defined on
it), we will also talk about “lumpability” of MD nodes.

5.1.1 Extension of MD Notation

In our compositional lumping algorithm for MD representation of CTMCs, we assume that
all matrix nodes at the same level of the MD are of size |S.] x |S,.|. At first glance, this
assumption seems too restrictive; for example, it is not satisfied when MD nodes’ dimensions

change due to the projection operation (the “Submat” procedure in [72]) that restricts the

110

elements of the MD to the reachable state space of a given model.

The apparent limitation is at the notation level and not at a conceptual level. We
encounter it because we decided not to adopt a heavyweight notation. Nevertheless, the
limitation can be overcome by defining two sets S,,, S, € S. that specify the set of row
and column indices on which the node R, (n. € N) is well-defined. Using that convention,
when we enumerate the elements of a given MD (for example, during numerical analysis)
we ignore all rows in S,\S,, and columns in S,\S,_ when we access node R,.. However,
when we look at R, individually (for example, in our compositional lumping algorithm),
We assume T, .., (5, 5.) = 0 for all possible values of ney; € Neyr, and if sc € S\Sy, or

Se € Se\Sy,..

5.1.2 38-Level MDs vs. Arbitrary MDs

In the following paragraphs, we describe how, by merging adjacent levels of an MD in bottom-
up and top-down manners, we can consider in our arguments, without loss of generality and
in order to avoid an overwhelming notation, MDs with 3 levels instead of MDs with an

arbitrary number of levels.

Recall how we merged adjacent levels of an m-level MD from the bottom up in Section
2.3.2. Much as levels can be merged in a bottom-up manner, we can reduce the number of
levels by merging in a top-down manner, i.e., starting at the top level. For example, we can

merge levels 1 and 2 and obtain an (m — 1)-level MD. The resulting MD has a new root

111

node R; such that 5 = (s1, 52), 5 = (s}, s), and

Ri(5,8) =) rim(s1,5)Rn,

n2€N2
= Z T1,m2(51, 81) z Tna,ng (82, 55) Fing
n2ENy n3EN3

= Z Z Tl,nz(slasll) "'nz,na(s2’3,2) Rna

n3€N3 Ln2€N>

= Z F1ina (51, 1) Bag

n3EN3

where 71,5(51,81) = Do en, T1na (51, 81) Tnyma (52, 85). By iterating that procedure c—1 times
we can merge the first levels 1 through c.

In our compositional lumping algorithm for MDs, we need to test an arbitrary level ¢
for lumpability conditions local to that level. Therefore, it is natural to merge all levels
1,...,¢— 1 into a single level and all levels ¢+ 1,...,m into another single level and obtain
a 3-level MD when 1 < ¢ < m. The cases where ¢ = 1 (and ¢ =.m) need special attention.
We first add an artificial level 0 (or m + 1) to the MD that has a single node of size 1 x 1
consisting of entry 1, and establish appropriate pointers from level 0 to 1 (or m to m + 1)
such that the new MD represents the same overall matrix. Then, we perform the merging
operations mentioned above. Eventually, the merging leads us to consider, for most of our
discussion and without loss of generality, an MD of 3 levels and to focus on level 2 for local
lumping purposes instead of considering an MD of m levels and focusing on level ¢. Once
again, note that the sole purpose of our merging argument is to simplify the notation and
understanding of the material. As we will see, when we finally present the compositional

lumping algorithm, we do not perform any merging operation.

112

5.2 Compositional Lumping of Matrix Diagrams

As we mentioned earlier, our focus is on describing a lumping algorithm that can be applied
directly to an MD representation of a CTMC. We will do so by applying lumping to matrices
of each level of the MD and replacing them with possibly smaller ones. The algorithm is
eventually applied to all levels of the MD.

In this section, we describe the concepts based on which the compositional lumping
works. In particular, we will describe two sets of sufficient lumpability conditions (one for
ordinary and one for exact lumping) on the nodes of one level of the MD, and prove that

they satisfy lumpability conditions on the overall MD.

5.2.1 Augmentation of MDs to MRPs

In Section 2.3, we showed how an MD can represent the state transition rate matrix of
a CTMC. To discuss lumping conditions according to Theorem 2.1, we need to augment
the CTMC to an MRP by specifying the rewards and the initial probability distribution. In
paﬁ:icular, to discuss local lumping conditions, the reward vector and probability distribution
have to be decomposable. More specifically, r is an arbitrary reward vector on S, and when
we discuss ordinary lumping, we restrict its representation to r(s) = g(fi(s1), f2(s2), fa(s3))
(i.e., a function built upon functions of substates at each level), in which s = (s1, 53, 83),
g:RE >R fi:85 2R, fo:8 — R, and f3 : S3 — R. Likewise, 7™ is also
an arbitrary initial probability distribution on S, and when we discuss exact lumping, we
restrict its representation to 7% (s) = gr(fr1(81), fr2(82), fr3(ss)), in which gr : R® — [0,1],
fr1:81—R, fr2:8 —R,and fr3:S3—R.
Notice that the “restriction” we mentioned above is on the way we represent r or 7™,
The sole purpose of that representation is to simplify the expression of the lumping conditions
on those vectors. In fact, that representation does not limit the expressiveness of r or @™,

In fact, the representation is as expressive as the MTMDD data structure, and therefore can

113

be used to represent arbitrary vectors. In our implementations, we are using MTMDDs to

represent those vectors.

5.2.2 Local Equivalence Relations ~j, and ~y

In the rest of this section, we first present two local equivalence relations &, and =, on
the state space of level 2 of an MD. We then prove that lumping level 2 of the MD with
respect to each of those relations results in an MD that is lumped with respect to (global)

equivalence relations =2y, or =g, which are constructed upon =, and =z,.

Definition 5.1 Local equivalences =, and =, (and corresponding partition Py, and Pj.)

are defined on Sy as follows:

s2®10 82 if fa(s2) = fa(32) (5.1)
and Vng € No,Cy € Py : Ry (82, Ca) = R, (82, Co) (5.2)

s2®e 82 i fra(s2) = fra(82) (5.3)
and Vg € Ny : Ryy(s2,S2) = Ry, (82, S2) (5.4)

and ¥ns € Ny, Cs € Pre : Ry (C, 82) = Ry (G, 32) (5.5)

' |

In =4, and =, the letters {, o, and e stand for local, ordinary, and exact, respectively.
It is important to observe that equivalence relations =, and =, are not unique. In other
words, there can be more than one equivalence relation that satisfies each set of the sufficient
conditions in the definition. In particular, the definition does not specify whether partitions
Pi, and Py are the coarsest possible.

Note that the symbol “=” in Eqs. (5.2), (5.4), and (5.5) means equality of matrices (all
elements equal), and that the matrices on both sides of each equality are at most of size
|Ss] x |S3|. The following proposition states when the equalities in (5.2), (5.4), and (5.5) will

hold in terms of matrix elements.

114

Proposition 5.1 In Definition 5.1,

a. Eq. (5.2) is equivalent to

Vng € Nz,Cg S Ploa53,sl3 €S8;3:

Z Z Tnz,n3(52’3/2)R%3(3313,3) = Z Z rnz,n3(§273,2)Rﬂ3(s3:sé)

sh€Cy; n3EN3 s5€C2 m3EN3

b. Eq. (5.4) is eguivalent to

Vng € Ng,Sg,S% S 83 :

Z Z Trans (52, S2)Rng (83, 83) = Z Z Tnains (82, 55) Rag (83, 53)

sh€Sy n3&N; $LESy m3aEN3

c. Eg. (5.5) is equivalent to

Vg € N3, Cy € Pie, 53,53 € S3

Z Z Traums (82, 82)Rong (53, 83) = Z Z Tnains (82, 82) Ring (83, 53)

5;€0; m3€N3 85€Cy m3EN3

5.2.3 Global Equivalence Relations =, and =,

In Definition 5.2, we “extend” =, and =2y, to define another pair of equivalence relations

Rgo and =g, that imply a partition on S, the state space of the overall MD.

Definition 5.2 Global equivalences ~g, and =~ (and corresponding partitions Py, and Pye)

are defined on S for states s = (81, 52,53),8 = (81,82,83) €S as

a) 8R4 8 if S1= 81,82 =y, 8o, and s3 = &3,

b) s =g 8 if 51 = 81,82 Ny 82, and s3 = 5s. []
Notice that for each class C' € Py, (resp., C' € P,,) there is a corresponding class C; € P,

(Cy € Py,) such that Cy = {s3] (s1,52,583) € C}. On the other hand, given s; and s3 and

115

a class Cy € Pi, (Cy € Py), there is a corresponding class C € Py, (C € Pye) such that
C = {(s1, 52, 83)| 52 € Cp}.

In Theorems 5.1 and 5.2, we prove that the &, and ~,, equivalence relations satisfy the
ordinary and exact lumpability conditions (based on Theorem 2.1) on an MD, respectively.
That implies that the set of conditions on the matrices and reward vector of level 2 of a 3-level
MD given by =, and extended to the complete MD by =, implies ordinary lumpability on
the MD. Similarly, the set of conditions on the matrices and initial probability distribution
vector of level 2 of a 3-level MD given by =, and extended to the complete MD by Rge
implies exact lumpability on the MD.

Note that equivalence relations ~¢, and ~.are not unique either, because they are
defined based on (non-unique) equivalence relations ~%, and =%, respectively. In particular,
the definition does not specify whether &, and =, are the coarsest possible partitions on S.
However, Theorems 5.1 and 5.2 hold for any equivalence relation that satisfies the conditions

in Definitions 5.1 and 5.2.

Theorem 5.1 (S,Q,r, ™) is ordinarily lumpable with respect to partition P, (and its

corresponding equivalence relation =g,).

Proof. Based on Theorem 2.1, we need to prove:

Vs mgo 8 1 g(f1(s1), fa(se), fa(s3)) = g(f1(51), f2(32), f5(33)) and (5.6)
Vs g3V C €P:R(s,C) =R C) (5.7)

Consider two states s = (51, 82, 83) Rg, § = (81, 82, 83). By Definition 5.2, we have s; = §;

and s3 = §3, and by Definition 5.1, we know that fy(sz) = fa(82). Therefore, (5.6) holds.

- 116

To prove (5.7), we transform the left-hand side of the equality in a number of steps to

its right-hand side, as follows:

R(s,C) = Y R(s,s)

s'eC
= Z Z T1,n2(81,81) Z Trang (52, 2)Rang (83, 83)
s'€C m2€EN2 n3EN3
[by Definition 5.2] = Z Z T1,n5 (51, 51) Z Trans (52, 5) Rang (53, 85)
85,€C2 n2€N2 n3EN3
[moving the sums] = Z Tl,nz(sl,sll) Z Z Tnz,na(sm'slz)R'ns(sSasg)
ng€N2 55€C2 n3EN3
A
[A=BbyProp. 51)] = > T1ny(s1,81) Y D Tryns(32,55)Rng(s3, 55)
na€Nz 35€C2 n3€EN3
B
[reverse argument] = Z R(5,5') =R(5C) -
s'eC

Theorem 5.2 (S, Q,r, ™) is ezactly lumpable with respect to partition Py (and its corre-

sponding equivalence relation =g).
Proof. Based on Theorem 2.1, we need to prove:
Vismge 81 gn(fra(s1), fra(s2), fra(ss)) = gn(fr1(81), fr2(82) Fr3(35)) (5:8)

and R(s,8)=R(3,S) (5.9)
and VC eP:R(C,s)=R(C,3) (5.10)

Egs. (5.8) and (5.10) can respectively be proved much like (5.6) and (5.7) in Theorem
5.1. To prove Eq. (5.9), we use the same approach that we used in the proof of Theorem

5.1, but replace C with S. In particular,

R(s,8) = » R(s,5)

g’'es

117

Z Z T1,n (51, 3;.) Z 'rnz,na(sZ: SIZ)R'M (537 5‘{5)

(s1,5%,85)€S m2€EN2 n3EN3

[moving the sums] = Z Z T1ny(S51,57) Z Z Z Tng,ns (52, 55)Rong (83, 55)
8, €81 n2€N2 A 32682 n3€EN3

[4 = B by Prop. 5'1] = Z Z T nz(sl, sl Z Z Z T’n.z,ns(s% 82 R’n.s (837 33)
s €51 n2EN2 shES3 32682 na€N3
B

[reverse argument] = Z R(5,s") =R(5,S) -

s'es

Theorems 5.1 and 5.2 ensure the lumpability of an MRP given a set of sufficient conditions
on the lumpability of the matrices of a specific level of the corresponding MD. The next
natural question is how to efficiently compute a locally lumpable partition P;, or P, that

satisfies the conditions in those theorems.! It is answered in the following section.

5.3 Compositional Lumping Algorithm for Matrix
Diagrams

We now know, by Theorems 5.1 and 5.2, that given an equivalence relation =, (=4.) on
the states of one level, MRP M is ordinarily (exactly) lumpable with respect to =y, (R%),
derived from =, (=). Therefore, the problem of lumping M is reduced to computing =,
(=e). This section describes an algorithm to compute these relations. Given an MD with
its associated reward and initial probability distribution vectors, we run the algorithm for
all levels of the MD, once for each level, to obtain a lumped MRP.

The algorithm we develop is based on the lumping algorithm presented in Chapter 3,
where we gave an efficient algorithm based on the partition refinement approach for comput-
ing the optimal (i.e., coarsest) equivalence relation that gives an ordinary or exact lumping

on an MRP. In this chapter, we use a different definition for the K function, and hence, a

'Notice that P;, and P, are not unique partitions.

118

different data type T' than Eq. (3.4). That enables us to compute a partition on &; that
satisfies Definition 5.1 rather than a partition on S that satisfies Definition 2.2. If is essential
to note that we do not apply the algorithm to R (the overall state-transition rate matrix).
Instead, we apply it to the individual nodes of the MD, which are often very smaller than
R.

5.3.1 Computing =, and =~

In Chapter 3, we used the COMPUTECOARSESTPARTITION procedure (Figure 3.2) to com-
pute the coarsest partition that satisfies the conditions in Definition 2.2. To use that pro-
cedure to compute equivalence relations =, and =, that satisfy Definition 5.1, we need
to make a number of changes in the way we use it. Those changes can be recognized by
comparing the conditions of Definition 5.1 with Definition 2.2.

Observe the differences and similarities of Eq. (5.2) and Eq. (2.2) for ordinary lumping
and Eq. (5.5) and Eq. (2.4) for exact lumping. First of all, Egs. (5.2) and (5.5) hold for
matrices R,,, whereas in Eq. (2.2) and Eq. (2.4) there is only one matrix Q involved.
Therefore, we need to call COMPUTECOARSESTPARTITION(R.,,, Sz, Pi!) for each ny € Ny,
instead of calling CoMPUTECOARSESTPARTITION(Q, S, P'). We will explain later how to
compute P, the initial partition of S,.

Second, we need to find the appropriate choices of function K that satisfy Egs. (5.2) and
(5.5). Again, comparing Eq. (5.2) with Eq. (2.2) leads us to the first obvious choice of K as
K(R,,,s2, ¥3) = Ry, (52, ¥s) where ¥y C S,. Similarly, for exact lumping, the comparison
of Eq. (5.5) with Eq. (2.4) leads us to K (Rn,, 52, ¥2) = Ry, (¥3, 82) to satisfy Eq. (5.5).

Therefore, data type T is the set of matrices of size at most |Ss| x |S3|. Considering
the fact that level 3 of the MD is built through merging of at most m — 1 levels of the
original MD, the computation of function K and equality testing for T' are prohibitively
time-consuming for levels ¢ < m. Therefore, we do not follow that approach.

The other choice is for X to compute a formal sum represented as a set of (coefficient,

119

node index) pairs. Note that for any node R,

R’nz (321 \1,2)

R’nz(‘p27 82)

which implies

Z Z Tnz,ns('s?aslz) 'B’ns

85,ET2 n3ENs

S S roana(52,5) | Reg, and

n3EN3 \ s5€¥;

"

N~
-‘—"7'11.2,1;3 (32)‘1'2)

Z Z Tnz,n3(5l2’32) Ry

shEW, ng€Ng

Z Z Tna,mns (5,27 32) 'Rna)

n3EN3 \ s5€¥;

vl

~
=Tny,ng (‘112732)

Lemma 5.1 For all s9,8, € S, all T3 C S, and all ny € Ny,

a. R'nz(s2, ‘I’2) = R‘nz (§27 ‘IJZ) if Vng € N3: Tng.ns (327 ‘1,2) = Tn2,n3(§27 ‘112)

b. Rmz(‘llz, 82) = Rﬂz (\I’g, .§2) Zf V’I'L3 < N3 ‘Tnyns (‘I’z, 82) = Tnama (‘I’g, 52)

The conditions are only sufficient since 1) a weighted sum of matrices may be equal even if
the individual terms differ, and 2) Ry, = Ry, < n; = n does not necessarily hold for an
arbitrary MD. Canonical MDs [73] are a particular subclass of MDs in which the expression
is true; Ry, is uniquely represented by n;. Nevertheless, efficiency of MDs is based on sharing

of equal nodes, so one can expect that having two different nodes R,, and Ry; that represent

the same matrix R,, = Ry is uncommon in MDs.

Based on the above observation, we can localize the comparison at level 2 and set

K(ana Sz, WZ)

{(n37rn2,n3(521 E{2))| ng € N3a'rn2,'n3 (32» \I’Z) # 0}
{25, T (W, 52))| 75 € N, T (W, 57) # 0} for exact umping,

120

for ordinary lumping

which is a set representation of the formal sum }__ 2N Tnzms (52, U2) - Ry, or its counterpart
D nseN; Tnains(¥2, 2) - Ry, with references to nodes R,,, and not to matrices R,,. Two
formal sums are equal if their corresponding sets are equal. That means that the algorithm
is applied locally only at nodes in N, of size |[S;| X |S,| and not at matrices of size at most
|S2 X Ss| X |Se x S3).

Using local lumpability conditions for a level that are only sufficient (instead of both
sufficient and necessary) leads to an improved time complexity for the algorithm, but also
prevents the algorithm from generating the coarsest possible lumpable partition for that level.
That means there is a trade-off between time complexity and coarseness of the computed
partition when the algorithm is used on an m-level MD. For level m, the sufficient condition
is also necessary, because level m is a set of simple real-valued matrices, and therefore the
coarsest possible partition is computed. For levels ¢ < m, the algorithm uses sufficient
conditions, and consequently does not necessarily compute the coarsest possible partition
for that level. That means that our algorithm does not necessarily generate the smallest
possible lumped MD. However, its time complexity is smaller than the time complexity
of an algorithm that would be based on both sufficient and necessary conditions, that is,
comparison of weighted sums of matrices R,,. Due to that trade-off, one may investigate
the particular level ¢ at which comparison of a weighted sum of matrices is prohibitive. Due
to the dramatic growth of the matrices, we expect that level to be very close to m.

So far we have been describing the theorems and the changes we needed to make in the
procedures of Chapter 3 for the case of a 3-level MD. Now that we have all the pieces and
are ready to present the compositional lumping algorithm, we switch to the m-level MD
case. We have so far shown how to compute a partition that satisfies Egs. (5.1) and (5.4)
for one instance of n. € N, (1 < ¢ < m) (or one instance of ny € N, in the 3-level MD view).
The last step in computing P, and P is to find a partition that satisfies those equations
for all nodes in N.. We do so in COMPUTECOARSESTPARTITIONFORLEVEL (Figure 5.1)

by a fixed-point iteration. More specifically, we apply the COMPUTECOARSESTPARTITION

121

CoMPUTECOARSESTPARTITIONFORLEVEL(P™, c)
1 Py:=pPH
2 repeat
3 P. =P,
4 for each n, € N,
5
6
7

P, := CoMPUTECOARSESTPARTITION(R,,, S,, P.)
until P, = P,
return P,

Figure 5.1: Computing ~, and =2, for level ¢

COMPOSITIONALLUMP
1 forc:=1tom
2 Compute P
P. = CoMPUTECOARSESTPARTITIONFORLEVEL(PH, ¢)
for each n. € N,
Ry, = CoMPUTELUMPEDNODE(R,,_, Sz, P.)
Replace R, with R, in MD
Compute lumped version of rewards
and initial probabilities at level 4

~ O v s W

Figure 5.2: Compositional lumping algorithm for MD

algorithm repeatedly to all nodes in level ¢ until they are all lumpable with respect to the

same partition P.

5.3.2 Overall Algorithm

The final step of our algorithm for lumping an MD is to use COMPUTECOARSESTPAR-
TITIONFORLEVEL to compute lumpable partitions for each level starting from an initial
partition (lines 2-3 of Figure 5.2), ‘lump every node with respect to the partition corre-
sponding to its level (line 5), replace each node with its lumped version (line 6), and finally,
compute #™ and T (line 7).

Line 2 computes the initial partition for level ¢ based on whether we are computing

ordinary or exact lumping. For ordinary lumping, Eq. (5.1) determines how we should

122

compute P™: it is the coarsest partition on S, such that:
VC e PM s, s, €C: fuse) = fsh).

For exact lumping, Eqgs. (5.3) and (5.4) determine how we should compute P™. Using
Lemma 5.1, Eq. (5.4) holds if 7 n,,; (8¢, Sc) = Tneners (55 Se). Hence, for exact lumping,

Pl is the coarsest partition on S, such that

VC e Pém, Se, Slc € C, e € Nc,nc+1 € Nc+1 .

fr,C(sc) = fr,c(sz:) and Trenett (8¢,8c) = Tneyncs1 (82, Se)-

For both cases, Pi® can be computed, in terms of the implementation, using a binary search
tree that clusters the substates that belong to the same class of PiM,

ComMpUTELUMPEDNODE (Figure 5.3) is the same as COMPUTELUMPEDCTMC (Figures
3.7(a) and 3.8(a)) except that it computes the lumped version of an MD node instead of a
CTMC. In line 5 of Figures 5.3(a) and 5.3(b), we have used the version of function K that
is extended to the m-level MD case. Based on Eq. (5.11), we have:

K(Ry,, sc, ¥c) (5.12)
{(nc+1,7"nc,nc+1 (8¢, Ue))| Mera € Neqa, Tne,mey1 (8¢, ¥c) # 0} ordinary lumping

’ {(—nc-{-l: T, nes1 (‘I,c; Sc))! Ter1 € Neya, Thne,nes1 (Wc: Sc) % O} exact lumping

where s, € S, ¥, C S, and n. € N,. Line 5 assigns to R’(Z,}) the value of function K, which
according to Eq. (5.12) is a set of (node reference, rate) pairs. The result is that for ordinary
lumping and for any pair (Nei1; Tne e (Ser C5)) € K (Bancy Sey C3); Treinesa (Se, C;) is assigned to
Tremess (1, 7). Similarly, for exact lumping for any pair (Res1, Tnemess (Csr Se)) € K(Rag, e, C5),

Tnener1 (C5r Sc) is assigned to 7 o, +1(Z,3‘).

123

CoMPUTELUMPEDNODE(R,,,, S, P.)
1 foreachie€ {1,...,|P|}
2 RGEi):=0
3 foreachis,j €{l,...,|PJ}i#
4 s¢ ;= arbitrary element of C; € P,
5
6

E(;a ;7;) = K(Rnc’ Se, Cj)
return R
(2) Ordinary lumping

CoMPUTELUMPEDNODE(R,,,, S, P.)
1 foreachie {1,...,|P:|}
R(,7) =0
for each 4,7 € {1,...,|P:|},i #]
8¢ = arbitrary element of C; € P,
R(:i’, i) = K(Rnu Se, CZ)
return R
(b) Exact lumping

(o2 TN G 4 SIS JUNE U]

Figure 5.3: CoMPUTELUMPEDNODE's pseudocode for ordinary and exact lumping
5.4 Performance Results

In the previous two sections, we presented the theory on which our algorithm is based, and
then described how we designed our compositional lumping algorithm by modifying a par-
tition refinement algorithm for state-level lumping. In this section, we briefly explain our
implementation of the algorithm, describe its integration into the symbolic state-space gener-
ator (symbolic SSG) algorithm of Chapter 4, and illustrate its use through an example model
of a tandem multiprocessor system with load-balancing and failure and repair operations.
The results show that compositional lumping of MDs is indeed practical and enables us to
numerically solve large Markovian models with much smaller time and space requirements

than would be necessary using only symbolic data structures or lumping techniques.

5.4.1 Implementation in Mobius

To implement the MD-based compositional lumping algorithm described in the last section,

we start with the symbolic SSG algorithm of Chapter 4, which generates the MD representa-

124

tion of the state transition rate matrix of a high-level Markovian model. Our implementa,tion
of the lumping algorithm provides a number of functions (like the procedures we described
in Section 5.3) that operate on the MD of the original CTMC and generate the lumped
MD, which represents the lumped CTMC. As we mentioned in Chapter 4, our symbolic SSG
algorithm works only for models composed through sharing of state variables. However,
that does not mean that our implementation of the compositional lumping algorithm is only
applicable to those types of models. In fact, since the compositional lumping algorithm we
described does not make any assumption about the high-level model formalism that gener-
ated the MD, it can be applied to any MD, regardless of the high-level model from which it
was generated.

The implementation is based on Mdbius version 1.6.0 and was compiled with the gec 3.3
compiler with the -O3 optimization option. All experiments were conducted using an Athlon

XP2400 machine with 1.5 GB of main memory running Linux.

5.4.2 Tandem Multiprocessor System

We consider a tandem multiprocessor system that consists of two subsystems: MSMQ and
hypercube. Each subsystem has a number of servers, an input pool of jobs that are waiting
to be serviced, and an output pool of jobs that have already been serviced by a server in the
subsystem. Each subsyst‘em takes jobs from its input pool, processes them using its servers,
and passes them to its output pool. The interaction between the two subsystems is done
through each subsystem sharing its output pool with the input pool of the other. In other
words, jobs in one subsystem enter the input pool of the other upon completion of service.
The system is closed in the sense that there is always a constant number J of jobs in it.
The first subsystem is an MSMQ (Multi-Server Multi-Queue) polling-based queuing sys-
tem with 3 identical servers and 4 identical queues, as described in [68]. The complete SAN
(Stochastic Activity Network) [84] specification of the subsystem’s model is given in Ap-

pendix A.3. Figure 5.4 shows a high-level view of the cyclic arrangement of the queues and

125

input pool

server server server server
wait wait wait wait
coy | 1 A
v U _/ U _/ U N
three
ETVers

Figure 5.4: MSMQ subsystem

also how each of the 3 servers moves from one queue to the next after a waiting time that is
an exponentially distributed random variable with a constant rate. Upon entering a queue,
a server polls the queue. If there is no job waiting for service, it goes to the next queue
after some waiting time. Otherwise, it gives service to one job in the queue and waits to be
transferred to the next one. The MSMQ subsystem distributes the jobs from its input pool

to each of the 4 queues with equal probability. After being served, each job is transferred to
» the hypercube subsystem’s input pool. More information on MSMQ systems can be found
in [68].

The second subsystem is the hypercube model (Figure 3.9) described in Section 3.4,
except that in Section 3.4, we superimposed the input and output pools of the system, but
we keep them separate here. The complete SAN specification of the model is given in Section
A.l. To attain maximum symmetry, we set all the service rates and all of the repair rates
of the processor to the same value.

We used the Mobius tool {38, 48] to specify the model of each of the subsystems using

the SAN formalism. Then, we composed the models by sharing their input and output pools

126

V; = {input pool, output pool}

N

MSMQ hypercube

Figure 5.5: Composed model structure of the tandem multiprocessor model

via the Join operator in the Rep/Join composed editor (Figure 5.5). Our implementation
of the symbolic SSG automatically partitions the set of places of the complete model and

assigns each class of the partition to one level of the MD as follows:

e level 1: shared state variables (places in the SAN formalism) of the two submodels,

i.e., input and output pools
e level 2: state variables of the hypercube submodel minus those in level 1

o level 3: state variables of the MSMQ submodel minus those in level 1.

5.4.3 Performance Results

Tables 5.1(a) and 5.1(b) show information about the MD representation of the original (i.e.,
unlumped) and lumped CTMC of the tandem multiprocessor system for different values of
J, respectively. More specifically, Table 5.1(a) shows the state-space size for each level and
for the complete model, the number of MD nodes in each level, the symbolic state-space
generation time, and the memory requirement for the original MD. Table 5.1(b) shows the
lumped state-space size for each level and for the complete model, the state-space reduction
we gain from the compositional lumping algorithm for levels 2 and 3 and for the complete
model, the compositional lumping algorithm running time, and the memory requirement for
the lumped MD. Table 5.1(b) does not show the number of MD nodes in each level because
the number of nodes in each level of the lumped and unlumped MD is the same; the reason

is that the compositional lumping algorithm replaces each MD node with a possibly smaller

127

(a) Unlumped MD

J unlumped SS sizes # of MD nodes | generation | MD memory
overall | [Si] | [Sa| | [Ss| | [N | [No| | [Ns] | time (s) usage

1 22100 2 650 | 160 1 3 3 0.05 53.9KB

2 | 197600 3| 3575 | 700 1 5 4 0.8 421KB

3 | 1236300 4 | 14300 | 2220 1 7 5 12.1 2230KB

(b) Lumped MD

J lumped SS sizes reduction in SS | lumping | MD memory
overall | |S1] | |So] | [Ss] | overall | I | I5 | time (s) usage

1 395 2| 30| 40 55.9 | 21.71 4 0.04 4.7KB

2 4075 311781 175 4841204 | 4 0.26 36KB

3| 28090 4 | 803 | 555 44 1178 | 4 1.8 201KB

Table 5.1: Specifications of MD representation of tandem system’s CTMC

one and does not create or delete any node. In Table 5.1(b), 5 and I3 refer to levels 2 and 3
of the MD. The state-space reduction for level 1 is not shown because it is always 1.

‘We observe in Table 5.1(b) that the compositional lumping algorithm reduces the state-
space size of the overall model to roughly 1/40 to 1/50 of its original value. The equivalently
behaving sets of entities, that is, 1) the four queues of the MSMQ subsystem, 2) processors
A and A’ in the hypércube (Figure 3.9), and 3) the other 6 processors in the hypercube, are
the source of the lumpability found by our compositional lumping algorithm.

As mentioned in Section 5.3, our algorithm does not necessarily generate the smallest
possible lumped CTMC (or its MD representation) because it is applied locally at each level
of the MD and does not have a global view of the CTMC represented by the MD. In other
words, the resulting lumped CTMC could possibly be lumped to a smaller CTMC by a
state-level lumping algorithm that has a flat (i.e., global) view of the CTMC. Nevertheless,
we verified that our compositional algorithm generates the smallest lumped CTMC possible
for the example considered. We did that by running the state-level lumping algorithm we
developed in Chapter 3 on the CTMC that resulted from the compositional algorithm; the
output was the same as the input CTMC.

Generally, the reduction in state-space size has two major effects on the efficiency of

128

iterative numerical solution algorithms that compute measures of CTMCs: it reduces both
the space and time requirements for such algorithms. Reduction in the size of the state
space affects space requirements in two ways. First, it makes the MD representation of the
CTMC smaller. In our example, the memory requirement for the MD has been reduced
by around an order of magnitude for all values of J. Second, and more important, it
reduces the size of the solution vector, the infamous bottleneck of iterative numerical solution
algorithms, proportionately to the overall state-space reduction; in our example, the vector
was reduced to no more than 1/40 its original size. Therefore, the advantage of using our
compositional lumping algorithm is that we can solve larger models than would be possible
using only symbolic techniques; for our example, we solved models that are one to two orders
of magnitude larger. The reduction in the size of the state space also results in a roughly
proportionate reduction in the amount of time spent for each iteration of the numerical
solution algorithm. It is important to realize that all the benefits in terms of time and space
requirements described above are achieved through an efficient algorithm in an amount of
time that is negligible compared to the time needed for numerical analysis and that is, for
our example, considerably less than the time needed for state-space generation.

Note that the degree of reduction in state-space size due to compositional lumping obvi-
ously depends on the model and its compositional structure. In the worst case, none of the
levels of the MD satisfy the lumpability conditions for any non-trivial partition (partitions
with more than one class), so that our lumping algorithm cannot reduce the size of the state
space. For example, suppose we decompose the model of the cube-connected processors
into 8 submodels. Then, the corresponding MD will have 8 more levels. In that case, our
algorithm will not find any non-trivial lumpable partition for any of the 8 levels, because the
algorithm is applied at each level separately, and the symmetry is no longer found in any
of the 8 levels. Nevertheless, our algorithm finds non-trivial lumpable partitions if a set of
levels of the MD, whose corresponding submodel(s) together have more lumping potential,

are grouped into one level. In fact, for our example, we grouped all equivalently behaving

129

processors in the same submodel, and therefore, we could gain significant reduction in the

state spaces of levels 2 and 3 and the overall state space.

5.5 Summary

In this chapter, we presented a compositional algorithm that lumps an MRP represented
as an MD (for the CTMC representation) that is augmented with reward and initial prob-
ability distribution vectors. The lumping is performed by reducing the nodes of each level
separately from other levels. Recently, many authors have used MDs to represent very large
matrices of Markovian models specified in a variety of modeling formalisms. Unlike previous
compositional lumping algorithms that were formalism-dependent, our algorithm is applica-
ble on any MD, and thus on any formalism that uses MDs or Kronecker representation? for
its CTMC representation.

Specifically, we defined two equivalence relations (one for ordinary and one for exact
lumping) on the state space of a given level of an MD that is augmented to a Markov
reward process (MRP) by assignment of rewards and initial probabilities to states. We
then proved that reducing the nodes of that level with respect to each relation yields an
MD representing a lumped CTMC. We also designed and implemented an algorithm that
computes the equivalence relations for each level and reduces a given MD with respect to
those relations. Finally, we showed by an experimental study that the algorithm can in fact
take advantage of the existing lumpability in each level and reduce the size of the MD by
roughly one to two orders of magnitude for our example model. The state-space reduction
makes iterative numerical solution algorithms require roughly one to two orders of magnitude
less space (mostly taken by the solution vector) and less time per iteration. The important
point to note is that the state-space reduction is achieved in an amount of time that is

much smaller than the amount of time needed for the generation or numerical solution of

2 As we mentioned before, any matrix expression using Kronecker operators can be represented as an MD.

130

the unlumped MD.

131

Chapter 6

Conclusion

In this final chapter, we identify the main contributions of this dissertation and the extent
of their implications, and explain the promising directions in which further ideas can be

investigated.

6.1 High-level View

The goal of this dissertation is to extend, improve and combine existing solutions of the
state-space explosion problem and develop new algorithms and tools to make possible the
construction and solution of very large CTMCs generated from high-level Markovian mod-
els. Our new techniques attack the state space explosion problem on two fronts: largeness
avoidance and largeness tolerance. On the former front, we focused on various types of lump-
ing techniques and designed efficient algorithms that exploit lumping potential at different
levels and generate a lumped CTMC that is potentially smaller than the original one. By
numerically solving the lumped CTMC, we obtain exactly the same results that we would
obtain from the original CTMC. Using lumping techniques, we could reduce both the space
and time complexity of iterative numerical solution algorithms. On the latter front, we uti-
lized MDD and MD data structures to very compactly represent large state spaces and state
transition rate matrices of compositional models that were built through sharing of state
variables.

Our most important contribution is that, with some minor restrictions, all the lumping

and symbolic techniques that we have described throughout the dissertation were orthogo-

132

nal. More specifically, we can apply our compositional and model-level lumping techniques
simultaneously on a compositional model formalism and always keep the state space and
state transition rate matrix representations symbolic. The result is that we will be able to
exploit two types of lumpings for a composed model: 1) lumping due to the symmetries
present among the various components of the composed model induced by the replicate
operator, and 2) lumping present in each individual component. That will enable us to
generate potentially smaller MD representations of CTMCs than would be possible using
either of the techniques individually. Moreover, the combination above is again orthogonal
to our state-level lumping algorithm in the sense that any partially lumped CTMC that is
computed by the model-level and compositional lumping algorithms can still be fed to the

state-level algorithm to obtain the smallest possible lumped CTMC.

6.2 Contributions

In performability and availability modeling, computing high-level reward measures is the
final goal of the analysis of any model, including Markovian models. That is the reason why
we introduced MRPs in Chapter 2, which bundle the underlying CTMC of a model with a
rate reward measure and an initial probability distribution vector. We defined the ordinary
and exact lumpability of MRPs with respect to a partition and pointed out that a lumped
MRP can be used to compute exactly the same reward measures that could be computed
from the original MRP.

Then, we introduced in Chapter 3 our new state-level lumping algorithm, which, given
an MRP, can compute the coarsest possible partition with respect to which the MRP is
ordinarily or exactly lumpable. In other words, it generates the smallest possible lumped
MRP from which the desired reward can be computed exactly. We proved that the running
time of our algorithm was O(mlgn), where m is the number of nonzero entries of the

generator matrix and n is the number of states, whereas the previously fastest algorithm for

133

the problem had a running time of O(mn). We also proved that, prior to our new algorithm,
we could not achieve a running time better than O(mlg®n), even using the state-of-the-art
techniques and ideas in the literature. The key to the running time improvement was an
elegant use of the splay tree data structure as subclass trees to perform the split operation.
That made our algorithm the fastest known to date.

The implications of the algorithm are far-reaching. Although we discussed only optimal
lumpjng of MRPs (that are based on CTMCs), the algorithm can straightforwardly be ex-
tended to computation of the coarsest lumping in DTMCs (discrete-time Markov chains), the
coarsest bisimulation in probabilistic models such as WSCCS (Weighted Synchronous Calcu-
lus of Communicating Systems) and PCCS (Probabilistic CCS) and other Markovian models
such as PEPA (Performance Evaluation Process Algebra) and TIPP (Timed Processes and
Performance Evaluation), and the coarsest bisimilarity on general weighted automata.

We implemented two variants of our state-level lumping algorithm; one used splay trees
and the other used red-black trees to represent subclass trees. Our experiments showed that,
in practice and for virtually all cases, the red-black variant is less than 10% faster than the
splay tree variant, although the latter is theoretically faster. We explained that observation
with the very small size of the subclass trees and the relatively high constant factor of splay
tree operations. We also showed that both variants are always faster than the implementation
of the fastest previously known algorithm by up to three orders of magnitude, depending on
the size of the model.

The limitation of any state-level lumping algorithm, including ours, is that it views the
MRP at the level of CTMC states. In other words, it does not exploit any compositional
properties of the model that generated that MRP. It also requires the original MRP to be
constructed in some representation. For very large MRPs, the space and, more importantly,
time requirements become prohibitively large. Hence, we needed other lumping techniques
that directly generate a lumped MRP (but not necessarily the smallest possible one) without
first generating the original MRP. That motivated the work of Chapters 4 and 5. On the

134

other hand, the strength of the state-level lumping over all other lumping techniques is that
it always generates the smallest possible lumped MRP. Therefore, the best time to use it
is after we have exhausted all other lumping techniques. At that point, the size of the
partially lumped MRP is possibly much smaller than the original MRP, and we can apply
the state-level lumping algorithm to get the fully lumped MRP.

In Chapter 4, we explained a new approach that combines two already existing techniques,
namely, the symbolic representation of state transition rate matrices (largeness tolerance)
and model-level lumping (largeness avoidance). The first technique decreased the space
requirements of numerical solution algorithms by using matrix diagrams and multi-valued
decision diagrams to represent state transition rate matrices and state spaces, respectively.
Hence, it enabled us to assign most of the available memory to iteration vector(s) that are
so far not amenable to compact representation. Therefore, we could analyze models that
were one to two orders of magnitude larger than models that were solvable without symbolic
representation. The technique had been previously utilized for compositional models that
were based on action synchronization. We extended it for state-sharing compositional models
that were built using join and replicate operators.

The second technique exploits the symmetry induced by the replicate operator and di-
rectly generates a lumped MRP. That symmetry exists due to the equivalently behaving
components of the model. The technique has been known for a long time; however, it could
be applied only when the state transition rate matrix was represented using a sparse matrix
representation, placing an upper limit on the size of the CTMC that could be analyzed. We
overcame the challenge by developing 1) a very efficient symbolic a.lgbrithm that generated
the state space of the lumped MRP from the state space of the original MRP, both of which
were represented as MDDs, and 2) a new data structure, which we call the “sorting MDD,”
that efficiently maps a vector representation of a (non-representative) state of the original
CTMC to the index of the corresponding representative state.

We implemented the algorithm mentioned above and integrated it into the Mébius mod-

135

eling tool. The implementation automatically exploited the symmetry and generated all the
necessary symbolic data structures used for the enumeration of the lumped CTMC, includ-
ing the MD representation of the lumped CTMC and the sorting MDD. Our implementation
extended the size of CTMCs that were analyzable by the Mobius tool by one to two orders
of magnitude depending on the model.

The last piece of work, which we presented in Chapter 5, dealt with the exploitation
of lumping potential inside each component of a model, as opposed to lumping that exists
because of the symmetry among components. More specifically, we designed a compositional
algorithm that lumped an MRP represented as an MD (for the CTMC representation), which
was augmented with reward and initial probability distribution vectors. The lumping was
performed by reducing the nodes of each level separately from other levels. The implication
of the work is apparent from the observation that recently many authors have used MDs
to represent very large matrices of Markovian models specified in a variety of modeling for-
malisms. Unlike previous compositional lumping algorithms that were formalism-dependent,
our algorithm is applicable on any MD, and thus on any formalism that uses MDs or Kro-
necker representation for its CTMC representation.

Our lumping algorithm is compositional, which means that it performs the state-level
lumping algorithm on a number of often drastically smaller matrices (MD nodes) than the
original state transition rate matrix. That reduces both the space and time requirements
of the lumping algorithm, at the cost of not being able to compute the optimal Iumping,
which can be compensated for with a single application of the state-level lumping algorithm
on the resulting partially lumped MRP. Our experiments showed that the reduction can be
gained in an amount of time that is much smaller than the amount of time needed for the
generation or numerical solution of the unlumped MD.

Our compositional lumping algorithm was made possible through the definition of two
equivalence relations (one for ordinary and one for exact lumping) on the state space of a

given level of an MD. We then proved that reducing the nodes of that level with respect to

136

each relation yields an MD representing a lumped CTMC.

We also implemented the compositional lumping algorithm and integrated it with our
symbolic SSG implementation from Chapter 4. The final implementation could in fact ex-
ploit lumping both at the level of each component and also among the equivalently behaving
components specified by the replicate operator. Moreover, it represented the lumped MRP
using symbolic data structures.

Taken as a whole, the combination of the state-level, model-level, and compositional
lumping algorithms and the symbolic data structures that we have developed in this dis-
sertation suggests that they can be effective on a large class of Markov models used in

performance, dependability, and performability analysis.

6.3 Future Work

There are very specific, and in some cases challenging, ways to extend the work that we have
discussed in this dissertation. We explain them in this section in the order in which their
related work was presented.

In Chapter 3, we designed a state-level lumping algorithm with O(m logn) time complex-
ity, which is the fastest known algorithm. We also proved a lower bound of O(m +nlgn) on
the running time of any state-level lumping algorithm. We can see that there is a noticeable
gap between the two time complexities. It means that we do not know whether there is any
algorithm faster than ours or whether our algorithm is the fastest possible. It is an open
question, and a difficult one, to figure out how hard the state-level lumping problem is.

In Chapter 4, we designed the “sorting MDD,” a data structure that, at least for our
example, improved by an order of magnitude the time complexity of the enumeration of the
elements of the lumped state transition rate matrix. The sorting MDD computes p(min(s')),
that is, the representative state index corresponding to a given (non-representative) state.

Its shortcoming was that, at least for our example model, it was fairly large compared to

137

other symbolic representations. It would be worthwhile to investigate other combinations
of data structures and algorithms that can do the same computation with improved, or at
least different, trade-offs between time and space requirements.

As with any technique that uses symbolic data structures like MDDs and MDs, the order
of the levels, and in our case the partitioning of the state variables of a model into levels,
can considerably affect the space complexity of the data structure and the time complexity
of algorithms that are applied on it. In general, it is an NP-hard problem to compute the
order (of the levels) that results in the smallest MDD or MD representation. However, there
is a possibility that there are heuristic or exact rules that use the compositional properties

of the model to improve the ordering of the levels.

138

Appendix A
Model Specifications

We expect that interested researchers who read this dissertation may like to reproduce some
of the performance studies described at the end of Chapters 3, 4, and 5 for two reasons:
1) to gain a better understanding of the techniques by performing further experiments, and
2) to be able to extend upon the work presented in the dissertation. For that reason, we

provide below the complete specifications of all the models that we used in those chapters.

A.1 Hypercube Multi-processor Model

In Chapter 3, we used the model of a hypercube multiprocessor to study the performance
of the two variants of our state-level lumping algorithm and Buchholz’s algorithm [19]. The
model has been specified in the SAN (Stochastic Activity Network) [84] formalism using the
MGdbius modeling tool [38, 48]. The model consists of a single atomic model?, so we do not
need a composed model in order to specify the complete model.

Figure A.1 illustrates the graphical representation of the SAN model generated by the
documentation feature of Mébius. As in all SAN atomic models, (blue?) circles represent
places, thick (blue) rounded rectangles represent timed activities (the SAN equivalent of
timed actions), thin (blue) bars represent instantaneous transitions, and finally, (red) trian-
gles represent input gates, which are SAN-specific elements that specify additional enabling

conditions for timed or instantaneous activities. Notice how the input and the output pools

In the Mébius tool terminology, an atomic model is a basic model that the modeler decides not to
decompose into smaller models.
%It can be proved that you have either a color monitor or a color printer!

139

are superimposed and modeled by a single place called input_output_model. Processors 1
and 8 in Figure A.1 correspond to processors A and A’ in Figure 3.9(a). All activities in the
model are either instantaneous or timed with an exponentially distributed firing time.
Table A.1 shows the list of the global variables (Mdbius’s term for parameters) defined
for the model. Table A.2 gives the list of places of the model and their initial markings.
Table A.3 shows the list of exponentially distributed activities of the model, their rates, and
their roles in the model. All the timed activities have empty activation and reactivation
predicates. Table A.4 lists all the instantaneous activities and their meanings. Finally,
Table A.5 shows the list of input gates and their predicates and functions. In all the tables
related to the hypercube models, i and j represent processor indices (1 < 4,5 < 8) such that

processors % and j are neighbors.

A.2 Courier Protocol Model

The Courier protocol model is a GSPN model of a parallel communication software system
that first appeared in [93]. As we mentioned in Chapter 4, we have adapted it from [93] by 1)
specifying it in the SAN formalism so that it is usable in the Mé6bius tool and 2) converting
all actions to timed ones to retain a significant number of actions. The description of the
" model and the role of each place and activity can be found in [93]. In this section, we will
only give the SAN representation of the 4 atﬁmic models into which we have decomposed
the overall model and also the graphical representation of the composed model.

Figure A.2 illustrates the atomic models of the session layers of both the sender and the
receiver. Figure A.3 shows the atomic models of the transport layer of both the sender and
the receiver. Finally, Figure 4.6 shows how the atomic models are combined into a composed
model by sharing of state variables (or places for SAN atomic models).

Table A.6 shows the list of places of the atomic models and their initial markings. N,

TBS, and TWS are global variables defined for the model. For all our experiments, we have

140

TBS= 1 and N=TWS. See [93] for the meanings of these global variables.

A.3 MSMAQ Polling-based Queuing System

The MSMQ (Multi-Server Multi-Queue) polling-based queuing system that we used in Chap-
ter 5 is one that is derived from [68]. In our case, it has 3 identical servers and 4 identical
queues, but the model can be easily extended to have an arbitrary number of servers or
queues. Figure A.4 shows the graphical SAN (Stochastic Activity Network) representation
of the model. The queues are arranged in a cyclic manner and each of the 3 servers move
from one queue to the next after a waiting time that is an exponentially distributed random
variable with a constant rate. Upon entering a queue, a server polls the queue. If there is
no job waiting for service, it goes to the next queue after some waiting time. Otherwise,
it gives service to one job in the queue and waits to be transferred to the next one. The
MSMQ subsystem distributes the jobs from its input pool to each of the 4 queues with equal
probability.

Tables A.7, A.8, A.9, A.10, and A.11 show the list of global variables (parameters), places,
timed activities, instantaneous activities, and input gates of the MSMQ model, respectively.

In all tables, 1 < % < 4 is the index of one of the four queues.

141

service8_cond

1C_dispatch gisparch

IG_unavailable ;navailable
Stem_available

IG_avallable ayaiable

IG_failedl rajyre1 WRRSOr_repair_l fe _r,!pdﬂlnservlccl repair}

IC falledS fyyres Wakk _fOr.repair s

IC_failed o req Walt_for_repair_6

i A
repair7 Inservice7 popairy

palrg Inservice8 rang

avallable_repairmen

Figure A.1: The model of the hypercube multiprocessor system

142

global variable name

description

comments

dispatch rate The rate at which jobs are trans- | Does not affect the de-
ferred from input_output._pool | gree of lumpability
to processors 1 and 8

failure_rate The rate of (independent) fail- | Does not affect the de-
ure of any processor gree of lumpability

initial repairmen The number of available repair | Set to 1 for all experi-
facilities ments

J The number of jobs in the sys-

tem

proc_capacity

The capacity of queues of pro-
cessors 1 and 8

repair_rates

The rate at which a repair facil-
ity repairs failed processor ¢

Different repair rates
for different processors
decrease the degree of
lumpability

service_rates

The rate at which processor ¢
finishes the process of a job in
its queue

Different service rates
for different processors
decrease the degree of
lumpability

transfer_ diff

The threshold of the difference
between the numbers of jobs in
neighboring processors’ queues
for the load-balancing scheme to
trigger between the two proces-
sors

Set to 1 for all experi-
ments

transfer_rate

The rate of transferring a job
from one processor’s queue to
a neighboring processor’s queue
due to load-balancing

Table A.1: List of global variables of the hypercube model and their meanings

143

place name

initial marking

description

available.repairmen

initial_repairmen

The number of repair facilities not
busy with repairing a processor

failed: 0 1 if processor % is down and 0 oth-
erwise

input_output_pool J The common input and output
pool of jobs

inservicei 0 1 if processor % is being repaired
and 0 otherwise

Pi 0 The number of jobs in processor
i’s queue

system_available 1 1 if the system is considered avail-
able and 0 otherwise

vait_for_repair: 0 1 if processor ¢ is failed and is

waiting for a repair facility to be-
come available

Table A.2: List of places of the hypercube model, their initial markings, and their meanings

activity name rate description

dispatch dispatch_rate Gets a job from the input/output
pool and dispatches it to proces-
sor k € {1,8} with probability

proc.capacity—Pk

2xproc.capacity—P1-~P8

failures failure rate Causes processor ¢ to fail

repairi repair_rate: Repairs processor ¢

servicet service_ratet One job from processor i’s queue
gets service

trij transfer_rate One job is transferred from proces-

sor 4's queue to processor j’s queue
for the purpose of load-balancing

Table A.3: List of timed activities of the hypercube model, their rates, and their meanings

activity name description

available Sets system_available (from 0) to 1 if the system is considered
available ‘

get_repairi Fires when a repair facility becomes available and chooses failed
processor ¢ to repair

unavailable Sets system_available (from 1) to 0 if the system is considered
unavailable

144

Table A.4: List of instantaneous activities of the hypercube model and their meanings

input gate predicate function
name
1Gij (Pi - Pj > transfer diff) or Pi:=Pi—1
(failedi = 1 and Pi > 0)
IG_available if system_available =1 empty
return false
int failed_servers =0
fori=1to8
if failedi =1 and inservicei =1
failed_servers-++
if failed servers >=2
return false
else return true
IG. dispatch input_output_pool > 0 and input_output_pool :=
(P1 < proc.capacity or input_output_pool —1
P8 < proc_capacity)
IG.faileds: failedi = 0 and empty
system.available=1
IG_unavailable | if system_available =0 empty
return false
int failed servers =0
fori=1t08
if failedi =1 and inservicei =1
failed_servers-++
if failed servers >=2
return true
else return false
servicei.cond | failedi =0 and empty
system_available=1

Table A.5: List of input gates of the hypercube model, their predicates, and their functions

145

tl

pl p2
t2
p3 p4
3
p5S
P t4
p?7
5
p8 g

(a) Sender’s session layer

134

pi4 P45

p35 p36
(b) Receiver’s session layer

Figure A.2: Atomic models of the session layers of the Courier protocol model

activity name initial marking
P2, P4, P5, P7, P9, |0
P10, P12, P15 through
P32, P34, P35, P37,
P39, P41, P42, P44,
and Px
Pi, P3, P6, P8, P11, |1
P33, P36, P38, P40,
P43, and P45
P13 TBS
P14 TWS
Py N

146

Table A.6: List of places of the Courier protocol model and their initial markings

pl6

pl3

tl7

t16

p22 p23 p24

»»»»»»» (a) -Sender’s-transport-layer -

Figure A.3: Atomic models of the transport layers of the Courier protocol model

arriv
arrivallp

[
‘ 1411 Pléservicey

°
N

input

arrivals M

N ;

(b)- Receiver’s-transport Jayer - -

arrivald SRA
' 141 P4dgenvicde

PA G a1 P12 i P21 G2 1a22 P22 yapA\P31 IG3 ja3 P32 waitg P41 1G4 ja42 P42 wah4

X2

output

Figure A.4: SAN representation of the MSMQ model

147

global variable name

description

comments

amount of time that a server

arrival_rate The rate at which the job ar- | Equal value for all queues
rives from the input pool to
each of the queues
J The number of jobs in the
system
no_of_servers The number of servers Set to 3 for all experiments
service_rate The rate at which a server | Value is independent of the
processes a job in a queue job, the server, or the queue
wait.rate The inverse of the expected | Equal for any consecutive

queues

waits before polling the next
queue

Table A.7: List of global variables of the MSMQ model and their meanings

place name initial marking description
input J The number of jobs in the input
pool
Pil 0 The number of servers available
to queue ¢
Pi2 P12 = no_of_servers, | The number of servers waiting to

Pi2=0foris#1 poll the next queue

Pi3 0 The number of jobs waiting for
servers

Pi4 0 The number of jobs that have ac-
quired servers and waiting for the
service to be finished

output 0 The number of jobs in the output

pool

Table A.8: List of places of the MSMQ model, their initial markings, and their meanings

activity name rate description
arrivali arrival _rate A job arrives from the input pool
to queue
servicet service rate One server completes the service of
a job
waiti wait.rate A server waits in queue ¢ before go-
ing to queue i+ 1 (or 1if ¢ = 4)

Table A.9: List of timed activities of the MSMQ model, their rates, and their meanings

148

activity name description

TAil A waiting job acquires a server in queue 1%

IA:2 A server proceeds to wait to move to the queue ¢+ 1 because
there is no job in queue i waiting for server

Table A.10: List of instantaneous activities of the MSMQ model and their meanings

input gate predicate function
name

IGs Pil > 0 and Pi3 == 0 Pil :=Pil-1

Table A.11: List of input gates of the MSMQ model, their predicates, and their functions

149

References

[1]

[2]

[3]

[4]

[8]

[9]

[10]

A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley Publishing, 1974.

M. Ajmone Marsan, G. Balbo, and G. Conte. A class of generalized stochastic Petri
nets for the performance evaluation of multiprocessor systems. ACM Transactions on
Computer Systems, 2:93-122, 1984.

A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Verifying continuous time Markov
chains. In Proc. of Int. Conf. on Computer Aided Verification (CAV), volume 1102 of
LNCS, pages 269-276, 1996.

C. Baier, B. R. Haverkort, J.-P. Katoen, and H. Hermanns. On the logical specification
of performability properties. In International Collogquium on Automata, Languages and
Programming, volume 1853 of LNCS, pages 780-792, 2000.

C. Baier and M. Z. Kwiatkowska. Domain equations for probabilistic processes. Math-
ematical Structures in Computer Science, 10(6):665-717, 2000.

F. Bause, P. Buchholz, and P. Kemper. A toolbox for functional and quantitative anal-
ysis of DEDS. In Proc. 10th Int. Conf. Modelling Techniques and Tools for Computer
Performance Evaluation, volume 1469 of LNCS, pages 356-359. Springer, 1998.

A. Benoit, L. Brenner, P. Fernandes, and B. Plateau. Aggregation of stochastic au-
tomata networks with replicas. In Proc. 4th Int. Conf. on Numerical Solution of Markov
Chains (NSMC ’03), pages 145-166, September 2003.

A. Benoit, L. Brenner, P. Fernandes, and B. Plateau. Aggregation of stochastic au-
tomata networks with replicas. In Proc. 4th Int. Conference on Numerical Solution of
Markov Chains (NSMC 03), pages 145166, September 2003.

M. Bernardo and R. Gorrieri. A tutorial on EMPA: A theory of concurrent processes
with nondeterminism, priorities, probabilities and time. Theoretical Computer Science,
202:1-54, 1998.

R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Trans.
Comp., 35(8):677—691, Aug. 1986.

150

[11] P. Buchholz. Numerical solution methods based on structured descriptions of Marko-
vian models. In Computer Performance Evaluation, pages 251-267. Elsevier Science
Publishers B.V. (North-Holland), 1991.

[12] P. Buchholz. Exact and ordinary lumpability in finite Markov chains. Journal of Applied
Probability, 31:59-74, 1994.

(13] P. Buchholz. Markovian process algebra: Composition and equivalence. In Proc. 2nd
Workshop on Process Algebras and Performance Modelling, volume 27(4) of Arbeits-
berichte des IMMD, pages 11-30, 1994.

[14] P. Buchholz. Equivalence relations for stochastic automata networks. In W. J. Stewart,
editor, Computation with Markov Chains, pages 197-216. Kluwer Int. Publishers, 1995.

[L5] P. Buchholz. Hierarchical Markovian models: Symmetries and reduction. Performance
Evaluation, 22(1):93-110, February 1995.

(16] P. Buchholz. Lumpability and nearly-lumpability in hierarchical queueing networks.
In Proc. IEEE Ini. Computer Performance and Dependability Symposium (IPDS’95),
pages 82-91. IEEE CS Press, 1995.

[17] P. Buchholz. A framework for the hierarchical analysis of discrete event dynamic systems
(Habilitations thesis). Universitit Dortmund, February 1996.

[18] P. Buchholz. Exact performance equivalence: An equivalence relation for stochastic
automata. Theoretical Computer Science, 215(1/2):263-287, 1999.

[19] P. Buchholz. Efficient computation of equivalent and reduced representations for
stochastic automata. International Journal of Computer Systems Science & Engineer-
ing, 15(2):93-103, 2000.

[20] P. Buchholz, G. Ciardo, S. Donatelli, and P. Kemper. Complexity of memory-efficient
Kronecker operations with applications to the solution of Markov models. INFORMS
J. on Computing, 12(3):203-222, 2000.

[21] P. Buchholz and P. Kemper. Numerical analysis of stochastic marked graphs. In Proc.
6th Int. Workshop on Petri Nets and Performance Models (PNPM’95), pages 32-41,

October 1995.

[22] P. Buchholz and P. Kemper. Efficient computation and representation of large reach-
ability sets for composed automata. Discrete Event Dynamic Systems: Theory and
Applications, 12(3):265-286, 2002.

[23] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 10% states and beyond. Information and Computation, 98(2):142-170,
June 1992.

151

[24] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. Stochastic well-formed
colored nets and symmetric modeling applications. IEEE Trans. on Computers,
42(11):1343-1360, November 1993.

[25] G. Ciardo, G. Liittgen, and R. Siminiceanu. Saturation: An efficient iteration strategy
for symbolic state-space generation. In Proc. of TACAS 2001, volume 2031 of LNCS,

pages 328-342. Springer, 2001.

[26] G. Ciardo, R. M. Marmorstein, and R. Siminiceanu. Saturation unbound. In Proc. of
TACAS 2003, volume 2619 of LNCS, pages 379-393. Springer, 2003.

[27] G. Ciardo and A. S. Miner. Storage alternatives for large structured state spaces.
In Proc. 9th Int. Conf. Modelling Techniques and Tools for Computer Performance
Evaluation, volume 1245 of LNCS, pages 44-57. Springer, 1997.

[28] G. Ciardo and A. S. Miner. A data structure for the efficient Kronecker solution of
GSPNs. In Proc. 8th Int. Workshop Petri Nets and Performance Models, pages 22-31,

1999.

[29] G. Ciardo and A. S. Miner. Efficient reachability set generation and storage using
decision diagrams. In Proc. 20th Int. Conf. Application and Theory of Petri Nets,
volume 1639 of LNCS, pages 6-25. Springer, 1999.

[30] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

[31] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
The MIT Press, second edition, 2001.

[32] P. J. Courtois. Decomposability. Academic Press, New York, 1977.

[33] P.-J. Courtois and P. Semal. Computable bounds for conditional steady-state probabil-
ities in large Markov chains and queueing models. IEEE Journal on Selected Areas in
Communications, SAC-4(6):926-937, September 1986.

[34] D. Daly, P. Buchholz, and W. H. Sanders. An approach for bounding reward measures
in Markov models using aggregation. Submitted for publication.

[35] P.R. D’Argenio, H. Hermanns, J-P. Katoen, and J. Klaren. MoDeST: A modelling
language for stochastic timed systems. In Proc. of Process Algebra and Probabilistic
Methods (PAPM-PROBMIV ’01), volume 2165 of LNCS, pages 87-102. Springer, 2001.

[36] E. de Souza e Silva and H. R. Gail. Calculating availability and performability measures
of repairable computer systems. Journal of the ACM, 36:171-193, January 1989.

[37] E. de Souza e Silva and H. R. Gail. Calculating transient distributions of cumula-
tive reward. In Proceedings of SIGMETRICS/Performance-95, pages 231-240, Ottawa,
Canada, May 1995.

152

[38] D. D. Deavours, G. Clark, T. Courtney, D. Daly, S. Derisavi, J. M. Doyle, W. H.
Sanders, and P. G. Webster. The Mdbius framework and its implementation. IEEE
Trans. on Soft. Eng., 28(10):956-969, October 2002.

[39] D. D. Deavours and W. H. Sanders. An efficient disk-based tool for solving large Markov
models. Performance Evaluation, 33:67-84, 1998.

[40] D. D. Deavours and W. H. Sanders. ‘On-the-fly’ solution techniques for stochastic Petri
nets and extensions. IEEE Trans. on Soft. Eng., 24(10):889-902, October 1998.

[41] C. Delamare, Y. Gardan, and P. Moreaux. Performance evaluation with asynchronously
decomposable SWN: Implementation and case study. In Proc. 10th Int. Workshop on
Petri Nets and Performance Models (PNPM ’03), pages 2029, September 2003.

[42] S. Derisavi, H. Hermanns, and W. H. Sanders. Optimal state-space lumping in Markov
chains. Information Processing Letters, 87(6):309-315, September 2003.

[43] S. Derisavi, P. Kemper, W. H. Sanders, and T. Courtney. The Mdbius state-level
abstract functional interface. In Proc. of the 12th Int. Conf. on Modelling Techniques
and Tools for Computer Performance Evaluation (TOOLS 2002), pages 31-50, 2002.

[44] S. Donatelli. Superposed stochastic automata: A class of stochastic Petri nets amenable
to parallel solution. In Proc. 4th Int. Workshop on Petri Nets and Performance Models
(PNPM’91), pages 54-63, 1991. '

[45] S. Donatelli. Superposed generalized stochastic Petri nets: Definition and efficient
solution. In Proc. 15th Int. Conf. on Applications and Theory of Petri Nets, volume
815 of LNCS, pages 258-277. Springer-Verlag, 1994.

[46] J. C. Fernandez. An implementation of an efficient algorithm for bisimulation equiva-
lence. Sci. Comput. Programming, 13(2-3):219-236, 1990.

[47] S. Gilmore, J. Hillston, and M. Ribaudo. An efficient algorithm for aggregating PEPA
models. IEEFE Transactions on Software Engineering, 27(5):449-464, May 2001.

[48] PERFORM Performability Engineering Research Group. Mobius: Model-based envi-
ronment for validation of system reliability, availability, security, and performance. On-
line Manual. http://www.perform.csl.uiuc.edu/mobius/manual/MobiusManual.
pdf, University of Illinois at Urbana-Champaign, 2005.

[49] O. Gusak, T. Dayar, and J.-M. Fourneau. Lumpable continuous-time stochastic au-
tomata networks. European Journal of Operational Research, 148:436-451, 2003.

[50] B. R. Haverkort and K. S. Trivedi. Specification techniques for Markov reward models.
Discrete Event Dynamic Systems: Theory and Applications, 3(2/3):219-247, July 1993.

[51] H. Hermanns. Interactive Markov Chains and the Quest for Quantified Quality, volume
2428 of LNCS. Springer, 2002.

153

[52] H. Hermanns and M. Rettelbach. Syntax, semantics, equivalences, and axioms for
mtipp. In Proc. 2nd Workshop on Process Algebras and Performance Modelling, volume
27(4) of Arbeitsberichte des IMMD, pages 71-87, 1994.

[53] H. Hermanns and M. Ribaudo. Exploiting symmetries in stochastic process algebras.
In Proc. of 12th European Simulation Multiconference (ESM), pages 763-770, 1998.

[54] H. Hermanns and M. Siegle. Bisimulation algorithms for stochastic process algebras and
their BDD-based implementation. In J.-P. Katoen, editor, Proc. of 5th Int. AMAST
Workshop on Real-Time and Probabilistic Systems (ARTS’99), volume 1601 of LNCS,
pages 144-264. Springer, 1999.

[55] J. Hillston. A Compositional Approach to Performance Modelling. Cambridge Univer-
sity Press, 1996.

[56] J. E. Hoperoft. An nlogn algorithm for minimizing states in a finite automaton. In
Z. Kohavi and A. Paz, editors, Theory of Machines and Computations, pages 189-196,
New York, 1971. Academic Press.

[57) R. A. Howard. Dynamic Probabilistic Systems, Volume II: Semi-Markov and Decision
Processes. Wiley, New York, 1971.

[58] D. T. Huynh and L. Tian. On some equivalence relations for probabilistic processes.
Fundamenta Informaticae, 17:211-234, 1992.

[59] T. Ibaraki and N. Katoh. On-line computation of transitive closures of graphs. Infor-
- . mation Processing Letters, 16:95-97,1983.. _ _

[60] W. D. Obal II. Measure-Adaptive State-Space Construction Methods. PhD thesis, Uni-
versity of Arizona, 1998.

[61] P. C. Kanellakis and S. A. Smolka. CCS expressions, finite state processes, and three
problems of equivalence. In Proc. ACM Symposium on Principles of Distributed Com-
puting, pages 228-240, 1983.

[62] J. G. Kemeney and J. L. Snell. Finite Markov Chains. D. Van Nostrand Company,
Inc., 1960.

[63] P. Kemper. Numerical analysis of superposed GSPNs. In Proc. Int. Workshop on Petri
Nets and Performance Models (PNPM?95), pages 52-61, Durham, N. Carolina, USA,
1995.

[64] Y.-T. Lai and S. Sastry. Edge-valued binary decision diagrams for multi-level hier-
archical verification. In Proc. 29th Conf. on Design Automation, pages 608-613, Los
Alamitos, CA, USA, June 1992. IEEE CS Press.

154

[65] V. V. Lam, P. Buchholz, and W. Sanders. A structured path-based approach for com-
puting transient rewards of large CTMCs. In Proc. of 1st Int. Conf. on Quantitative
Evaluation of Systems (QEST), pages 136-145, Enschede, The Netherlands, September
2004.

[66] K. Larsen and A. Skou. Bisimulation through probabilistic testing. Information and
Computation, 94(1):1-28, 1991.

[67] D. Lee, J. Abraham, D. Rennels, and G. Gilley. A numerical technique for the evaluation
of large, closed fault-tolerant systems. In Proc. 2nd Int. Conference on Dependable
Computing for Critical Applications 2 (DCCA-2), pages 95-114, 1992.

[68] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Modelling
With Generalized Stochastic Petri Nets. John Wiley & Sons, 1995.

[69] J. F. Meyer, A. Movaghar, and W. H. Sanders. Stochastic activity networks: Structure,
behavior, and application. In Proc. International Workshop on Timed Petri Nets, pages
106-115, Torino, Italy, July 1985.

[70] R. Milner. Communication and Concurrency. Prentice Hall, London, 1989.

[71] A. Miner and D. Parker. Symbolic representations and analysis of large probabilistic
systems. In Validation of Stochastic Systems: A Guide to Current Research, volume

2925 of LNCS. Springer, 2004.

[72] A.S. Miner. Data Structures for the Analysis of Large Structured Markov Models. PhD
~ thesis, The College of William & Mary, Virginia, 2000.

[73] A. S. Miner. Efficient solution of GSPNs using canonical matrix diagrams. In Proc.
PNPM’01: 9th International Workshop on Petri Nets and Performance Models, pages
101-110, Aachen, Germany, September 2001.

[74] A. S. Miner. Computing respouse time distributions using stochastic Petri nets and
matrix diagrams. In Proc. 10th Int. Workshop on Peiri Nets and Performance Models
(PNPM), pages 10-19, 2003.

[75] D. R. Musser, G. J. Derge, and A. Saini. STL Tutorial and Reference Guide, Second
Edition: C++ Programming with the Standard Template Library. Addison-Wesley,
2001.

[76] R. Paige and R. E. Tarjan. Three partition refinement algorithms. STAM J. Comput.,
16(6):973-989, 1987.

[77] B. Plateau. On the stochastic structure of parallelism and synchronisation models
for distributed algorithms. In Proc. 1985 SIGMETRICS Conf. on Measurement and
Modeling of Computer Systems, pages 147-153, 1985.

[78] B. Plateau and K. Atif. Stochastic automata network for modeling parallel systems.
IEEFE Trans. on Soft. Eng., 17(10):1093-1108, Oct. 1991.

155

[79] M. A. Qureshi. Construction and Solution of Markov Reward Models. PhD thesis,
University of Arizona, 1996.

[80] W. H. Sanders. Construction and solution of performability models based on stochastic
activity networks. PhD thesis, The University of Michigan, 1988.

[81] W. H. Sanders and L. M. Malhis. Dependability evaluation using composed SAN-based
reward models. Journal of Parallel and Distributed Computing, 15(3):238-254, July
1992.

[82] W.H. Sanders and J. F. Meyer. Reduced base model construction methods for stochastic
activity networks. IEEE Journal on Selected Areas in Communications, 9(1):25-36, Jan.
1991.

[83] W. H. Sanders and J. F. Meyer. A unified approach for specifying measures of perfor-
mance, dependability, and performability. In A. Avizienis, J. Kopetz, and J. Laprie,
editors, Dependable Computing for Critical Applications, volume 4 of Dependable Com-
puting and Fault-Tolerant Systems, pages 215-237. Heidelberg: Springer-Verlag, 1991.

[84] W. H. Sanders and J. F. Meyer. Stochastic activity networks: Formal definitions and
concepts. In Lectures on Formal Methods and Performance Analysis, First EEF/Euro
Summer School on Trends in Computer Science, volume 2090 of LNCS, pages 315-343,
Berg en Dal, The Netherlands, July 2000. Springer.

[85] D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. Journal of the ACM
(JACM), 32(3):652-686, 1985.

[86] A. Srinivasan, T. Kam, S. Malik, and R. E. Brayton. Algorithms for discrete function
manipulation. In Proc. of the Int’l Conf. on CAD (ICCAD’90), pages 92-95, 1990.

[87] W. J. Stewart. Introduction to the Numerical Solution of Markov Chains. Princeton,
1994.

[88] C. Tofts. A synchronous calculus of relative frequency. In CONCUR ’90: Proceedings
on Theories of Concurrency: Unification and Eztension, volume 458 of LNCS, pages
46'7-480. Springer-Verlag Inc., 1990.

[89] C. Tofts. Processes with probabilities, priorities and time. Formal Aspects of Computer
Science (FACS), 6(5):536-564, 1994.

[90] K.S. Trivedi. Probability and Statistics with Reliability, Queuing, and Computer Science
Applications. John Wiley & Sons, New York, second edition, 2002.

[91] M. A. Weiss. Data Structures and Algorithm Analysis in C++. Pearson Education,
second edition, 1994.

[92] E. W. Weisstein. Bell number. From Mathworld-A Wolfram Web Resource. http:
//mathworld.wolfram.com/BellNumber.html, 2005.

156

[93] C. M. Woodside and Y. Li. Performance Petri net analysis of communications protocol
software by delay-equivalent aggregation. In Proc. of the 4th Int. Workshop on Petri
Nets and Performance Models, pages 64-73, 1991.

157

Author’s Biography

Salem Derisavi was born in Kuwait on January 11, 1978. He moved to Iran in 1990 just
before the first Gulf War. Salem received the Bachelors degree in computer engineering from
Sharif University of Technology, Tehran, in 1999. He then moved to Champaign, Illinois, to
pursue graduate study in stochastic modeling. He completed a Masters of ScienceAdegree
in computer science from the University of Illinois in 2003. Following the completion of his
Ph.D,, Sa:lem will begin work for the department of systems and compﬁter engineering of

Carleton University, Canada, as a postdoctoral fellow doing research on autonomic systems.

158

	06-2211a
	06-2211b.pdf

