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Abstract
Modern memory systems are composed of several levels of caching. Design of these 
levels is largely an empirical practice. One highly-effective empirical method is the 
single-pass method wherein all caches in a broad design space are evaluated in one 
pass over the trace. Multiprogramming degrades memory system performance since 
(process) context switching reduces the effectiveness of cache memories. Few single
pass methods exist which account for multiprogramming effects. This paper uses a 
general model of single-pass algorithms, called the recurrence/conflict model, and ex
tensions to the model for recording the effects due to both voluntary and involuntary 
context switching. The method presented in this paper accurately records a program’s 
susceptibility to context switching for all cache dimensions and all context switching 
intensities in a single pass. System load is parameterized using context switch inten
sity and the fraction of cache flushing. Several members of the SPEC benchmark set 
are used to comment on program susceptibility to context switching. The accuracy 
of the method is shown to be quite good by comparing it with two more-restrictive 
test methods. The results also agree well with multiprogramming effects reported by 
others.
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The Susceptibility of Programs to Context Switching

1 Introduction

Multiple levels of caching and buffering have become the norm in memory system design. 
These systems are typically designed using simulation to determine the performance of a 
wide range of memory system organizations. The inputs to the simulator are benchmarks 
that represent nominal system workloads. The designer’s job is to choose the most cost- 
effective organization using the simulation results as a guide. A class of powerful simulation 
methods, called single-pass stack methods, have become available to memory system de
signers [1],[2],[3],[4]. With these methods, the memory system performance of thousands 
of organizations can be determined using a single pass through the memory access trace of 
the benchmark, whereas traditional multiple-pass methods require one pass per potential 
memory system design.

Multiprogramming degrades memory system performance since (process) context switch
ing reduces the effectiveness of cache memories. This occurs when cache contents that will be 
needed after the process returns are purged by the intervening processes. The cache contents 
that may fall victim to context switching are determined by the process’ reference pattern (a 
program characteristic) and the cache dimension (a system design parameter). The portion 
of such cache contents that are actually purged by intervening processes are determined by 
load of the system: the number of ready processes and access patterns of these processes. 
The method presented in this paper accurately records, for all cache dimensions and all 
context switching intensities in a single pass, the.total amount of cache contents that will 
be needed after the process returns. This information is defined as the susceptibility of the
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program to the effect of context switching.
Several other approaches have been taken to measure the effects of context switch

ing [5], [6], [7], [8], [9], [10], [11], [12]. The earliest approaches flushed the cache being simulated 
at fixed intervals in the trace [5] [6]. Shedler and Slutz [7] approached the problem by stochas
tically merging several memory reference traces. Easton [8] used the average working set size 
of the memory reference trace to estimate cold-start miss ratios. Haikala [11] simplified Eas
ton’s approach by estimated cold-start miss ratios using a Markov chain model. Cold-start 
miss ratios can be used to approximate the multiprogramming effects. Switching between 
multiple memory reference traces at a fixed interval was used by Smith [9] to measure mul
tiprogramming effects. Also, hardware measurements of a real multiprogrammed workloads 
were performed by Clark [10] and, Agarwal, et al [12]. Apart from the approximations of 
Easton [8] and Haikala [11], no work has been done to extend single-pass methods to model 
the effects of context switching exactly. Since multiprogramming effects can account for a 4% 
to 12% degradation in performance [10],[11],[12], this omission in the literature has limited 
the usefulness of single-pass methods.

One obvious extension to single-pass methods to model context switching effects is to 
flush the LRU stack periodically. The shortcoming of this approach is that one simulation 
would have to be performed for each context switching intensity (e.g., time quantum and 
I/O workload). A more desirable method is to record the context switching effects for 
all intensities in one pass. This paper introduces a single-pass method for measuring the 
susceptibility of a program to the effects of context switching for all cache dimensions and 
all intensities. It is demonstrated that the susceptibility measures can be combined with 
system load parameters and context switching intensity to yield the performance degradation'
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in various multiprogramming environments without resimulation. Obtaining memory system 
performance degradation under many different system loads allows the memory system to 
be designed with a degree of robustness. It further increases the advantage of single-pass 
stack methods over multiple-pass methods. To our knowledge, this is the first such study 
to make the dichotomy between program susceptibility and multiprogramming effects. The 
measured performance is validated both empirically and by comparing the results to those 
of other researchers.

2 Recurrences, Conflicts, and Context Switches

The metric used in many memory system studies is the miss ratio. This is the ratio of 
the number of references that are not satisfied by a cache at a level of the memory system 
hierarchy over the total number of references. The miss ratio has served as a good metric 
for memory systems since it is a characteristic of the workload (e.g., the memory trace) yet 
independent of the access time of the memory elements. Therefore, a given miss ratio can 
be used to decide whether a potential memory element technology will meet the required 
access time for the memory system. The recurrence/conflict model of the miss ratio is 
best illustrated with an example. Consider the trace of Figure 1. The recurrences in the 
trace are accesses E , F, G and H. Without context switching, all the four recurrences would 
produce a hit in an infinite cache. In the ideal case of an infinite cache in the absence of

Reference A B C D E F G H
Address 0 1 2 3 1 2 1 2

Figure 1: An example trace of addresses.
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Reference: A B C D
Address: 0 miss 1 miss 2 miss 3 * miss

block 0: 0 0 2 2
block 1: 1 1 3

E F G H
1 miss 2 1 2

2 2 2 2
1 1 1 1

*  Dimensional conflict

Figure 2: An example two-block direct-mapped cache behavior, 

context-switching, the miss ratio may be expressed as,

P = N - R
N (i)

where R  is the total number of recurrences and N  is the total number of references. Non
ideal behavior occurs due to conflicts, and this paper considers two such types of conflicts: 
dimensional conflicts and multiprogramming conflicts. A dimensional conflict is defined as 
an event which converts a recurrence into a miss due to limited cache capacity or mapping 
inflexibility. For illustration, consider a direct mapped cache composed of two one-byte 
blocks shown in Figure 2. (Note that in practice, such a small cache would be impractical to 
build.) A miss occurs for the recurring recurrence E  because reference D purges address 1 
from the cache due to insufficient cache capacity. Hence, D represents a dimensional conflict 
for the recurrence E. The other misses, A, £ , C and D , occur because these are the first 
references to addresses 0,1,2 and 3, respectively.

A multiprogramming conflict is defined as an event which converts a recurrence into a 
miss due to a context switch. For example, both Q and H  are dimension hits of the cache 
in Figure 1. If a context switch occurs between references F  and G which purges addresses
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1 and 2 out of the cache, two multiprogramming conflicts will occur, one to reference G and 
one to reference H. Therefore, the following formula can be used for deriving cache miss 
ratio, p, for a given trace, a given cache dimension and a given pattern of context switching:

P =
N - ( R - C d -  Cm ) 

N (2)

where Co the total number of dimensional conflicts, aiid Cm the total number of multipro
gramming conflicts. This is a general model and can be extended account for other effects, 
such as conflicts due to multiprocessor cache coherence [13].

2.1 Reference streams and cache dimensions

The formal abstraction of a benchmark’s trace is termed a “reference stream.” This is a 
sequence of address references, w(k), of length N  (0 < k < N). The addresses are addresses 
in the lowest level of a cache hierarchy, which is assumed to be a linear space (e.g., the 
virtual space). When they are required, such references will be represented by lower-case 
Greek letters, such as a ,/? ,7. The reference stream is assumed to be generated by a single 
process in a multiprogramming system. A time variable, k , is a measure of the system 
clock. Also, a reference will be called as a voluntary context-switch point if the benchmark 
relinquished the CPU after the reference (e.g., a system call was performed).

The dimension of a cache is expressed using the notation, (C, R ,5 ), for a cache of size 
2C bytes, with block size 2B bytes, and 2s blocks contained in each associativity set. Note 
that C > B  +  5. The notation (C, B , 00) is an abbreviation for the dimension of a fully- 
associative cache (S  =  C -p B). For example, a cache of dimension (10,6,0) is a 1KB 
direct-mapped cache with a block size of 64 bytes, and a cache of dimension (21,10,11)
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(alternately, (21,10, oo)) is of size 2MB with lKB-length blocks and it is fully-associative. A 
dash is substituted for an entry in the triple to indicate all caches of that dimension. Hence,
( — ,5,1) are all caches with block size 32 bytes and 2-way associativity. Caches are assumed 
to use LRU replacement and map addresses into sets using bit selection [3].

It is useful to partition the reference stream by setting the block offset portion of all 
addresses in the stream to zero. This produces a block reference stream, lug(fc), is defined 
such that,

=  2*

In binary, this is equivalent to setting the least-significant B  bits to zero. The number of 
recurrences is measured for the block reference stream, and denoted R[B]. Dimensional 
conflicts, Cd [C, 5 ,5 ] , are measured for each cache dimension using a single-pass tech
nique [3], [2], [4].

2.2 Types of context switches

Context switching occurs due to two distinct events: (1) a voluntary context switch, where 
the benchmark relinquishes the processor, and, (2) an involuntary context switch, where the 
benchmark’s execution is suspended due to external interrupts. Voluntary context switches 
are a characteristic of the benchmark. They occur at the same place in the execution between 
different benchmark runs. On the other hand, involuntary context switches are determined 
by the I/O system behavior (device interrupts), clock frequency (timer interrupts), etc. They 
do not occur at the same place between runs of the benchmark and are not characteristic of 
the benchmark. Since involuntary context switches occur at random instances, it is assumed 
that involuntary context switches can occur with equal probability for each reference in the

w(k)
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reference stream [11]. This probability will be denoted, q, and termed the involuntary context 
switching intensity. As an example, in the VAX 11/780 implementation of 4.3 BSD Unix, 
the timer interrupt frequency is once every 10 ms [14]. In the absence of other external 
interrupts, this frequency is equivalent to q «  0.0001.

Separation of the system’s characteristics from the characteristics of the benchmark allows 
many different systems to be considered without re-simulating the benchmark’s behavior. 
This is the main goal of single-pass techniques in general [2]. Although the occurrence of 
involuntary context switches is not a characteristic of the benchmark, the benchmark’s sus
ceptibility to their occurrence is. This susceptibility can be measured as the expected number 
of multiprogramming conflicts due to random involuntary context switching. A method to 
measure this susceptibility is presented below that records the benchmark’s susceptibility 
to all context-switching intensities in a single-pass through the trace. The empirical results 
discussed in Section 3.4 demonstrate the validity of this single-pass approach.

The working set of a process (benchmark) may have been flushed from the cache before 
it re-enters the run state after a context switch. Let £ represent the fraction of the cache’s 
contents flushed between context switches.

The number of processes executed before a process returns from a context switch is a 
function of the system load and the operating system scheduling policy. Furthermore, the 
particular cache blocks flushed due to a context switch also depends on the reference patterns 
of the processes executing on the system. This makes £ highly dependent on several volatile 
variables and therefore difficult to measure. Some virtual memory system implementations 
force a cache flush to eliminate problems with page sharing of writable pages [12]. Also, 
it has been shown that for small cache sizes, a context switch effectively flushes the cache,
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therefore £ = 1 [9]. For larger caches, this provides an upper bound for the effects of context 
switching. An analytical model for £ was constructed by Agarwal, et al. [15], and the model’s 
required parameters can be obtained using single-pass methods. This calculation of £ can be 
used to scale the results of the method of this paper to accurately predict multiprogramming 
effects. This extension, however, is beyond the scope of this paper. The empirical results 
are presented with £ =  1.

2.3 The com ponents of multiprogramming conflicts

Multiprogramming conflicts are defined in terms of potential victims. A recurring reference 
that is not removed from a specific cache by a dimensional conflict, yet that may be removed 
by a context switch is a potential victim. Potential victims are defined as Vv[C, B , S] and 
V/[C, B, 5, q\, for all voluntary and involuntary context switches, respectively. Vv[C,B,S] 
is the total number of potential victims due to voluntary context switching for caches of 
dimension (C, B ,S ). On the other hand, V/[C, i?,5 , q] is the expected number of potential 
victims due to involuntary context switching of intensity q.- The multiprogramming conflicts 
are expressed in terms of victims as,

CM[C, B, S,q] = t  (vv [C, B, S] + VAC, B, S,,]) . (3)

Determining the multiprogramming conflicts involves measuring VV[C, B , S] and V/[C, B,S,q] 
from the reference stream. The measurement can be done using the LRU stack of a stack- 
based cache simulator, as explained below. Cm [C, B, S, q] is then calculated by applying 
Equation 3 for a value of f .
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2.4 Least-recently-used (LRU) stack operation

An LRU stack operates as follows: when an address, ws(k) =  a, is encountered in the block 
reference stream, the LRU stack is checked to see if a  is present on the stack. If a is not
present, it is pushed onto the stack. However, if a  is present (e.g, it is a recurring reference),

Reference:

Reference:

1 2
0 1 2

0 1
0

2 1
1 2 1
3 1 2
2 3 3
0 0 0

Figure 3: An example of LRU stack operation.

it is removed from the stack, then repushed onto the stack. This is illustrated in Figure 3 for 
the example reference stream at the beginning of this section (Figure 1). LRU stacks were 
first introduced by Mattson, et al. in [1].

An LRU stack is represented as 5jg(fc), maintained for a block size B  at time k. The 
¿th ordered item of Ss(k) is expressed as, Sb (fc)[i]. The stack may also be expressed as 
an ordered list, such that SB{k) =  {5b (&)[0], 5b(^)[1], •. •, ‘Sb (&)[|*Sjb(&)|]}- The following 
operations are defined for the stack: 
the push(-) function,

push(Sfl(fc),a) = { a , 5B(A:)[0], Sa(fc)[l], 5,b (^)[|5'b (A:)|] }, 

the where(-) function,

where(SB(fc), a) = «, if Sb (&)[*] = a ,
9



and, the repush(-) function,

repush(Sb (&)>a) =  { a ,  5s(A;)[0]? 5 b (&)[1]> . . . ,  5s(fc)[where(5B(A:),a) — 1],

SB(fc)[where(Ss (fc), a) + 1], . . . ,  Sb WIISb WI] }•

where(5B(A;),a) and repush(5B(&), a) are undefined when a 0 5b (&)- When Sb (&) and 
a are understood, it is convenient to define A = where(5B(&), c*) Note that push(-) and 
repush(-) are defined as side-effect-free functions, rather than procedures. This is to remove 
dependence on the time variable, k.

For an address a  =  u?b (&), the least-recently used (LRU) management policy for a stack 
is shown in Figure 4. In Step 1.1, the references between the top of stack and the recurring 
reference have been referred to as the set {ft | f t =  Ss(k  — l)[z], 0 < i < A}. The LRU

1. if a € Sb (& — 1) then
1.1 process the intervening references, {ft}
1.2 SB( k)  <— repush(5B(& -  1),«),
2. else Ss(k) <— pus!i(5b (& — 1),**)

Figure 4: The least-recently used management policy for a stack, Sb {k) (adapted from 
Mattson et al.).

policy is essentially a definition for calculating Sb (&) from Sb (& — 1) and a.

2.5 Multiprogramming extensions to LRU stack operation

The procedure for determining Vv[C, R, S ] using an LRU stack operates as follows. When a 
is processed, if it is not a recurring reference (i.e., the test of Step 1 of Figure 4 fails), then it

10



cannot be a victim since it cannot produce a hit. However, if a  is a voluntary context switch 
point, it is marked as such when it is pushed on the stack in Step 2 (see Figure 5). Now

Reference:

Reference:

voluntary contextswitch pointu 2 3
0 1* 2 3

0 1* 2
0 1*

0

2 1 2
1 2 1 2
3 1 2 1
2* 3* 3* 3*
0 0 0 0

Figure 5: An example for voluntary context switch of the modified LRU stack operation.

assume that a  is a recurring reference and therefore already on the stack. If the intervening 
references on the stack, {/?,}, contain an address marked as a voluntary context switch point, 
Vy[C, B , S] is incremented for all dimensions in which a  does not have a dimensional conflict. 
This is done since the presence of a voluntary context switch point in {/?,•} implies a voluntary 
context switch occurred between references to a. The LRU stack-contents for the example 
are illustrated in Figure 5, where a marked stack address is depicted using an asterisk. To 
insure all subsequent recurring references are subject to a voluntary context switch point, 
when a marked reference is repushed, the reference immediately above it inherits the context 
switch point (this occurs for the fourth and fifth reference of Figure 5).

The procedure for determining Vi[C, B , S, q] using an LRU stack is somewhat more com
plicated. Recall that an involuntary context switch may occur between every reference. Let 
L, the context switch distance, be the number of potential involuntary context switch points 
for the recurring reference ct at time k (i.e., a = wg(k — L) =  u>B(k)). Let pl be the
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probability that at least one involuntary context switch occurs between times k — L and k. 
Then,

PL  =  ( 4 )

Define til[C, B , 5] to be the number of recurrences not subject to dimensional conflicts that 
have a context switch distance of L. Therefore,

V,[C,B,S,q] = E[nL[C,B,S]} =  ^ p LnL[C,B,S}. (5)L
Equation 5 expresses the expected number of potential victims due to involuntary con
text switching. This equation is more general than the approaches of others because no 
assumptions must be made concerning the probability of accessing an associativity set in 
the cache [8],[11]. Equation 5 fits naturally into a stack-based method. The new metric 
til[Ci B ,S] can be recorded by annotating the references on the stack. As before, if the 
address a is not on the stack, it cannot cause a miss due to involuntary context switching. 
When it is pushed onto the stack in Step 2 of Figure 4, a counter of the number of context 
switch points affecting a is kept, defined as c/(a). Initially, c/(a) = 1. To see how this 
operates, assume that a  is on the stack. In Step 1.1.2 and 1.1.3.3, one plus the sum of the 
counters of {/?,} is used to calculate the involuntary context switch distance, L. Notice that 
c/(a) is not part of L. In Step 1.1.5, til[C, f?, S ] is incremented for all caches in which there 
are no dimensional conflicts. Let Ss{k — 1)[A — 1] = (30, the address that is directly above 
a in the stack S s(k  — 1). Then, as a bookkeeping step, cj(/?0) is incremented by c/(a). In 
this way, all the references deeper in the stack than a. in Se{k — 1) will arrive at the correct 
context switch distance.

The methods for calculating both VV[C, £?, S ] and «¿[C, B, 5] are presented in Figure 6.
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1. if a  G Ss{k — 1) th en
1.1.1 vol-cs *— false
1.1.2 L  i—  1
1.1.3 for i *— 0 to  A do
1.1.3.1 ft <- SB(k -  l)[i]
1.1.3.2 if ft marked as a voluntary context switch point th en
1.1.3.2.1 vol.cs <— tru e
1.1.3.3 L <— L +  c/(ft)
1.1.4 for all (C, B ,S )  without a dimensional conflict do
1.1.5 71l [C', B,S] <— ul[C, B,S] +  1
1.1.6 if voLcs th en  Vy[C, F?,5] <— Vy[C, B, 5] +  1
1.2.1 a (P a- i ) <- ci((3A-i)  + c/(a)
1.2.2 ci(a) <— 1
1.2.3 5s(F) <— repu sh (S sik  -  l) ,a ) ,
2. else
2.1 c/(a) <— 1
2.2 Ss{k) *— push(5s(fc — 1),a)

Figure 6: An LRU stack method modified for context switching.

potential involuntary context switch points

Reference: * 0 * 1 * 2 * 3
Oi lx 2t 3i

Ql li 2i
Ql li

Ot

Reference: * 1 * 2 * 1 *2
h 2i u 2i
3l li 4 Is
%. 3s 3s 3s
Ol (k Oi

Notes: L = 3 L = 4 L = 2 L = 2

Figure 7: An example for involuntary context switching of the modified LRU stack operation.
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An example of the operation of the method is shown in Figure 7. The example also shows 
the calculated values of L. Notice that since the calculation of til[C,B,S] is independent 
of the context switching intensity distribution assumptions, it is possible to substitute other 
context switching intensity distributions without altering the method.

3 Empirical Results of Program Susceptibility

The susceptibility of programs to context switching was measured for three members of the 
SPEC benchmark set, version 1.0 [16], and the results are presented in this section. The 
benchmarks were: gcc, spice2g6, and espresso. The gcc benchmark is a run of the GNU 
C compiler (version 1.34) compiling portions of itself; the espresso benchmark is a run of 
the Espresso PLA minimizer with several PLA’s as input; and, the spice2g6 benchmark is 
version 2G6 of the SPICE circuit simulator written in FORTRAN with a greycode counter 
circuit as its input. Some benchmark characteristics are presented in Table 1

Table 1: Benchmark characteristics.

Benchmark
Number of 
references

Fully-associative Cache designs 
with p < 1%

gcc
espresso

spice
3.3 x 107 (16,4, oo) (16,5,oo) (16,6, oo)
1.1 x 10s (15,4, oo) (15,5,oo) (15,6, oo)
6.2 x 108 (18,4, oo) (17,5,oo) (17,6, oo)

The benchmarks were traced using a modified version of the AE tracing tool [17] ex
tended to include system calls and the behavior of all Unix generic library calls [18]. All 
benchmarks were compiled with GNU C (version 1.37.1) with all compiler optimizations 
enabled [19]. A FORTRAN-to-C translator [20] was used for the FORTRAN benchmark, 
spice2g6. This translator operates essentially on the statement-by-statement level, min-
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imizing spurious translation effects. Instruction density varies widely across architectures, 
whereas the data layout of a multiple-architecture compiler like GNU C does not. Therefore, 
we chose to exclude instruction references and consider only data memory references. The 
design space used for our simulations is all caches up to 2 gigabytes, with block sizes of 16 
bytes, 32 bytes and 64 bytes, and, associativity levels of one-way (direct-mapped), two-way, 
four-way, and fully associative.

The results that follow are used to comment on the susceptibility of involuntary con
text switching followed by a discussion of the effects of voluntary context switching. The 
dimensional conflicts that occur due to different cache sizes are discussed in Section 3.3 to 
compare their performance degradation with that of context switching. The accuracy of 
the single-pass method is discussed by comparing the method’s results with the results from 
more limited techniques. Also, a discussion of how the observed context switching behavior 
compares to other researchers is presented.

3.1 Involuntary context switching susceptibility

It is useful to define Ap =  Cm /N  as the susceptibility measure. This is the difference between 
the uniprogramming and multiprogramming miss ratios. Figure 8, 9 and 10 presents Ap for 
the three benchmarks for block sizes 16 bytes, 32 bytes and 64 bytes, respectively. These 
figures are for caches (31, —, oo), to eliminate the effects of dimensional conflicts and consider 
only involuntary context switching. Also, £ =  1 (complete cache flushing).

Two observations are immediately apparent from the figures. The susceptibility to con
text switching decreases as block size increases from Figure 8 to Figure 10. For example, 
when q = 0.001, Ap(16) =  8% whereas Ap(64) = 5.2% for spice2g6. The other observation
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is that when the intensity is smaller, Ap approaches zero such that context switching has 
little effect for q < 0.0001. This value of q corresponds to a context switching intensity of 
once every 10,000 instructions.

Figure 8: Ap (involuntary) of gcc, espresso and spice2g6 vs. q for block size 16 bytes

To answer why the susceptibilities of the benchmarks assume the values they do, the 
distribution of til vs. L can be used. These distributions are presented in Figures 11, 12 
and 13 for benchmarks gcc, espresso and spice2g6, respectively. The values of L have 
been divided into several categories of roughly exponentially increasing size (e.g., the second 
category contains 24 values of L, whereas the third contains 96 values of L, etc.). The 
final category contains all values of L for L > 512. Benchmarks with high occurrences of 
large context switch distances are most susceptible context switches because there is a higher 
chance of a context switch for large L from Equation 4. In Figures 8 through 10, spice2g6 has 
the highest susceptibility to context switching. Comparing Figure 13 to Figures 11 and 12
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context switch probability, q

Figure 9: Ap (involuntary) of gcc, espresso and spice2g6 vs. q for block size 32 bytes

context switch probability, q

Figure 10: Ap (involuntary) of gcc, espresso and spice2g6 vs. q for block size 64 bytes
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Figure 11: Distribution of ul vs. L for gcc.

reveals the reason: spice2g6 has the largest number of recurring references separated by 
512 or more intervening references. Hence, the probability of an involuntary context switch 
occurring should be greatest for spice2g6. Although for the 16-byte block case, spice2g6 
is only slightly more susceptible to involuntary context switching than gcc or espresso, the 
middle categories (8 < L < 511) remain largest for spice2g6.

It is clear that spice2g6 is the most-susceptible of the benchmarks to involuntary context 
switching. The relative ordering of gcc and espresso depends more on the block size, however. 
For example, compare A/?(16) in Figure 8 where gcc is more susceptible with A/?(64) in 
Figure 10, where espresso is the more penalized. The ri£, vs. L distribution for gcc in 
Figure 11 shows that gcc has less variation of run length between different block sizes. This 
is due in-part to the high use of quick recurrences in gcc: the category 1 < L < 7 is the
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context switch distance, L 

Figure 12: Distribution of u l  v s . L for espresso.

larger for gcc than for spice2g6 or espresso for 16-byte and 32-byte block sizes. This explains 
the higher dependence on block size for espresso over gcc.

The middle categories of L decline relatively gradually for gcc compared with espresso. 
Espresso has a sharp decrease in between sizes 8 < L < 31 and 32 < L < 127. This can 
be seen in the transition between q =  0.1 and q =  0.01 and explains why the ordering of 
gcc and espresso reverses for block size 32-bytes (Figure 9). Similar effects are apparent in 
Figures 8 and 10. In general, larger block sizes are less susceptible to context switching effects, 
although the differences are less pronounced than the differences between the benchmarks 
themselves.

It is useful to select one of the benchmarks that has relatively average behavior and use 
this benchmark as a representative for the benchmark set. From the graphs of Ap  and til
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Figure 13: Distribution of vs. L for spice2g6.

vs. L, gcc has the median context switching susceptibility. Therefore, gcc will be used in 
several of the discussions below.

3.2 Voluntary context switching susceptibility

The susceptibility of benchmarks to voluntary context switching effects is relatively small 

Table 2: Voluntary context switching susceptibility vs. block size.
Block size (bytes)

Benchmark 16 32 64
gcc

espresso
spice2g6

3.1% 2.0% 1.4%
0.03% 0.02% 0.01%

5 x 10_8% 3 x 10-6% 2 x 10"6%

compared to the involuntary effects. This can be seen in Table 2 presents the voluntary
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susceptibility (Ap) for fully-associative caches of the largest dimension. A previous study 
that measured the occurrences of voluntary context switches found that they rarely occurred 
for these benchmarks [18]. This may well be a quirk of the benchmarks and should not be 
taken as a general statement that voluntary context switches do not matter.

3.3 Dimensional conflict effects

Thus far, the dimensional conflicts have been excluded from consideration to isolate the 
effects of context switching. The relative importance of dimensional conflicts to multipro
gramming conflicts is interesting because it might indicate that some cache designs are 
more resilient to context switching than others. Consider caches of size IK bytes: this is a 
fairly small size and therefore should experience a high percentage of dimensional conflicts. 
Figure 14 shows Ap vs. q for gcc using caches of lK-bytes and several set-associativities. 
Calculating the miss ratios for the uniprogrammed case for gcc reveals a variation of 18% 
for (10,4,0) to 15% for (10,4,oo) (this data is not shown in the figure). However, there is 
much less variation in Ap apparent in Figure 14. This same effect is apparent from the data 
collected for the other two benchmarks.

The above confirms that dimensional conflicts dominate over context switching effects 
for small caches. To quantify this, the ratio Cm /C d can be used as a measure of the 
relative impact of multiprogramming conflicts. This ratio is plotted against q using caches 
of dimension (10,4,—) and (13,4,—) for gcc and the results are shown in Figure 15. The 
figure demonstrates that for small ç, dimensional conflicts dominate. The two kinds of 
conflicts have equal effect (i.e., Cm /C d = 1.0) for q «  0.02 with caches (10,4, —) and for q «  
0.00003 with caches (13,4,—). From a relative standpoint, the performance of caches with
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Figure 14: Ap (involuntary) of gcc for caches (10,4,—).

higher associativity depends more on the multiprogramming effects. Also, the importance of 
associativity increases with overall cache size. This implies that when associativity is used, 
multiprogramming effects can decide the cache size, which is similar to the observations 
of [12] concerning associativity.

To show the effects observed are not an artifact of the test cache sizes of IK and 8K 
bytes, Figure 16 presents Cm /C d ratios for various cache and block sizes. Any value of q 
would have been sufficient to demonstrate the general relationship between Cm /C d and C. 
The data from Figure 15 was used to select q =  0.02 for Figure 16. Since in this region 
the effects of associativity are relatively minor, the associativity is fixed at 2-way associative 
(e.g., all caches ( — ’—,1)). (Note that here, unlike the earlier figure, Cm /C d is presented 
using a logarithmic scale). From the figure, it is immediately apparent that the relative 
impact of multiprogramming (i.e., Cm /C d ) increases linearly with cache size. Also, as a
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Figure 15: Cm /C d v s . q for gcc, caches (10,4,—) and (13,4,—).

Figure 16: log{Cm /C d) v s . cache size, for various block sizes (q = 0.02).
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refinement of the observations made in Section 3.1, block size is inversely proportional to 
multiprogramming impact for small caches (less than 2K bytes). However, block size appears 
to be directly proportional to multiprogramming impact for moderately-large cache sizes (4K 
bytes up to 256K bytes), after which the trend reverses itself again.

3.4 Comments on the accuracy of the single-pass m ethod

Up to now, the emphasis has been placed on the results gathered using the single-pass 
method to measure benchmark susceptibility to context switching. It is interesting to ask 
how accurate the method is. Two alternative test methods were chosen for a comparison. 
The fixed-interval method flushes the contents of the LRU stack every Q number of refer
ences. Fixed-interval flushing is similar to the approaches of [5] and [6], among others. The 
equivalent involuntary context switch probability is q =  l /Q . The second test method is to 
flush the contents of the stack based on a uniformly-distributed random number with mean 
q. This random-interval method better approximates the single-pass method of this paper, 
therefore it should yield closer results than the fixed-interval method. Observe that each 
separate value of Q requires a re-simulation for these two test methods, whereas this is not 
true for the single-pass method.

Selecting a realistic value of Q for for the test methods guarantees that the error observed 
has some meaning in realistic situations. Several empirical values of Q have been reported 
in the literature. For example, Q = 6418 for the VAX 11/780 using the VMS OS [21] and 
Q = 19353 for the VAX 8800 also using VMS [22]. As mentioned above, Q »  10000 for the 
VAX 11/780 BSD Unix implementation [14]. Hence, the median of Q — 10000 was selected 
for the error analysis as a relatively realistic value.

24



Table 3 presents the absolute RMS error between the single-pass method and the two test 
methods calculated across all cache dimensions in the design space. In general, the fixed-

Table 3: Absolute RMS error between single-pass and test methods (gcc, q =  0.0001).

Test Method
Bloc
16

< size (b 
32

ytes)
64

fixed-interval
random-interval

0.64% 0.37% 0.23%
0.11% 0.12% 0.10%

interval method has higher error than the random-interval method. Several other researchers 
have commented that fixed-interval flushing is overly pessimistic, which may account for 
this phenomenon [8],[11],[12]. The most striking feature of the table is the relatively small 
magnitude of the error. To view this error graphically, the miss ratios for the single-pass 
method and the two test methods are plotted against cache size for a block size of 32 bytes in 
Figure 17. The figure demonstrates the the error is incurred after the miss ratio has leveled 
off. This occurs in the larger cache sizes when dimensional conflicts become rare. From 
Table 1, gcc achieves a miss ratio of p < 1% for caches of size (16,5, oo), and greater, which 
corresponds to the location of the knee of the curve in Figure 17.

It is interesting to compare the overall results using the single-pass method with the 
results of Agarwal, et at. which where obtained using a microcode-assisted trace collection 
technique of actual interactive workloads on a VAX architecture [12]. That paper presents 
a distribution for the effective Q values, which can be used to determine an average of 
q «  5.26 x 10-5 and q «  6.25 x 10-5 for the MUL3 and MUL10 workloads of the paper, 
respectively. These values were used as the context switching intensities for gcc to generate 
Figure 18. Of course, a direct match with the results of Agarwal, et al. should not be

25



Figure 17: Miss ratio for single-pass and test methods (gcc, q = 0.0001) for caches ( —, 5, oo)

Figure 18: Miss ratio for gcc assuming q =  5.26 x 10 5,6.25 x 10 5 for caches ( — ,4,0).
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expected since the workloads themselves differ between this study and theirs. However, the 
curves of Figure 18 appear very similar to those of Agarwal, et al. (see Figure 13 parts (a) 
and (b) (“Purge”) of [12]). This is a strong result, indicating the method accurately models 
the behavior of real multiprogramming environments.

4 Conclusion

This paper presented a method for constructing the susceptibility of a benchmark to the 
effects of multiprogramming on cache performance. This was done by extending existing 
single-pass methods to measure the susceptibility in terms of potential victims of context 
switching. The method removes the single-pass simulation’s dependence on involuntary 
context switching intensity and system load effects, allowing performance to be calculated 
for values of these parameters without the need for re-simulation. This generalization of 
single-pass methods extends their usefulness into domains where multiple-pass methods are 
the only option.

The experimentation performed in this paper revealed that a benchmark’s susceptibility 
to context switching can be minimized by using large block sizes with small and large cache 
sizes. Interestingly, for medium-sized caches (4K-256K bytes for gcc) small block sizes 
minimize the impact of context switching.

An increase in context-switching intensity has an roughly-linear effect on a benchmark’s 
susceptibility. For all but extremely high intensities, dimensional conflicts dominate the miss 
ratio. Since all the benchmarks elicited very small involuntary context switching distances, a 
relatively high intensity of context switching (q > 0.0001) was needed to have any noticeable 
effects at all. Notice that this critical value of q = 0.0001 corresponds to Q =  10000, a
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realistic value according to the literature [21],[22],[14].
It is not true that all workloads will have susceptibilities similar to the SPEC benchmark 

members spice2g6, gcc, and espresso. However, the method itself is not limited to a specific 
type of benchmark. Other results are easily generated. The benchmark results were useful 
to demonstrate the approach’s validity. It was shown to perform comparable to less-general 
multiple-pass test methods. Also, the behavior of the multiprogramming miss ratio agrees 
with actual multiprogramming behavior results presented by other researchers, suggesting 
the results obtained using the single-pass method are reliable for design purposes.
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