
April 1991 UILU -EN G-91-2221
CRHC-91-14

Center fo r Reliable and High-Performance Computing

THE SUSCEPTIBILITY OF PROGRAMS TO CONTEXT SWITCHING
Wen-mei W. Hwu Thomas M. Conte

Coordinated Science Laboratory
College of Engineering
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
Approved for Public Release. Distribution Unlimited.

$£¿U¿ltV CLASSIFICATION ÒF THIS PAG¿

REPORT DOCUMENTATION PAGE
« . REPORT SECURITY CLASSIFICATION

Unclassified__________
lb. RESTRICTIVE MARKINGS

None____________
2a SECURITY CLASSIFICATION AUTHORITYnone
2b. OECLASSIFICATION / DOWNGRADING SCHEDULE

none

3. DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release;
distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-91-2221
CRHC-91-14

S. MONITORING ORGANIZATION REPORT NUMBER(S)none

6a. NAME OF PERFORMING ORGANIZATION
Coordinated Science Lab
University of Illinois

6b. OFFICE SYMBOL
(If applicable)

N/A

ANIMATION

6c ADDRESS (City, State, and ZIP Cotto)

1101 W. Springfield Avenue
Urbana» IL 61801

7b. ADDRESS (City, State, and ZIP Codé)

NASA: NASA Langley Research Center Hampton,
NSF: lMo^â^^treet, Washington, DC 20552

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION

same as 7a.

8b. OFFICE SYMBOL
Of applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
NSF: MIP-8809478 NASA: NAG 1-613
ONR: N00014-88-K-0656

10. SOURCE OF FUNDING NUMBERS
sam e a s 7 b . PROGRAM PROJECT TASK WORK UNIT

ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (include Security Clarification)

The Susceptibility of Programs to Context Switching

12. PERSONAL AUTHOR(S)
Hwu. Wen-mei W., and Conte, Thomas M.

13a. TYPE OF REPORT
Technical

13b. TIME COVERED
FROM TO

14. DATE OF REPORT (Year, Month, Day)
1991 April

15. PAGE COUNT
31

16. SUPPLEMENTARY NOTATION
none

17. COSATI COOES

FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
memory system performance, single-pass method, context
swtiching

9. A8STRACT (Continue on reverse if necessary and identify by block number)

Modem memory systems are composed of several levels of caching. Design of these levels is largely an empirical
practice One highly-effective empirical method is the single-pass method wherein all caches in a broad design
space are evaluated in one pass over the trace. Multiprogramming degrades memory system performance since
(process) context switching reduces the effectiveness of cache memories. Few single-pass methods exist which
account for multiprogramming effects. This paper uses a general model of single-pass algorithms, called the
recurrence/conflict model, and extensions to the model for recording the effects due to both voluntary and involun­
tary context switching. The method presented in this paper accurately records a program’s susceptibility to context
switching for all cache dimensions and all context switching intensities in a single pass. System load is parameter­
ized using context switch intensity and the fraction of cache flushing. Several members of the SPEC benchmark set
are used to comment on program susceptibility to context switching. The accuracy of the method is shown to be
quite good by comparing it with two more-restrictive test methods. The results also agree well with multiprogram­
ming effects reported by others.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT
0 UNCLASSIFIEDAJNLIMITED □ SAME AS RPT. □ DTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified _____
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE Qndude Area Code) 22c. OFFICE SYMBOL

DD FORM 1473,84 MAR 83 APR edition may be used until exhausted.
All other editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS FAOC

7bc NCR: Personal Computer Div.-Clemson, 1150 Anderson Dr., Liberty, SC 29657
Advanced Micro Devices: 5900 East Ben White Blvd., Austin, TX 78741
ONR: Department of the Navy, Office of Naval Research (Code 1114SE),

800 N. Quincy St., Arlington, VA 22217-5000

UNCLASSIFIED ISECURITY CLASSIFICATION OF THIS PAGE

The Susceptibility of Programs to Context Switching
Wen-mei W. Hwu Thomas M. Conte

Center for Reliable and High-Performance Computing
University of Illinois

1101 West Springfield Avenue
Urbana, Illinois 61801
hwuQcrhc.u iu c. edu

March 21, 1991

Abstract
Modern memory systems are composed of several levels of caching. Design of these
levels is largely an empirical practice. One highly-effective empirical method is the
single-pass method wherein all caches in a broad design space are evaluated in one
pass over the trace. Multiprogramming degrades memory system performance since
(process) context switching reduces the effectiveness of cache memories. Few single­
pass methods exist which account for multiprogramming effects. This paper uses a
general model of single-pass algorithms, called the recurrence/conflict model, and ex­
tensions to the model for recording the effects due to both voluntary and involuntary
context switching. The method presented in this paper accurately records a program’s
susceptibility to context switching for all cache dimensions and all context switching
intensities in a single pass. System load is parameterized using context switch inten­
sity and the fraction of cache flushing. Several members of the SPEC benchmark set
are used to comment on program susceptibility to context switching. The accuracy
of the method is shown to be quite good by comparing it with two more-restrictive
test methods. The results also agree well with multiprogramming effects reported by
others.

0

The Susceptibility of Programs to Context Switching

1 Introduction

Multiple levels of caching and buffering have become the norm in memory system design.
These systems are typically designed using simulation to determine the performance of a
wide range of memory system organizations. The inputs to the simulator are benchmarks
that represent nominal system workloads. The designer’s job is to choose the most cost-
effective organization using the simulation results as a guide. A class of powerful simulation
methods, called single-pass stack methods, have become available to memory system de­
signers [1],[2],[3],[4]. With these methods, the memory system performance of thousands
of organizations can be determined using a single pass through the memory access trace of
the benchmark, whereas traditional multiple-pass methods require one pass per potential
memory system design.

Multiprogramming degrades memory system performance since (process) context switch­
ing reduces the effectiveness of cache memories. This occurs when cache contents that will be
needed after the process returns are purged by the intervening processes. The cache contents
that may fall victim to context switching are determined by the process’ reference pattern (a
program characteristic) and the cache dimension (a system design parameter). The portion
of such cache contents that are actually purged by intervening processes are determined by
load of the system: the number of ready processes and access patterns of these processes.
The method presented in this paper accurately records, for all cache dimensions and all
context switching intensities in a single pass, the.total amount of cache contents that will
be needed after the process returns. This information is defined as the susceptibility of the

1

program to the effect of context switching.
Several other approaches have been taken to measure the effects of context switch­

ing [5], [6], [7], [8], [9], [10], [11], [12]. The earliest approaches flushed the cache being simulated
at fixed intervals in the trace [5] [6]. Shedler and Slutz [7] approached the problem by stochas­
tically merging several memory reference traces. Easton [8] used the average working set size
of the memory reference trace to estimate cold-start miss ratios. Haikala [11] simplified Eas­
ton’s approach by estimated cold-start miss ratios using a Markov chain model. Cold-start
miss ratios can be used to approximate the multiprogramming effects. Switching between
multiple memory reference traces at a fixed interval was used by Smith [9] to measure mul­
tiprogramming effects. Also, hardware measurements of a real multiprogrammed workloads
were performed by Clark [10] and, Agarwal, et al [12]. Apart from the approximations of
Easton [8] and Haikala [11], no work has been done to extend single-pass methods to model
the effects of context switching exactly. Since multiprogramming effects can account for a 4%
to 12% degradation in performance [10],[11],[12], this omission in the literature has limited
the usefulness of single-pass methods.

One obvious extension to single-pass methods to model context switching effects is to
flush the LRU stack periodically. The shortcoming of this approach is that one simulation
would have to be performed for each context switching intensity (e.g., time quantum and
I/O workload). A more desirable method is to record the context switching effects for
all intensities in one pass. This paper introduces a single-pass method for measuring the
susceptibility of a program to the effects of context switching for all cache dimensions and
all intensities. It is demonstrated that the susceptibility measures can be combined with
system load parameters and context switching intensity to yield the performance degradation'

2

in various multiprogramming environments without resimulation. Obtaining memory system
performance degradation under many different system loads allows the memory system to
be designed with a degree of robustness. It further increases the advantage of single-pass
stack methods over multiple-pass methods. To our knowledge, this is the first such study
to make the dichotomy between program susceptibility and multiprogramming effects. The
measured performance is validated both empirically and by comparing the results to those
of other researchers.

2 Recurrences, Conflicts, and Context Switches

The metric used in many memory system studies is the miss ratio. This is the ratio of
the number of references that are not satisfied by a cache at a level of the memory system
hierarchy over the total number of references. The miss ratio has served as a good metric
for memory systems since it is a characteristic of the workload (e.g., the memory trace) yet
independent of the access time of the memory elements. Therefore, a given miss ratio can
be used to decide whether a potential memory element technology will meet the required
access time for the memory system. The recurrence/conflict model of the miss ratio is
best illustrated with an example. Consider the trace of Figure 1. The recurrences in the
trace are accesses E , F, G and H. Without context switching, all the four recurrences would
produce a hit in an infinite cache. In the ideal case of an infinite cache in the absence of

Reference A B C D E F G H
Address 0 1 2 3 1 2 1 2

Figure 1: An example trace of addresses.

3

Reference: A B C D
Address: 0 miss 1 miss 2 miss 3 * miss

block 0: 0 0 2 2
block 1: 1 1 3

E F G H
1 miss 2 1 2

2 2 2 2
1 1 1 1

* Dimensional conflict

Figure 2: An example two-block direct-mapped cache behavior,

context-switching, the miss ratio may be expressed as,

P = N - R
N (i)

where R is the total number of recurrences and N is the total number of references. Non­
ideal behavior occurs due to conflicts, and this paper considers two such types of conflicts:
dimensional conflicts and multiprogramming conflicts. A dimensional conflict is defined as
an event which converts a recurrence into a miss due to limited cache capacity or mapping
inflexibility. For illustration, consider a direct mapped cache composed of two one-byte
blocks shown in Figure 2. (Note that in practice, such a small cache would be impractical to
build.) A miss occurs for the recurring recurrence E because reference D purges address 1
from the cache due to insufficient cache capacity. Hence, D represents a dimensional conflict
for the recurrence E. The other misses, A, £ , C and D , occur because these are the first
references to addresses 0,1,2 and 3, respectively.

A multiprogramming conflict is defined as an event which converts a recurrence into a
miss due to a context switch. For example, both Q and H are dimension hits of the cache
in Figure 1. If a context switch occurs between references F and G which purges addresses

4

1 and 2 out of the cache, two multiprogramming conflicts will occur, one to reference G and
one to reference H. Therefore, the following formula can be used for deriving cache miss
ratio, p, for a given trace, a given cache dimension and a given pattern of context switching:

P =
N - (R - C d - Cm)

N (2)

where Co the total number of dimensional conflicts, aiid Cm the total number of multipro­
gramming conflicts. This is a general model and can be extended account for other effects,
such as conflicts due to multiprocessor cache coherence [13].

2.1 Reference streams and cache dimensions

The formal abstraction of a benchmark’s trace is termed a “reference stream.” This is a
sequence of address references, w(k), of length N (0 < k < N). The addresses are addresses
in the lowest level of a cache hierarchy, which is assumed to be a linear space (e.g., the
virtual space). When they are required, such references will be represented by lower-case
Greek letters, such as a ,/? ,7. The reference stream is assumed to be generated by a single
process in a multiprogramming system. A time variable, k , is a measure of the system
clock. Also, a reference will be called as a voluntary context-switch point if the benchmark
relinquished the CPU after the reference (e.g., a system call was performed).

The dimension of a cache is expressed using the notation, (C, R ,5), for a cache of size
2C bytes, with block size 2B bytes, and 2s blocks contained in each associativity set. Note
that C > B + 5. The notation (C, B , 00) is an abbreviation for the dimension of a fully-
associative cache (S = C -p B). For example, a cache of dimension (10,6,0) is a 1KB
direct-mapped cache with a block size of 64 bytes, and a cache of dimension (21,10,11)

5

(alternately, (21,10, oo)) is of size 2MB with lKB-length blocks and it is fully-associative. A
dash is substituted for an entry in the triple to indicate all caches of that dimension. Hence,
(— ,5,1) are all caches with block size 32 bytes and 2-way associativity. Caches are assumed
to use LRU replacement and map addresses into sets using bit selection [3].

It is useful to partition the reference stream by setting the block offset portion of all
addresses in the stream to zero. This produces a block reference stream, lug(fc), is defined
such that,

= 2*

In binary, this is equivalent to setting the least-significant B bits to zero. The number of
recurrences is measured for the block reference stream, and denoted R[B]. Dimensional
conflicts, Cd [C, 5 ,5] , are measured for each cache dimension using a single-pass tech­
nique [3], [2], [4].

2.2 Types of context switches

Context switching occurs due to two distinct events: (1) a voluntary context switch, where
the benchmark relinquishes the processor, and, (2) an involuntary context switch, where the
benchmark’s execution is suspended due to external interrupts. Voluntary context switches
are a characteristic of the benchmark. They occur at the same place in the execution between
different benchmark runs. On the other hand, involuntary context switches are determined
by the I/O system behavior (device interrupts), clock frequency (timer interrupts), etc. They
do not occur at the same place between runs of the benchmark and are not characteristic of
the benchmark. Since involuntary context switches occur at random instances, it is assumed
that involuntary context switches can occur with equal probability for each reference in the

w(k)

6

reference stream [11]. This probability will be denoted, q, and termed the involuntary context
switching intensity. As an example, in the VAX 11/780 implementation of 4.3 BSD Unix,
the timer interrupt frequency is once every 10 ms [14]. In the absence of other external
interrupts, this frequency is equivalent to q « 0.0001.

Separation of the system’s characteristics from the characteristics of the benchmark allows
many different systems to be considered without re-simulating the benchmark’s behavior.
This is the main goal of single-pass techniques in general [2]. Although the occurrence of
involuntary context switches is not a characteristic of the benchmark, the benchmark’s sus­
ceptibility to their occurrence is. This susceptibility can be measured as the expected number
of multiprogramming conflicts due to random involuntary context switching. A method to
measure this susceptibility is presented below that records the benchmark’s susceptibility
to all context-switching intensities in a single-pass through the trace. The empirical results
discussed in Section 3.4 demonstrate the validity of this single-pass approach.

The working set of a process (benchmark) may have been flushed from the cache before
it re-enters the run state after a context switch. Let £ represent the fraction of the cache’s
contents flushed between context switches.

The number of processes executed before a process returns from a context switch is a
function of the system load and the operating system scheduling policy. Furthermore, the
particular cache blocks flushed due to a context switch also depends on the reference patterns
of the processes executing on the system. This makes £ highly dependent on several volatile
variables and therefore difficult to measure. Some virtual memory system implementations
force a cache flush to eliminate problems with page sharing of writable pages [12]. Also,
it has been shown that for small cache sizes, a context switch effectively flushes the cache,

7

therefore £ = 1 [9]. For larger caches, this provides an upper bound for the effects of context
switching. An analytical model for £ was constructed by Agarwal, et al. [15], and the model’s
required parameters can be obtained using single-pass methods. This calculation of £ can be
used to scale the results of the method of this paper to accurately predict multiprogramming
effects. This extension, however, is beyond the scope of this paper. The empirical results
are presented with £ = 1.

2.3 The com ponents of multiprogramming conflicts

Multiprogramming conflicts are defined in terms of potential victims. A recurring reference
that is not removed from a specific cache by a dimensional conflict, yet that may be removed
by a context switch is a potential victim. Potential victims are defined as Vv[C, B , S] and
V/[C, B, 5, q\, for all voluntary and involuntary context switches, respectively. Vv[C,B,S]
is the total number of potential victims due to voluntary context switching for caches of
dimension (C, B ,S). On the other hand, V/[C, i?,5 , q] is the expected number of potential
victims due to involuntary context switching of intensity q.- The multiprogramming conflicts
are expressed in terms of victims as,

CM[C, B, S,q] = t (vv [C, B, S] + VAC, B, S,,]) . (3)

Determining the multiprogramming conflicts involves measuring VV[C, B , S] and V/[C, B,S,q]
from the reference stream. The measurement can be done using the LRU stack of a stack-
based cache simulator, as explained below. Cm [C, B, S, q] is then calculated by applying
Equation 3 for a value of f .

8

2.4 Least-recently-used (LRU) stack operation

An LRU stack operates as follows: when an address, ws(k) = a, is encountered in the block
reference stream, the LRU stack is checked to see if a is present on the stack. If a is not
present, it is pushed onto the stack. However, if a is present (e.g, it is a recurring reference),

Reference:

Reference:

1 2
0 1 2

0 1
0

2 1
1 2 1
3 1 2
2 3 3
0 0 0

Figure 3: An example of LRU stack operation.

it is removed from the stack, then repushed onto the stack. This is illustrated in Figure 3 for
the example reference stream at the beginning of this section (Figure 1). LRU stacks were
first introduced by Mattson, et al. in [1].

An LRU stack is represented as 5jg(fc), maintained for a block size B at time k. The
¿th ordered item of Ss(k) is expressed as, Sb (fc)[i]. The stack may also be expressed as
an ordered list, such that SB{k) = {5b (&)[0], 5b(^)[1], •. •, ‘Sb (&)[|*Sjb(&)|]}- The following
operations are defined for the stack:
the push(-) function,

push(Sfl(fc),a) = { a , 5B(A:)[0], Sa(fc)[l], 5,b (^)[|5'b (A:)|] },

the where(-) function,

where(SB(fc), a) = «, if Sb (&)[*] = a ,
9

and, the repush(-) function,

repush(Sb (&)>a) = { a , 5s(A;)[0]? 5 b (&)[1]> . . . , 5s(fc)[where(5B(A:),a) — 1],

SB(fc)[where(Ss (fc), a) + 1], . . . , Sb WIISb WI] }•

where(5B(A;),a) and repush(5B(&), a) are undefined when a 0 5b (&)- When Sb (&) and
a are understood, it is convenient to define A = where(5B(&), c*) Note that push(-) and
repush(-) are defined as side-effect-free functions, rather than procedures. This is to remove
dependence on the time variable, k.

For an address a = u?b (&), the least-recently used (LRU) management policy for a stack
is shown in Figure 4. In Step 1.1, the references between the top of stack and the recurring
reference have been referred to as the set {ft | f t = Ss(k — l)[z], 0 < i < A}. The LRU

1. if a € Sb (& — 1) then
1.1 process the intervening references, {ft}
1.2 SB(k) <— repush(5B(& - 1),«),
2. else Ss(k) <— pus!i(5b (& — 1),**)

Figure 4: The least-recently used management policy for a stack, Sb {k) (adapted from
Mattson et al.).

policy is essentially a definition for calculating Sb (&) from Sb (& — 1) and a.

2.5 Multiprogramming extensions to LRU stack operation

The procedure for determining Vv[C, R, S] using an LRU stack operates as follows. When a
is processed, if it is not a recurring reference (i.e., the test of Step 1 of Figure 4 fails), then it

10

cannot be a victim since it cannot produce a hit. However, if a is a voluntary context switch
point, it is marked as such when it is pushed on the stack in Step 2 (see Figure 5). Now

Reference:

Reference:

voluntary contextswitch pointu 2 3
0 1* 2 3

0 1* 2
0 1*

0

2 1 2
1 2 1 2
3 1 2 1
2* 3* 3* 3*
0 0 0 0

Figure 5: An example for voluntary context switch of the modified LRU stack operation.

assume that a is a recurring reference and therefore already on the stack. If the intervening
references on the stack, {/?,}, contain an address marked as a voluntary context switch point,
Vy[C, B , S] is incremented for all dimensions in which a does not have a dimensional conflict.
This is done since the presence of a voluntary context switch point in {/?,•} implies a voluntary
context switch occurred between references to a. The LRU stack-contents for the example
are illustrated in Figure 5, where a marked stack address is depicted using an asterisk. To
insure all subsequent recurring references are subject to a voluntary context switch point,
when a marked reference is repushed, the reference immediately above it inherits the context
switch point (this occurs for the fourth and fifth reference of Figure 5).

The procedure for determining Vi[C, B , S, q] using an LRU stack is somewhat more com­
plicated. Recall that an involuntary context switch may occur between every reference. Let
L, the context switch distance, be the number of potential involuntary context switch points
for the recurring reference ct at time k (i.e., a = wg(k — L) = u>B(k)). Let pl be the

11

probability that at least one involuntary context switch occurs between times k — L and k.
Then,

PL = (4)

Define til[C, B , 5] to be the number of recurrences not subject to dimensional conflicts that
have a context switch distance of L. Therefore,

V,[C,B,S,q] = E[nL[C,B,S]} = ^ p LnL[C,B,S}. (5)L
Equation 5 expresses the expected number of potential victims due to involuntary con­
text switching. This equation is more general than the approaches of others because no
assumptions must be made concerning the probability of accessing an associativity set in
the cache [8],[11]. Equation 5 fits naturally into a stack-based method. The new metric
til[Ci B ,S] can be recorded by annotating the references on the stack. As before, if the
address a is not on the stack, it cannot cause a miss due to involuntary context switching.
When it is pushed onto the stack in Step 2 of Figure 4, a counter of the number of context
switch points affecting a is kept, defined as c/(a). Initially, c/(a) = 1. To see how this
operates, assume that a is on the stack. In Step 1.1.2 and 1.1.3.3, one plus the sum of the
counters of {/?,} is used to calculate the involuntary context switch distance, L. Notice that
c/(a) is not part of L. In Step 1.1.5, til[C, f?, S] is incremented for all caches in which there
are no dimensional conflicts. Let Ss{k — 1)[A — 1] = (30, the address that is directly above
a in the stack S s(k — 1). Then, as a bookkeeping step, cj(/?0) is incremented by c/(a). In
this way, all the references deeper in the stack than a. in Se{k — 1) will arrive at the correct
context switch distance.

The methods for calculating both VV[C, £?, S] and «¿[C, B, 5] are presented in Figure 6.

12

1. if a G Ss{k — 1) th en
1.1.1 vol-cs *— false
1.1.2 L i— 1
1.1.3 for i *— 0 to A do
1.1.3.1 ft <- SB(k - l)[i]
1.1.3.2 if ft marked as a voluntary context switch point th en
1.1.3.2.1 vol.cs <— tru e
1.1.3.3 L <— L + c/(ft)
1.1.4 for all (C, B ,S) without a dimensional conflict do
1.1.5 71l [C', B,S] <— ul[C, B,S] + 1
1.1.6 if voLcs th en Vy[C, F?,5] <— Vy[C, B, 5] + 1
1.2.1 a (P a- i) <- ci((3A-i) + c/(a)
1.2.2 ci(a) <— 1
1.2.3 5s(F) <— repu sh (S sik - l) ,a) ,
2. else
2.1 c/(a) <— 1
2.2 Ss{k) *— push(5s(fc — 1),a)

Figure 6: An LRU stack method modified for context switching.

potential involuntary context switch points

Reference: * 0 * 1 * 2 * 3
Oi lx 2t 3i

Ql li 2i
Ql li

Ot

Reference: * 1 * 2 * 1 *2
h 2i u 2i
3l li 4 Is
%. 3s 3s 3s
Ol (k Oi

Notes: L = 3 L = 4 L = 2 L = 2

Figure 7: An example for involuntary context switching of the modified LRU stack operation.

13

An example of the operation of the method is shown in Figure 7. The example also shows
the calculated values of L. Notice that since the calculation of til[C,B,S] is independent
of the context switching intensity distribution assumptions, it is possible to substitute other
context switching intensity distributions without altering the method.

3 Empirical Results of Program Susceptibility

The susceptibility of programs to context switching was measured for three members of the
SPEC benchmark set, version 1.0 [16], and the results are presented in this section. The
benchmarks were: gcc, spice2g6, and espresso. The gcc benchmark is a run of the GNU
C compiler (version 1.34) compiling portions of itself; the espresso benchmark is a run of
the Espresso PLA minimizer with several PLA’s as input; and, the spice2g6 benchmark is
version 2G6 of the SPICE circuit simulator written in FORTRAN with a greycode counter
circuit as its input. Some benchmark characteristics are presented in Table 1

Table 1: Benchmark characteristics.

Benchmark
Number of
references

Fully-associative Cache designs
with p < 1%

gcc
espresso

spice
3.3 x 107 (16,4, oo) (16,5,oo) (16,6, oo)
1.1 x 10s (15,4, oo) (15,5,oo) (15,6, oo)
6.2 x 108 (18,4, oo) (17,5,oo) (17,6, oo)

The benchmarks were traced using a modified version of the AE tracing tool [17] ex­
tended to include system calls and the behavior of all Unix generic library calls [18]. All
benchmarks were compiled with GNU C (version 1.37.1) with all compiler optimizations
enabled [19]. A FORTRAN-to-C translator [20] was used for the FORTRAN benchmark,
spice2g6. This translator operates essentially on the statement-by-statement level, min-

14

imizing spurious translation effects. Instruction density varies widely across architectures,
whereas the data layout of a multiple-architecture compiler like GNU C does not. Therefore,
we chose to exclude instruction references and consider only data memory references. The
design space used for our simulations is all caches up to 2 gigabytes, with block sizes of 16
bytes, 32 bytes and 64 bytes, and, associativity levels of one-way (direct-mapped), two-way,
four-way, and fully associative.

The results that follow are used to comment on the susceptibility of involuntary con­
text switching followed by a discussion of the effects of voluntary context switching. The
dimensional conflicts that occur due to different cache sizes are discussed in Section 3.3 to
compare their performance degradation with that of context switching. The accuracy of
the single-pass method is discussed by comparing the method’s results with the results from
more limited techniques. Also, a discussion of how the observed context switching behavior
compares to other researchers is presented.

3.1 Involuntary context switching susceptibility

It is useful to define Ap = Cm /N as the susceptibility measure. This is the difference between
the uniprogramming and multiprogramming miss ratios. Figure 8, 9 and 10 presents Ap for
the three benchmarks for block sizes 16 bytes, 32 bytes and 64 bytes, respectively. These
figures are for caches (31, —, oo), to eliminate the effects of dimensional conflicts and consider
only involuntary context switching. Also, £ = 1 (complete cache flushing).

Two observations are immediately apparent from the figures. The susceptibility to con­
text switching decreases as block size increases from Figure 8 to Figure 10. For example,
when q = 0.001, Ap(16) = 8% whereas Ap(64) = 5.2% for spice2g6. The other observation

15

is that when the intensity is smaller, Ap approaches zero such that context switching has
little effect for q < 0.0001. This value of q corresponds to a context switching intensity of
once every 10,000 instructions.

Figure 8: Ap (involuntary) of gcc, espresso and spice2g6 vs. q for block size 16 bytes

To answer why the susceptibilities of the benchmarks assume the values they do, the
distribution of til vs. L can be used. These distributions are presented in Figures 11, 12
and 13 for benchmarks gcc, espresso and spice2g6, respectively. The values of L have
been divided into several categories of roughly exponentially increasing size (e.g., the second
category contains 24 values of L, whereas the third contains 96 values of L, etc.). The
final category contains all values of L for L > 512. Benchmarks with high occurrences of
large context switch distances are most susceptible context switches because there is a higher
chance of a context switch for large L from Equation 4. In Figures 8 through 10, spice2g6 has
the highest susceptibility to context switching. Comparing Figure 13 to Figures 11 and 12

16

context switch probability, q

Figure 9: Ap (involuntary) of gcc, espresso and spice2g6 vs. q for block size 32 bytes

context switch probability, q

Figure 10: Ap (involuntary) of gcc, espresso and spice2g6 vs. q for block size 64 bytes

17

100

1< L < 7 8<L<31 32<L<127 128<L<511 L> 512
context switch distance, L

Figure 11: Distribution of ul vs. L for gcc.

reveals the reason: spice2g6 has the largest number of recurring references separated by
512 or more intervening references. Hence, the probability of an involuntary context switch
occurring should be greatest for spice2g6. Although for the 16-byte block case, spice2g6
is only slightly more susceptible to involuntary context switching than gcc or espresso, the
middle categories (8 < L < 511) remain largest for spice2g6.

It is clear that spice2g6 is the most-susceptible of the benchmarks to involuntary context
switching. The relative ordering of gcc and espresso depends more on the block size, however.
For example, compare A/?(16) in Figure 8 where gcc is more susceptible with A/?(64) in
Figure 10, where espresso is the more penalized. The ri£, vs. L distribution for gcc in
Figure 11 shows that gcc has less variation of run length between different block sizes. This
is due in-part to the high use of quick recurrences in gcc: the category 1 < L < 7 is the

18

context switch distance, L

Figure 12: Distribution of u l v s . L for espresso.

larger for gcc than for spice2g6 or espresso for 16-byte and 32-byte block sizes. This explains
the higher dependence on block size for espresso over gcc.

The middle categories of L decline relatively gradually for gcc compared with espresso.
Espresso has a sharp decrease in between sizes 8 < L < 31 and 32 < L < 127. This can
be seen in the transition between q = 0.1 and q = 0.01 and explains why the ordering of
gcc and espresso reverses for block size 32-bytes (Figure 9). Similar effects are apparent in
Figures 8 and 10. In general, larger block sizes are less susceptible to context switching effects,
although the differences are less pronounced than the differences between the benchmarks
themselves.

It is useful to select one of the benchmarks that has relatively average behavior and use
this benchmark as a representative for the benchmark set. From the graphs of Ap and til

19

100-1

75

60.3 64 .f69.0

%nL 50

B = 16 32 64 bytes
2 5 -

16.011.5 10.2 12.6

7r ~ r6-4 67 4.9 4.9 4.6 9.5

1< L < 7 8<L<31 32<L<127 128<L<511
context switch distance, L

L> 512

Figure 13: Distribution of vs. L for spice2g6.

vs. L, gcc has the median context switching susceptibility. Therefore, gcc will be used in
several of the discussions below.

3.2 Voluntary context switching susceptibility

The susceptibility of benchmarks to voluntary context switching effects is relatively small

Table 2: Voluntary context switching susceptibility vs. block size.
Block size (bytes)

Benchmark 16 32 64
gcc

espresso
spice2g6

3.1% 2.0% 1.4%
0.03% 0.02% 0.01%

5 x 10_8% 3 x 10-6% 2 x 10"6%

compared to the involuntary effects. This can be seen in Table 2 presents the voluntary

20

susceptibility (Ap) for fully-associative caches of the largest dimension. A previous study
that measured the occurrences of voluntary context switches found that they rarely occurred
for these benchmarks [18]. This may well be a quirk of the benchmarks and should not be
taken as a general statement that voluntary context switches do not matter.

3.3 Dimensional conflict effects

Thus far, the dimensional conflicts have been excluded from consideration to isolate the
effects of context switching. The relative importance of dimensional conflicts to multipro­
gramming conflicts is interesting because it might indicate that some cache designs are
more resilient to context switching than others. Consider caches of size IK bytes: this is a
fairly small size and therefore should experience a high percentage of dimensional conflicts.
Figure 14 shows Ap vs. q for gcc using caches of lK-bytes and several set-associativities.
Calculating the miss ratios for the uniprogrammed case for gcc reveals a variation of 18%
for (10,4,0) to 15% for (10,4,oo) (this data is not shown in the figure). However, there is
much less variation in Ap apparent in Figure 14. This same effect is apparent from the data
collected for the other two benchmarks.

The above confirms that dimensional conflicts dominate over context switching effects
for small caches. To quantify this, the ratio Cm /C d can be used as a measure of the
relative impact of multiprogramming conflicts. This ratio is plotted against q using caches
of dimension (10,4,—) and (13,4,—) for gcc and the results are shown in Figure 15. The
figure demonstrates that for small ç, dimensional conflicts dominate. The two kinds of
conflicts have equal effect (i.e., Cm /C d = 1.0) for q « 0.02 with caches (10,4, —) and for q «
0.00003 with caches (13,4,—). From a relative standpoint, the performance of caches with

21

le-06 le-05 0.0001 0.001 0.01 0.1 1
context switch probability, q

Figure 14: Ap (involuntary) of gcc for caches (10,4,—).

higher associativity depends more on the multiprogramming effects. Also, the importance of
associativity increases with overall cache size. This implies that when associativity is used,
multiprogramming effects can decide the cache size, which is similar to the observations
of [12] concerning associativity.

To show the effects observed are not an artifact of the test cache sizes of IK and 8K
bytes, Figure 16 presents Cm /C d ratios for various cache and block sizes. Any value of q
would have been sufficient to demonstrate the general relationship between Cm /C d and C.
The data from Figure 15 was used to select q = 0.02 for Figure 16. Since in this region
the effects of associativity are relatively minor, the associativity is fixed at 2-way associative
(e.g., all caches (— ’—,1)). (Note that here, unlike the earlier figure, Cm /C d is presented
using a logarithmic scale). From the figure, it is immediately apparent that the relative
impact of multiprogramming (i.e., Cm /C d) increases linearly with cache size. Also, as a

22

ra
ti

o
of

 m
ul

ti
pr

og
ra

mm
in

g
to

 d
im

en
si

on
al

 c
on

fl
ic

ts

ra
ti

o
of
 m

ul
ti

pr
og

ra
mm

in
g

to
 d

im
en

si
on

al
 c

on
fl

ic
ts

context switch probability, q

Figure 15: Cm /C d v s . q for gcc, caches (10,4,—) and (13,4,—).

Figure 16: log{Cm /C d) v s . cache size, for various block sizes (q = 0.02).

23

refinement of the observations made in Section 3.1, block size is inversely proportional to
multiprogramming impact for small caches (less than 2K bytes). However, block size appears
to be directly proportional to multiprogramming impact for moderately-large cache sizes (4K
bytes up to 256K bytes), after which the trend reverses itself again.

3.4 Comments on the accuracy of the single-pass m ethod

Up to now, the emphasis has been placed on the results gathered using the single-pass
method to measure benchmark susceptibility to context switching. It is interesting to ask
how accurate the method is. Two alternative test methods were chosen for a comparison.
The fixed-interval method flushes the contents of the LRU stack every Q number of refer­
ences. Fixed-interval flushing is similar to the approaches of [5] and [6], among others. The
equivalent involuntary context switch probability is q = l /Q . The second test method is to
flush the contents of the stack based on a uniformly-distributed random number with mean
q. This random-interval method better approximates the single-pass method of this paper,
therefore it should yield closer results than the fixed-interval method. Observe that each
separate value of Q requires a re-simulation for these two test methods, whereas this is not
true for the single-pass method.

Selecting a realistic value of Q for for the test methods guarantees that the error observed
has some meaning in realistic situations. Several empirical values of Q have been reported
in the literature. For example, Q = 6418 for the VAX 11/780 using the VMS OS [21] and
Q = 19353 for the VAX 8800 also using VMS [22]. As mentioned above, Q » 10000 for the
VAX 11/780 BSD Unix implementation [14]. Hence, the median of Q — 10000 was selected
for the error analysis as a relatively realistic value.

24

Table 3 presents the absolute RMS error between the single-pass method and the two test
methods calculated across all cache dimensions in the design space. In general, the fixed-

Table 3: Absolute RMS error between single-pass and test methods (gcc, q = 0.0001).

Test Method
Bloc
16

< size (b
32

ytes)
64

fixed-interval
random-interval

0.64% 0.37% 0.23%
0.11% 0.12% 0.10%

interval method has higher error than the random-interval method. Several other researchers
have commented that fixed-interval flushing is overly pessimistic, which may account for
this phenomenon [8],[11],[12]. The most striking feature of the table is the relatively small
magnitude of the error. To view this error graphically, the miss ratios for the single-pass
method and the two test methods are plotted against cache size for a block size of 32 bytes in
Figure 17. The figure demonstrates the the error is incurred after the miss ratio has leveled
off. This occurs in the larger cache sizes when dimensional conflicts become rare. From
Table 1, gcc achieves a miss ratio of p < 1% for caches of size (16,5, oo), and greater, which
corresponds to the location of the knee of the curve in Figure 17.

It is interesting to compare the overall results using the single-pass method with the
results of Agarwal, et at. which where obtained using a microcode-assisted trace collection
technique of actual interactive workloads on a VAX architecture [12]. That paper presents
a distribution for the effective Q values, which can be used to determine an average of
q « 5.26 x 10-5 and q « 6.25 x 10-5 for the MUL3 and MUL10 workloads of the paper,
respectively. These values were used as the context switching intensities for gcc to generate
Figure 18. Of course, a direct match with the results of Agarwal, et al. should not be

25

Figure 17: Miss ratio for single-pass and test methods (gcc, q = 0.0001) for caches (—, 5, oo)

Figure 18: Miss ratio for gcc assuming q = 5.26 x 10 5,6.25 x 10 5 for caches (— ,4,0).

26

expected since the workloads themselves differ between this study and theirs. However, the
curves of Figure 18 appear very similar to those of Agarwal, et al. (see Figure 13 parts (a)
and (b) (“Purge”) of [12]). This is a strong result, indicating the method accurately models
the behavior of real multiprogramming environments.

4 Conclusion

This paper presented a method for constructing the susceptibility of a benchmark to the
effects of multiprogramming on cache performance. This was done by extending existing
single-pass methods to measure the susceptibility in terms of potential victims of context
switching. The method removes the single-pass simulation’s dependence on involuntary
context switching intensity and system load effects, allowing performance to be calculated
for values of these parameters without the need for re-simulation. This generalization of
single-pass methods extends their usefulness into domains where multiple-pass methods are
the only option.

The experimentation performed in this paper revealed that a benchmark’s susceptibility
to context switching can be minimized by using large block sizes with small and large cache
sizes. Interestingly, for medium-sized caches (4K-256K bytes for gcc) small block sizes
minimize the impact of context switching.

An increase in context-switching intensity has an roughly-linear effect on a benchmark’s
susceptibility. For all but extremely high intensities, dimensional conflicts dominate the miss
ratio. Since all the benchmarks elicited very small involuntary context switching distances, a
relatively high intensity of context switching (q > 0.0001) was needed to have any noticeable
effects at all. Notice that this critical value of q = 0.0001 corresponds to Q = 10000, a

27

realistic value according to the literature [21],[22],[14].
It is not true that all workloads will have susceptibilities similar to the SPEC benchmark

members spice2g6, gcc, and espresso. However, the method itself is not limited to a specific
type of benchmark. Other results are easily generated. The benchmark results were useful
to demonstrate the approach’s validity. It was shown to perform comparable to less-general
multiple-pass test methods. Also, the behavior of the multiprogramming miss ratio agrees
with actual multiprogramming behavior results presented by other researchers, suggesting
the results obtained using the single-pass method are reliable for design purposes.

Acknowledgements

The authors would like to thank all members of the IMPACT research group for their
support, comments and suggestions. This research has been supported by the National
Science Foundation (NSF) under Grant MIP-8809478, Dr. Lee Hoevel at NCR Corp., the
AMD Corp. 29K Advanced Processor Development Division, the National Aeronautics and
Space Administration (NASA) under Contract NASA NAG 1-613 in cooperation with the
Illinois Computer laboratory for Aerospace Systems and Software (ICLASS), and the Office
of Naval Research under Contract N00014-88-K-0656, and an equipment domation from the
Hewlett-Packard Co.

28

References
[1] R. L. Mattson, J. Gercsei, D. R. Slutz, and I. L. Traiger, “Evaluation techniques for

storage hierarchies,” IBM Systems J., voi. 9, no. 2, pp. 78-117, 1970.
[2] I. L. Traiger and D. R. Slutz, “One-pass techniques for the evaluation of memory hier­

archies,” IBM Research Report RJ 892, IBM, San Jose, CA, July 1971.
[3] M. D. Hill and A. J. Smith, “Evaluating associativity in CPU caches,” IEEE Trans.

Computers, voi. C-38, pp. 1612-1630, Dec. 1989.
[4] T. M. Conte and W. W. Hwu, “Single-pass memory system evaluation for multipro­

gramming workloads,” Tech. Rep. CSG-122, Center for Reliable and High-Performance
Computing, University of Illinois, Urbana, IL, May 1990.

[5] K. R. Kaplan and R. 0 . Winder, “Cache-based computer systems,” Computer, voi. 6,
pp. 30-36, Mar. 1973.

[6] W. D. Strecker, “Cache memories for PDP-11 family computers,” in Proc. 3rd Ann.
In t’l Symp. Computer Architecture, pp. 155-158, Jan. 1976.

[7] G. S. Shedler and D. R. Slutz, “Derivation of miss ratios for merged access streams,”
IBM J. Research and Development, voi. 20, pp. 505-517, Sept. 1976.

[8] M. C. Easton, “Computation of cold-start miss ratios,” IEEE Trans. Computers, voi. C-
27, pp. 404-408, May 1978.

[9] A. J. Smith, “Cache memories,” ACM Computing Surveys, voi. 14, no. 3, pp. 473-530,
1982.

[10] D. W. Clark, “Cache performance in the VAX-11/780,” ACM Trans. Computer Systems,
voi. 1, pp. 24-37, Feb. 1983.

[11] I. J. Haikala, “Cache hit ratios with geometric task switch intervals,” in Proc. 11th Ann.
In t’l Symp. Computer Architecture, (Ann Arbor, MI), pp. 364-371, June 1984.

[12] A. Agarwal, J. Hennessy, and M. Horowitz, “Cache performance of operating system
and multiprogramming workloads,” ACM Trans. Computer Systems, voi. 6, pp. 393-
431, Nov. 1988.

[13] J. G. Thompson, Efficient analysis of caching systems. PhD thesis, Computer Sci­
ence Division, University of California, Berkeley, California, Oct. 1987. Report No.
UCB/CSD 87/374.

[14] S. J. Leffler, M. K. McKusick, M. J. Karels, and J. S. Quarterman, The Design and
Implementation of the f.3BSD Unix Operating System. Addison-Wesley, 1989.

[15] A. Agarwal, M. Horowitz, and J. Hennessy, “An analytical cache model,” ACM Trans.
Computer Systems, voi. 7, pp. 184-215, May 1989.

29

[16] “Spec newsletter,” Feb. 1989. SPEC, Fremont, CA.
[17] J. R. Larus, “Abstract execution: a technique for efficiently tracing programs,” tech,

rep., Computer Sciences Department, University of Wisconsin-Madison, Feb. 1990.
[18] T. M. Conte and W. W. Hwu, “Benchmark characterization,” IEEE Computer, pp. 48-

56, Jan. 1991.
[19] R. M. Stallman, Using and porting GNU CC. Free Software Foundation, Inc., 1989.
[20] S. I. Feldman, D. M. Gray, M. W. Maimore, and N. L. Schryer, “A Fortran-to-C con­

verter,” Computing Science Tech. Report 149, AT&T Bell Laboratories, Murray Hill,
NJ, June 1990.

[21] J. Emer and D. Clark, “A characterization of processor performance in the VAX-
11/780,” in Proc. 11th Ann. In ti Symp. Computer Architecture, (Ann Arbor, MI),
p. ??, June 1984.

[22] D. W. Clark, P. J. Bannon, and J. B. Keller, “Measuring VAX 8800 performance with
a histogram hardware monitor,” in Proc. 15th Ann. In ti Symp. Computer Architecture,
pp. 176-185, May 1988.

30

