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ABSTRACT

Periodic solutions of the generalized Lienard equation x +

|if(x)x + g(x) = o (• = d/dt) , with |JL»1, are investigated in the phase

ifying the functions f(x), g(x), F(x) = f(u)du, so that the resulting

equations may be integrated to within an error of order |i . The com­

parison solutions are used to approximate the solution trajectories of 

the orignal equations, and, in particular, the periodic orbits. The

result is an analytic description of the trajectoris, in both planes,
-2tp order |j, . The asymptotic form of the amplitude and period, for a

-2  -1periodic orbit, is obtained with errors of order |jl and |jl respective-
2ly. For the particular case of the van der Pol equation, x + p,(x -l)x + 

x * o, the amplitude agrees with the expressions previously obtained by 

other workers, while the period does not. The results of a numerical 

study of the expression for the period given here support the present

and Lienard planes. Certain comparison equations are obtained by mod-

o -2

work
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1.1. Introduction

Various geometrical and analytical methods have been used 

to determine the existence of a stable periodic solution of the gen­

eralized Lienard equation

x + p,f(x)x + g(x) = 0  M d/dt) (1.1)

when p,»lo The methods used, and the results obtained, depend largely 

on the assumptions made concerning the functions f(x) and g(x).

It is convenient, not only for geometrical but also for ana­

lytical procedures, to study the systems equivalent to Eq.(^.l):

x = |iv, v = -|if(x)v - g(x)/ii (1.2)

and

X = |JL y - Ffe)] , f  = -g(x)/n , F(x) = J* f(?)d? (1. 3)

which define the "scaled" phase (x,v) and Lienard (x,y) coordinates, 

respectively.

Any initial condition (x(t^), x(tQ)) prescribed for the solu­

tion of Eq. (1.1) defines a unique point in the phase and Lienard planes. 

The subsequent development in time of x(t), x(t) corresponds to a motion 

of the point in these planes. The curves traced by such motions will 

be referred to as trajectories, orbits, or integral curves, interchange­

ably. Periodic orbits are simple closed curves in the planes.
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In the geometrical treatment of Eq. (1.1), it is usual to 

construct an annulus, in either the phase or Lienard planes, which 

contains the periodic orbit in its interior. The narrower the annulus, 

the more precisely is the periodic orbit isolated. La Salle [l], 

treating the Lienard equation (g(x) = x) constructed an annulus of 

maximum width 0(ijl”^) and obtained asymptotic forms for the period and 

amplitude of the periodic solution. Recently, Ponzo and Wax [2] have
/ /Q

found an annulus of maximum width 0 (jjl ) enclosing the periodic solu­

tion of Eq. (1.1), for a different class of functions f(x)^.and a wider 

class of g(x) than those considered by La Salle.

The analytical discussions of Eq. (1.1), or its speciliza- 

tions, have frequently employed particular methods for solving either 

Eq's. (1.2) or (1.3). Haag [3], in a series of long and difficult 

papers, has derived the asymptotic form of the periodic solution, for 

the special case of Eq. (1.1) when g(x) = x, and for what appears to be 

quite general f(x), using Lienard coordinates. Dorodnicyn [4] has
2

given an elaborate treatment of the van der Pol equation (f(x) = x -1, 

g(x) =x), in which he used various asymptotic expansions of the solu­

tion, each valid in some region of the phase plane. By matching the ex­

pansions at points of common convergence, he was able to give asymptotic 

expressions for the amplitude and period of the non-zero periodic solu­

tion, with errors 0(|i ® ^ )  and 0 (jjl ^ ^ )  respectively. Cartwright [5] 

studied the van der Pol equation, primarily in the form of Eq. (1.1).

She obtained results much less precise than those of Dorodnicyn, deter-
/ / o _ I / O

mining the amplitude to o(jjl ' ) and the period to o(|i ). Her treat­

ment, however, employs a comparison equation in the phase plane, and it
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is by a systematic use of comparison equations and their solutions that

the present results concerning Eq. (1.1) are achieved.

We work in both the phase and Lienard planes, and show that
-2the periodic orbit can be located with an error not greater than 0(p, ),

when (j, is large. This leads to a determination of the amplitude to
-2  -10(|i ) and the period to ).

1.2. It is assumed throughout this paper that 1) there exists an

a<o and b>o such that f(a) = f(b) = o; F(a)>o, F(b)<d; that A<o is the 

root of F(x) = F(b), and B>o the root of F(x) = F(a), of smallest 

modulus; 2) there exists an e>o such that g(x) and f'(x) satisfy a Lip- 

schitz condition (* = d/dx), with xg(x)>o for x f  o, in the interval 

A -  e < x < B + e  ; 3) g*(x) and f"(x) satisfy a Lipschitz condition in 

the interval a < x < b; 4) there exist constants > o and > o such 

that f (x) > Kji (a-x) for A - e < x < a, and f (x) > (x-b) for

b < x < B + e; 5) there exist positive constants L^, I^, L^, such 

that

L2 (a-x)^ < F(a) - F(x) < L^(a-x)^

L4 (x-t)2 < F(x) - F(b) < L3(b-x)2

in a < x < b. (See Figure 1).

The assumptions (1) - (5) are sufficient to guarantee the

existence of a stable non-zero periodic solution of Eq. (1.1) [2], This

solution is illustrated in the Lienard plane in Figure 2 (labelled y (x)),
2

Figure 2 also shows the contour Fq: y = F(x) - g(x)/p, f(x), which, in
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2the phase plane, is v = v q (x) = -g(x)/|i f(x), the zero-slope isocline
2

(where dv/dx = -f(x) -g(x)/ji v = o). It will be shown that the per­

iodic orbit, once having crossed y = F(x) near x = A (or x = B) ap-
-4 ✓proaches T q to within 0(|i ) in the Lienard plane. This places the

-2orbit a distance 0(|j, ) from y = F(x). The periodic orbit then moves
-4/3to a distance 0 (|jl ) from y = F(x) at x = a (or x = b). The time 

taken to describe that portion of the trajectory in A < x < a is 0(|i). 

The periodic orbit, y^(x), remains nearly horizontal, in the upper half 

of the Lienard plane, from, x = a until its intersection with y = F(x), 

near x = B. The time of traversal of this arc, which deviates from the
/ / Q -I / Q

horizontal by 0(|i ' ), is 0(|j, ' ). Both the time of traversal, and

the vertical variations, are largely associated with the region near

x = a. Particular attention is paid, therefore, to the range 
-2/3 -2/3a — 0 (|jl ) < x < a  + 0(|j, ) in the analysis. Once the trajectory

is out of this range, the remaining time and y - deviation, until
2

y = F(x) is reached, are O(log p,/|j,) and O(log |i/|i ) respectively.

1.3 In the treatment which follows, we discuss various comparison

equations whose solutions approximate the trajectories of Eq’s. (1.2)
-2or (1.3), to at least order |jl . The comparison equations are obtained 

by modifying the functions f(x), F(x), and g(x) in such a way that the 

resulting equations may be integrated to the required degree of approx­

imation. In the region A -  € < x <  o, y >  F(x) (or v > o), for example, 

it is sufficient to consider Eq’s. (1.2) and (1.3) with f(x), F(x), and 

g(x) replaced by Taylor series approximations about x = a. It will be 

noted, however, that the periodic orbit, in the Lienard plane, follows 

y = F(x) very closely in A -  € < x < a ,  so that truncating the Taylor

l
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series would produce an error of order 1 in F(x) (near x = A, say), and

consequently, a comparable error in the comparison solution. To avoid

this situation, we make the comparison of solutions for A - e < x < a

in the phase plane; the phase plane ordinate measures the deviation of

y(x) from F(x), v = y - F(x), and the comparison solution is adequate

for this variable, in the region R^: A - e < x < a ,  v > 0 *

The remainder of the orbit is considered, in the Lienard

plane in two parts: a < x < o and R^: o < x < B + e  , for

y >  F(x). Similar arguments apply to the lower half-orbit, in y < F(x).

It should be emphasized that our discussion is concerned with
_2the approximate location of the periodic orbit, to within an error 0 (|jl )

Consequently, we regard the periodic orbit as being embedded in a bundle
«2of trajectories, of width 0(|jl ), and the results we obtain refer to the

entire bundle. Nothing in our treatment distinguishes any one of these 

integral curves from the periodic orbit. This set of orbits will be 

termed "the bundle", hereafter.

In Sec. 2 we consider the region R^, in the phase plane. First

it is shown that one hyperbolic contour provides an upper bound on v, in

all of R-̂ , and that another hyperbolic contour is a lower bound on v,

over most of R^. These contours help to isolate the bundle of orbits.

Special attention is focused on the ends of the interval, in particular,

near x = a where the hyperbolic bounds are singular (in the manner of

T  , Figure 2). The major result is given in Lemma I where it is shown
_2that a comparison solution which begins within the bundle (hence 0(|i )

-2from the periodic orbit), remains within 0((jl ) of the bundle, until

x = a. In the corollary to Lemma I we obtain the time of traversal of
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R^, to within an error of 0(|i ). In obtaining this result, however,
-2

it is necessary to locate the periodic orbit more precisely than 0 (|jl ).

For this reason, it is shown that the zero-slope isocline,

vQ(x) = -g(x)/p,2f(x),
-4lies 0 (jjl ) from the periodic orbit over most of (except near the 

ends).

In Sec. 3 we treat the region R^, in the Lienard plane. As

before, Lemma II deals with a comparison equation whose solution ap-
_2proximates the periodic orbit to 0(|j, ). The specific choice of com­

parison equation, for the region R£, is made with some care. It would 

be sufficient to use a comparison equation which contained a cubic ap­

proximation to F(x) and a linear approximation to g(x). The resulting

equation then becomes a generalized van der Pol equation, whose solu-
-2tions are largely unknown. Nevertheless, an 0(p, ) approximation to

this comparison solution may be obtained by iteration. The solution of

an equation which uses a quadratic approximation to F(x), and a constant

in place of g(x), is taken as a first approximation. Indeed, this latter

solution, which is found from a Riccati equation and known exactly, pro- 
_2vides an 0(jj, ) comparison solution for the bundle of trajectories in

R^, when the transformation to the phase plane is made. In R£, however,
2

it approximates the periodic orbit to O(log |i/|i ). It is the second
_2

approximation, found from the first, which is within 0(jjl ) of the per­

iodic orbit.

The time of traversal of R^, for any member of the bundle, is 

estimated, in the corollary to Lemma II, to 0 (jjl ^).
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In Sec. 4 we treat the region R^, in the Lienard plane. The

comparison equation used involves a linear approximation to F(x), near

x = B, and a constant in place of g(x). The resulting equation is

easily integrated; Lemma II, together with its corollary, yields the

location and time of traversal for the periodic orbit in R^.

The results of previous sections are summarized in Sec. 5, in

the form of a theorem which gives the explicit form of the amplitude,
_2

and period, of the non-zero periodic solution of Eq. (1.1), to 0(p, )

and 0(p, respectively. These results are specialized to the case of 

the van der Pol equation, and our disagreement with Dorodnicyn's [4] 

and Urabe's [6] expressions for the period is discussed.

In Sec. 6 we briefly consider the possibility of periodic 

solutions lying entirely in a < x < b, F(b) < y < F(a).

1.4 In the sections which follow, we will frequently refer to the

periodic orbit, when, in fact, there may be several periodic solutions 

of the equations we consider. We always refer, however, to the orbit, 

y (x), shown schematically in Figure 2. Indeed, an annulus of maximum
/ /Q

width 0 ((jl ) may be constructed about yp(x) [2]; this periodic orbit 

is unique within the annulus.

We also mention that the subscript "l" will be used consistent­

ly, in the following sections, to denote functions and trajectories as­

sociated with a comparison equation. The symbol "0" is always to denote 

orders of magnitude when y, > > 1; 0(1) is a constant.
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2.1 The Region R^: A -  e < x < a.

As mentioned in Sec. 1*3, trajectories in R^ are most con­

veniently discussed in the phase plane. Our first objective is to 

obtain upper and lower bounding arcs which isolate a bundle of trajec­

tories within which the periodic orbit is embedded. These bounds will 

be used in Lemma I and its corollary.

Note that the periodic orbit crosses the x - axis to the left 

of <y [2], where o' < b is the unique root of F(x) = o, in A < x < a (see 

Figure 1). Thus it is convenient to consider trajectories which start 

on the x - axis at x = x^, where A - e < x^ < a. From Eq. (1.2) the 

trajectories satisfy

dv/dx = f(x) - g(x)/|i2v (2.1)

Hence the contour of zero-slope, v q (x ), is given by

vq (x ) = -g(x)/|i,2f(x). (2.2)

Observe that any curve, v = vy (x), which is monotone increas­

ing and lies on or above vq (x), in x < a, is an upper bound on trajec­

tories which start at x = x ^  v = o. This follows from the fact that 

integral curves can only cross vu (x) from above, since dv/dx < o for 

V = vu (x) —  V x)* Using f(x) > K^(a - x) and the continuity of g(x), 

so that - g(x) < in R^, we have

v q (x ) = -g(x)/|i,2f (x) < C1/[x2Ki (a -  x) = M/(j,2 (a - x).

2
Thus, the contour v^(x) = M/|j, (a - x) is an upper bound, in R^ for all
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trajectories starting at x = x^, v = o.

A trajectory which starts at x = x^, v = o rises vertically
-2at first. When it has attained an ordinate of 0 (jjl ), at x = x^ say,

2then it will remain above a hyperbolic contour v^ = m/p (a - x) (m > o)
-2/3in the interval < x < a-0(p ). To show this, note that if is

a lower bound, then trajectories on vT must rise above it. It is suf- 

ficient to have

2 2 2 dv£/dx = m/p (a - x) < -f(x) -g(x)/p vL

in x^ < x < a - 0 ()jl

One has, therefore,

2 2 2 2 3 m + p (a - x) f(x)m + p (a - x) g(x) < o.

Since f(x) is continuous in R^, and g(x) is continuous and negative, 

then there exist positive constants C2 , such that f(x) < C2 (a - x) 

and g(x) < - Cg* Then m should satisfy

2 2 3m - p (a - x) (C^ - C2 I11) < o

-2/3for x_ < x < a - Ap , where A = const. > o. The last inequality is
1 3 ?

surely satisfied if one chooses A = anc* 0 < m <
»2Thus, for any trajectory at x = x^t v (x2  ̂ = 0(M* )> there

exist constants m > o, M > o such that its subsequent velocity, v(x), 

satisfies

2 2 m/p (a - x) < v(x) < M/p (a - x)

for X 2 < x < a - 0(p

(2.3)
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Note that, for x = x3 = a - 0(|jf2/2), one has from Eq. (2.3)

V ~ 4/3 < v < C5,-4/3 (2.4)

for some positive constants C^, C5 « We now wish to show that Eq. (2.4) 

remains valid in the interval x^ < x < a. This will extend our bounds 

to the end of R^.

To obtain the lower bound in Eq. (2.4), we note that v q (x ) is

monotone increasing, for sufficiently large (i,, and greater than 0 (|jl”4^2),

in x^ < x < a. Thus, if v(x^) > v0 (x3), trajectories descend until they

intersect v q (x ), and then rise monotonically in this interval. If

v(x^) < v q (x 3), then trajectories rise monotonically so that v(x) > v(x^) 
-4/30 (|jb ), In either case, the lower bound in Eq. (2.4) is established.

2For the upper bound, we have from Eq. (2.1), dv/dx < C^/p, v, 

since f(x) < o and -g(x) < in . Setting v > C^ii"4^3 and integrat­

ing gives v(x) < v(x3) + n“2/3 Cl (x - x3)/C4 > 0 (|jl‘4^3).

2.2 The upper bound in Eq. (2.3) allows us to show that trajector­

ies which start at x = x^, v = o, follow v q (x ) very closely in R^.
2

On writing Eq. (2.1) as vdv/dx = - f(x)v - g(x)/|i and letting
I

v = vq (x ) - z, one obtains dz/dx + f(x)z/v = vo '(x). Therefore,

V  y  V

|z(x)| < |z(x-)|exp - fdu/vl + |v '(§)!exp -j fdu/vld§.
L L J '° L J F J

Since f(x) > K^(a - x), then

[v0 '(5) l  =
fg’ - gf'

T J
M- f

0 (1)

p,2 K^(a - 5 )
2 2

2  < Og/P- (a “ x)
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(Cg = const. > o). Further, the exponential factors can be bounded by 

using the inequality

ffdu/v > ^ ^1 (a - u)3du > ^ ^1 (a - x)2 (x - 5)
M M

in the exponents (where we have used f(x) > K^(a - x), and Eq. (2.3))
-2.Since |z(x^)| = 0(|i ) , we now have

' 2 2
o r o  i cfi r* r M* Ki (a-x) (x-|)-,

|z(x)| < 0tp, )expjj-0[p, (x-x1)]J+— ---- J J exP["
jj,2 (a-x)2 lJx1 M

-4,

d?

The first term in this inequality is reduced to 0 ( 1 1  ) for

x > x^ + K log' |j,/p/

and K sufficiently large; the second term, on performing the integration,
,4"is 0^1/p,4 (a - x ) ‘

- 2 ,Thus, trajectories which start ,at4x = x^, withih 0(|i ) of

v (x), will satisfy

|v (k) - v0(x)| < o[ — --- ----£]
^ p,4 (a - x)'

(2.5)

after moving to the right a distance O(log ji/p, ). Note, however, that 
-2/3if x = a - 0 (|jl ), then one infers from Eq. (2.5) that

|v(x) - v q (x )I < 0 ( ^ 4/3).

We use the method of comparison equations, in Lemma I, to help sharpen

the estimate of v(x); in particular, we require a better estimate for 
-2/3v(x) in a - 0(|j, ) < x < a.
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2.3 Lemma I

Let f, g and f^, be two pairs of functions which satisfy 

the assumptions of Sec. 1, in R^, and furthermore, let

2(a) I f (x) - f-^x) I < djJ x - a

(b) |g (x) - gx(x) | < d 2|x - a|, in R ^

2 2Let the solutions of dv/dx = -f(x) -g(x)/[i v, dv^/dx = -f^(x) -g^(x)/|jL v^, 

which begin at x = x^, be v(x, x^, c) and v^(x, x^, c^) respectively, 

with v(x^, x^, c) = c and v^(x^, x^, c^) =

If |c - c-l < 0 ((jl“ 2 ) ,  then |v(x, x ^  c) -v^x, x ^  c ^  | < 0((j,“^)-2.

in R^. 

Proof:

Let Q = v - v^. On subtracting the equations for v and v^,

one gets

dC/dx +
IsJ
2 

P*

where -g1(x) = |g1(x)| > d in R^

C = ft - f +  (gt - g)/p, v,

r -I I S-i Idu-i f» xr 8i“ê-i r
C (x) = C(x 1 )expl -  “ 2 “  a---------  +  J f t - f  +  ~2—  Px p | -

Li ^X, W, J X, Li V JP» x! w i

!

pX Igjdp,-,
J ‘L 2P< v p, Ç w t

■ja?

Using assumptions (a) and (b) above, together with |g^(x)|<C^;
2 a # 3

C(x1) |< 0(|i ), and the bound v, v^ < 0(|i /J), in R^, we have

o r o drtĈ "’?)—|
£(x)|<0(p ) + d̂ Ca-Ç) + -j---- Jexp

x. M. v
“P*

2/3 :7(x-ç)Jd^,
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-2/3 -2/3On setting x = x^ = a - A|i and § = a - sp, , one gets

- 2 , C7^ .co _ -C-,s
COO I < 0(p, + (d1 + d,2/m)

M*

2 " 7" -2s e  ds < 0(p, ). Thus the

- 2 .0(p, ) agreement between v(x) and v^(x) is preserved to x = x^.
-4/3For x^ < x < a, recall that v, = 0 (p, ). Then, using

Eq. (2.6) with x^ replaced by x^, we have

|C(x)| < 0(^‘2) +  J [d.^a-?)2 + n‘2/3d 2 (a-5)]d| < 0(p."2), 
x3

-2/3since a - x^ = 0(p, ), and the exponential factor is less than unity.

This completes the proof of Lemma I.

Note that the equation for Q (x) = v(x) - v^(x) also applies

to the deviation between two solutions of the same differential equation

(i.e. when f = f^ and g = g^). Two solutions of Eq. (2*1) which differ 
_2

by 0(|i ) at x = x^, will differ, according to Eq. (2.6), by

C (x) = C(x1)exp
x,

^  ̂,d,U ' J < 0(|i 2)exp -0(|i 2) 
vv,1  1

after moving a distance 0(1), in R^; the rapid convergence of neighbor­

ing trajectories to each other, and to the periodic orbit, is evident.

In the corollary which follows, we use a comparison solution, 

v^(x), to compute the time taken to describe an arc of a trajectory in

V
The time required to traverse any portion of an orbit is

-Ip p y
p, Jdx/v in the phase plane, and -p, dy/g(x) in the Lienard plane; the 

integrals are to be evaluated along the particular trajectory.
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2.4 Corollary to Lemma I

Let T(x^,v) 

which starts at x=x^,

TCx^v) = T(x 1,v q)

be the time required for a phase plane trajectory 

v=o, to traverse the region R^. Then

- ^v1 (a)/g(a) - | 12L*  + O ^ ' 1),

f

where v^x) is a comparison solution, as in Lemma I, and

T(xi'vo) = i  J‘ irh) = -  J
f (x) 
g(x) dx

is the time integral evaluated along the path v=v (x).o

Proof

Since T(x^,v) = - p, J — , in the Lienard plane, and y=

v + F(x), then one has

T(X1'V) = - H J gTx) "  ̂ J" l£sl axg(x) ax-

The second integral is TCx-^v^. The first integral may be written as

x.
2 ar» dv « dv

' N  l o o ’ ■ “ I g(x)

On choosing x2 = x1 + O(log î/p2), where|v(x2) - v0(x2)| < 0(pf4) from

the discussion in Sec. 2.2, then, since l/g(x) = 0(1) and since 

X2j* dv < 0 (p, ), one has
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T(x ,v) = T(x1 ,v ) - 
1 ' l7 o > . J i &  + 0(^ >

On integrating by parts, one gets

( v |j l v ( x  )  a
T(x ,v) = T(x ,v ) - * + -- z— r + \x r v — - [— T— r-] dx + 0(|X 1).1 1 O g (a) g(x ) r J dx g(x) r

-2Now v(x2> = 0(jJL ), and if v^Cx) is a comparison solution for which
1 —2 -2v(x2> - v 1 (x2  ̂ < O ^  )> then v(a) = v^Ca) + 0 ( jjl ), from Lemma I.

Therefore

TCx^v) = T(x1,vo> - |jLV1(a)/g(a) + \x J* v [— dx + 0(jjl 1) .

We now divide the interval (x ,a) into two parts: (x ,x„)Z Z J
■"2/3 ^4 / 3and (x3 ,a), where x3 = a - Ẑ jl . In x3 < x < a, one has v = 0(jjl )
a

and [g 1* = 0 (1 ), so that jjl J* v [ ]' dx = 0 (p, 1). Furthermore, in
X3

4 4x2 < x < x3, one has that v(x) = v q ( x )  + 0 [l/|j, (a-x) ] from Eq. (2.5), 

and [" - y ]l? = - gi(x)/g2 (x) = - g4 (a)/g2 (a) + O(a-x). Then

x3 X3 X3

 ̂J*v ^  [iio ] dx =' J:!S2 7 : J vo(x) dx + v-J v0 (x) 0(a_x) dx +’-g (a)

2 2 -2Now v (x) = - g(x)/jx f(x) = - g(a)/[(ji f'(sO(a-x)] + 0(p, ), in x < x < x ,

therefore
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and

g*(a) f. / \ j
vo (x) dx = g (a)f(a)

X2

g,(a) lg g .^ "2/3) + oCu.” 1)
M-

2 g' (a) log [X f - L  
" “ 3 g(a)f ’ (a) p. + 0(^ } '

(X J* v q (x ) 0(a-x) dx = 0((jl 1 )

Collecting results, one has, 

T(x1 ,v) = T(x1,vq) - |jlv (a)/g(a)

finally

2 g 1 (a)
3 g(a)f'(a)

log |1

M-
+ 0(|X x) ,

which completes the proof of the corollary.

Note that an explicit representation has been given for all

orbits which start at x.,, with v(xn) = o. These orbits all follow v (x),l7 1 o *
4 4to 0[l/|ji (a-x) ], in x < x < a. Furthermore, a comparison solution pro-

-2vides an orbit approximation, to 0(jjl ), throughout x^ < x < a. The time

taken to describe any one of these trajectories, in R^, has also been

given in the corollary to Lemma I, to 0(|x 1), in terms of v q (x ) and a

comparison orbit, v^Cx). The particular choice of comparison equation

will be left until the next section.

It should be emphasized that a specific choice of x^ defines

a particular trajectory, and that the description provided above applies
_ 2equally well to a bundle of trajectories within 0 (jjl ) of this tra­

jectory. Eventually we shall choose x , so that the bundle contains the

periodic orbit.
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3.1 The region R : a < x < 6¿L

We continue our description of the bundle of orbits which

started in A - € < x < a, with x=o^ in terms of comparison equations and
_ otheir solutions. Our first result. Lemma II, shows that the 0(|jl )

agreement is maintained, in R , if the comparison equation satisfies

certain conditions. Secondly, we choose a specific comparison equation

which suffices to describe the bundle of trajectories in both R^ and

R2> and find that a solution of a particular Riccati equation may be

used to obtain an explicit description of this bundle. Finally, for any

member of the bundle, we compute the time taken to traverse R .

Before proceeding to Lemma II, we determine bounds for the

bundle of trajectories. From Sec. 2, we have that y(a) > F(a) +

0(fi 4>/3), and since y' > o, then y(x) > F(a) + 0(p,”4//3), in R . We use
2this lower bound in dy/dx = - g(x)/|j, [y-F(x)], together with -g(x) < CO

(C8 = const. > o) and F(x) < F(a) - L2 (x-a)2, and thus obtain, upon
-4/3integrating, the upper bound y(x) < F(a) + 0(|i ). Consequently, in

R , we have that

y(x) = F(a) + 0 (jjl 4//3) (3.1)

for the bundle of trajectories which we consider.

Lemma II:

Let F(x), g(x) and F^Cx), g^Cx) be two pairs of functions 

which satisfy the assumptions of Sec. 1, as they apply to R and let

i3 , > o  exist such that
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(a) F(x) - F^x) < i3 x-a

and

(b) g(x) - g1 (x)| < i4 |x-a|2, in R2 *

If the solutions of

dy/dx = -g(x)
|jl [y-F(x) ]

(3

and
“g (x)

dyx/dx = —
M* [y ^ F ^ x ) ]

(3

which start at x=a, be y(x,c) and y1 (x,c1) respectively, where y(a,
-4/3.c and y1(a,c1> = c ^  if c > F (a) + 6, where 6 > 0 (|jl ), and if

|c - cj < 0 ( ( jl 2),< then |y(x,c) - y1(x,c1>|< 0(p."2), in Rg.

Proof :

has
Let z = y - y . On subtracting Eq. (3.3) from Eq. (3.2),

dz i n—  + ■ '■ ■! dx 2|JL VV.
Si Z *■ (F-Ft) g - g1' 1

2 2 ’ 
|JL vv]L [X V

where v = y-F and v.̂  = y - F^. 

Then

z(x) =. r 1 i k l d u 1 1 irrlgil(F'Fi) gr= «(a) exp [ ---2 X — ] + - 2  J £ ----+ ~

exp
M* ? 1

M*

. 2)

.3 )

c) =

one

g
]
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one has
On using the assumptions of Sec. 1 , and (a), (b) above,

, I 1 x C ¿ (5-a)4 i (l-a)2
z(x)|<|z(a)| + -  j- 2,2 + ~  ; 2? d?» <3 -4>

|i, [6 + L(*-a) ] 6+L(l-a)

where v = y - F > c -  [F(a) - L(x-a)2] > 6 + L(x-a) 2 for some L > of and
similarly for .

i i ~2Since 6 > o and|z(a) < 0(p, ), by assumption, then Eq. (3.4)
I I ”2
z ( x ) |  < 0 (|jl ), in R 2 . This completes the proof of Lemma I I .

3.2 We make a specific choice of comparison equation here, and

derive from it the appropriate comparison solution.

Consider F^x) = F(a) + f ’ (a) (x-a)2/2 + f "(a) (x-a) 3 / 6  and

“ g(a) + g ’(a)(3?-a). The conditions of Lemma II are then satisfied,

Putting y1 = F(a) + [-2g2 (a)/f * (a) ]1/37] and x = a + [-4g(a)/f ,2 (a) ] 1 //3 ?
2into 11 dyx/dx = - g ^ x ) / ^ -  F^x)], one obtains

2 dr¡ 1 ~ N1 ^

d 5 v + i 2- n2
( 3 . 5 )

Wh6re N1 = [g(a)f’(a)]1/3 ® ’(a) and N2 = [ ^ l 2 ]173 &f ’(a) d

Eq. (3.5) does not appear to be integrable in terms of the 

known classical functions. However, an 0 (|jl 2) I approximation to the 

solutions of Eq. (3.5) may be obtained as follows.

Note that Eq. (3.5) has f^x) = f'(a)(x-a) + f"(a)(x-a)2/2, 

consequently, f^(x) and g1(x) satisfy the conditions of Lemma I, for the 

region R . Indeed, the conditions of Lemma I will be satisfied simply
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by choosing f^x) = f'(a)(x-a) and g^x) = g(a), which corresponds to 

setting = o in Eq. (3.5). The equation which results, when

N1 = N2 =

M2 d?7/d| = -- - ; , (3.6)
v  + t

can be integrated exactly and will provide adequate comparison solutions 

for R , when the transformation is made to the phase plane. Further­

more, Eq. (3,5), our comparison equation for R , may be estimated to 
_ 2

0(jx ), by making use of the solutions of Eq. (3.6). The following

manipulations of Eq. (3.5) help to achieve this estimation.
oOn using the identity l/(l-x) = 1 + x + x /(1-x), and re­

arranging, Eq. (3.5) may be written as

(j2 drç/dç = 1 Ni s
N £ 

2 *

V + ?2 V + l 2 (v + ?*>
+ E + E02.2 1 2

where EJ = N1 N2?
------ 2~2 - N1 N2 = since V > 0 in R
(?7 + £ )

Now

(3.7)

E2l =

(1 - Nx p  I6

« h -12)2 ( W - n „|3)
< 0 1

2 3 J

since 1 - Nx 5 = 0(1) and ^/0]+ 2) < 1, in R .

On using assumption (5) and shifting to the (g,^) variables, 
2 3 2one finds that T] +| " N  ^ >?? + c ? for some C = 0(1) > o. There-

fore E, < 0(1), and Eq. (3.7) can thus be written as

2 J 1 n ’ir//d 5  =
N, 5 N ,  ?"

T] + l  V + l(7? +
+ 0 (1). (3.8)
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and

Now

N9 S‘ N P 
2 * N2 &

(77 + | 2 ) 2 7/ + l2 (77 + ? 2 ) 2

* = 1  ,7? »+35________ 77'g

W + %2 2  r] + ? 2  2 ( 7 7  + ?2)

I d  , 2, 1 1 " Ni§

on using Eq. (3.5), so that Eq. (3.8) becomes 

2 dl] _  _1_
M- dp 2

*  *7+5

(Nr N2) d , , ,  ^log(7?f§ ) ---
1 - Nx§

2 d^ , -2.2 „ 2 ' „2V , J2 _3n(77+5 ) 2|j, (77+I )(77+§ -N25 )

Therefore

7 7(5 ) = 7 7(0 ) + -^ 2 J dz

M* o *7 + z

(Nr  V  7>fP2
---- 2—  l0g [̂ ) ] + E3

%

where

E I < | n 2 |
1
r *77 dz 1 ,i 11 '  Ni z l

| dz
2 J 

^  (
1 , 2,2 + 4 J •> (77 + z ) 2[L (  ̂ (77 + C zV

T 2  +

2 2 3 2on using 7 7 + 5  > * 7 + 5  - N § > * 7  + c 5  again.
-4/3.From Eq. (3.1) it follows that 77 = 0 ( |jl ), in R . Using 

this in the bounding expression for Eg, and integrating, one finds that 

| Eg| <  0 ( |jl" 2 ) .

0 (1).
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Thus, corresponding solutions of Eq. (3.5) and of the integral

equation

V<-V = »K») + ^2 J* dz
2 2

V- ' V + z

(Nl '  V  « * . 2
l o g  ] '  ( 3 -9)

-2will differ by 0 ( jjl ) at most, in R2»

In order to complete our partial integration of Eq. (3.5), to
-20(jjl ), we now make use of the solutions of Eq. (3.6), as mentioned above. 

Let be the solution of Eq. (3.6) which satisfies 77R(o) = 77(0 ).

Then

= 7 7(0 ) + V f -  
n „ n

dz

R + z
(3.10)

-4/3Now 77(|) = 0(p. ) in R (this follows from Eq. (3.1)), and for a
-4/3specific choice of 77(0 ) = 0 ( jjl ), it is evident from Eq. (3.9) that

77 (E) provides an approximation to the solutions of Eq. (3.5), with an 
“ 2

error 0[—  log ]} = 0[-~ log (1 + C^ 4 ^ 3 ?2)], where Cg = const.
M* M-> o. On inserting 77R (£) into the right hand side of Eq. (3.9), one 

obtains

(Nr  V  , A  + s‘---"S--- log [
2M- 77r (o) (3.11)

as a second approximation. In order to estimate the error involved in 

using 77 (§) as the comparison solution for R , rather than the solutionC ¿A

of Eq. (3.9), we subtract Eq.(3.11) from Eq. (3.9), and use Eq. (3.10)

to obtain
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b -  J
V - rçj dz

H-- 0 07+z2) (??r+z2) 2|x2 (Nr  V  1o*p 2̂
l V ?

_ ̂  /g _ 4  /o
Noting that both 77 = 0(p. ) and 7?R = 0(|i ), and that

I I 4 / 3 2= ° [ ~ 2 ^  + CgM< p )]> by our previous estimate, one has
-2that the second term is 0 (p, ) and the integral has order of magnitude

*,JM- „

log(l + CgjjL4//3 z2) dz
t -4/3 272(p. + z )

= 0(jx 2) .

Thus, ?7C(|) is a solution of Eq. (3,9), and therefore of 
_ 2

Eq. (3.5), to 0(|i ), in R^. This solution, with the appropriate choice

of 77(0 ), will provide the comparison solution for Eq. (3.2), in R } when2
we transform back to the original (x,y) variables.

3.3 The comparison solution for R , 77 (f), has been given in

terms of 77R (^), a solution of Eq. (3.6). As mentioned above, Eq. (3.6)

can be integrated explicitly.
-4/3 _ -2/3Let ?7r = p, u, I - p. s. On inverting Eq. (3.6) and sub­

stituting these new variables, one gets

ds 2 —  = u + s , du 9 (3.12)

a Riccati equation whose solutions are shown in Fig. 3. The trans­
formation

s d_
du log w (3.13)
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converts the Riccati into the linear differential equation

,2d w— - + uw = o, 
du

(3.14)

which is soluble in terms of Bessel functions of order 1/3.

It is important to observe that the solution 77 (£) will pro-R
vide the comparison solution for R^, when the transformation to the 

phase plane (x,v) variables is made. In order to satisfy the require­

ments of Lemma I, the phase plane comparison solutions, v^ix), must
_ 2

satisfy o < v1 (x1) < 0(|i ), or equivalently, in the Li^nard plane,
_ 2

° < yl^xî  ” Fl^xl̂  — ) at x = x^ = a - 0(1). On transforming to
2 - 2 / 3the(u,s) variables this condition becomes o < u + s < 0 (jjl ), for 

2 /3s = - 0(jjl ). Any solution of the Riccati equation which crosses the 
2 2 /3curve u = - s to the left of s = - 0 (jjl ) certainly satisfies this 

condition, and can serve as the desired comparison solution. A particu-
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2larly convenient choice, however, is the solution for which u ~ - s
2as s -* -oo; this solution joins u = - s , at s = -oo, whatever the value

O f  |JL.

We thus select the Riccati solution which has s ~ “ |u
3/2

1/2 as

u -» equivalently, log w ~ -  2 

solution of Eq. (3.14) is
V3 as u —» -too. The corresponding

ou 2
w = c J cos(t - 3 ut) dt = C Ai(u), (3.15)

o

where C = ponst. and Ai(u) is the Airy integral.

The function w = C Ai(u) is exponentially small as u-»-oo, 

increases monotonically to a maximum at u = u q = 1;01879 (where £=o), 

then falls to zero at u = ^  = 2*33811 (£*»). This solution is shown 

in Fig. 3, in the (5 ,77) plane

It should be observed that Eq. (3.15) and Eq. (3.13) give an

implicit representation for 7] (|) . Thus,R the comparison solution for



26

R , V (Q> is available from Eq. (3.11) Primary interest, however,
£4 c

centers on the value of y^(x) at x=o; this value will allow us to con­

tinue a description of trajectories into the region R .
_ 2When x=o, 1 = 0 ( 1 )  so that log(?7R + !* ) = 0 ( 1 ) .  Furthermore,

-4/3 -4/3
77 (o) = 1 . 01 8 79 |jl = 0 ( u  ). Substituting into Eq. ( 3 . 1 1 )  oneK
obtains

VC<1> = i?R (5) - I (nl- n2) + O ^ 2), at 1=0 (1 ).

But, from Eq. (3.10),

V 0  = V “0 - i l
dz

^ l  'R

= riR (oo) 0 (|i. 2) ,

since the integral is convergent when | = 0(1) (77 > 0). Note that ̂ R
77̂ (00) = 2.33811 p,"4/3.R

Returning to the original Lienard plane variables, one has 

that the periodic orbit, y^(x), as well as every other member of the 

bundle, crosses the positive y-axis with ordinate given by

r -2g (a) ,1/3 -4/3= F(a) + 2,33811 ( --—---- J la
f,2 (a)

- I t !  - «•(.) t ^  ]1/3} ^  ♦  o((i- 2)3 3 f ,2(a) 2 2f ,2 (a)

3.4 Corollary to Lemma II

The time taken by any one of the bundle of trajectories to 

traverse the region R is given by¿L
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m , r 2 ,1/3 -1/3 . 4 f"(a) log ML -1,T2 = 1.31932 tg(a)fI(a)] H + g - 2 —  ^ + 0(^ ).

Proof:

The time is determined from the expression
x

1 T - i  r -u J y-
dx

|jl d y-F(x) 
a

-1,This integral may be evaluated, to 0 ( |jl ) } by replacing

y(x) by y^(x) and F(x) by F^(x). The error involved is bounded by

i * 1 y-ril + |F~FJ
u J Tr Tr x *V V,

where v=y-F, v^=y^-F^

On using 1 -2 I I I 4< 0 (|jl ) and F-FJ < S.̂  x-a| and the fact

that v,v^ > 6 + L(x-a) , one has, upon integrating, that the error is 

bounded by o(|J- 1) • Consequently, we may use the comparison solution to 

determine T . On scaling the variables, one getsdLi

T -  [------------ ]1/3 1  (*Lg(a)f ' (a) J (jl J
dz
2 3

71 +z -N z O 'c 2
+ OCpT1) .

Expanding the denominator, as was done with Eq. (3.5), and integrating, 

using Eq. *s (3.9)-(3.II), one finds finally that
2N,

T = [gd k a / 73 ( ^ y « >  - V ° )] 108 [& ]) + 0(li'1)-v ° >

At x=o, then 5=0(1) and the time of traversal of R is thus
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t2 = [¥ TOI ^ ) ]1/3 -  V ° > ^  + I  7 5 ^  ^  +

Substituting ?7r (oo) = 2.33811 |i~4/3 and 77R (o) = 1.01879 p, 4 / 3

gives the required result.

3.5 In this section we have completed the explicit description of

the bundle of trajectories, in both R and R . For the region R , we 

use 77R (̂ ) and transform to the phase plane ordinate, v. This gives

V1 (X) = ["f'(a) ) ] 1 / 3  [V ? >  + 52] <3.16)

as the comparison solution for R . For R we use 77 (§) and transform
1 ¿t c

to the Lienard plane ordinate, y, to obtain

2
y1 (x) = F(a) + ric(l) (3.17)

as the comparison solution. Note that 77 (o) = 77 (o), from Eq. (3.11),C ii
so that Eq. 's (3.16) and (3.17) give v^a) = y^a) - F(a), for |=0. Thus 

our description of trajectories is continuous across x=a. Note, too, 

that v 1 (a), required in the corollary to Lemma I, is given by Eq. (3.16).

We continue our description of the bundle of trajectories in

the next section.
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4.1 The Region R3 : o < x < B + e

Consider a trajectory, y(x), a member of the bundle which
_ 2starts at x=o with y(o) = y^ + 0(|j, ). This trajectory is within

_ 2
0 (|jl ) of the periodic orbit at x=o, and the value, yQ, is known to

_20(|jl ) from the previous sections. Let this trajectory intersect y=F(x)
at x=x ; x is to be determined, o o

It is shown, in Lemma III, that a comparison solution exists 
_ 2which remains within 0(|jl ) of y(x) for o < x < xq. The comparison

solution, obtained as an exact integral of the comparison equation, is
-2used to determine xq, from y , to 0(p. ). It is shown that this

_ 2representation is valid, to 0(|jl ), for every member of the bundle.

Lemma III:

Let F,g be a pair of functions which satisfy the assumptions 

of Sec. 1, in R3, and F ^ g  another pair of Lipschitz functions for which

(a) F(x) - F1(x) - ^1 x ■ xo|

(b) g(x) - gĵ Cx) < *2 x - Xol

in R3 .

Let the solution of Eq. (3.2) which passes through x=xq, y=F(xQ)
be denoted by y(x), and the solution of |i cly^/dx = -g1(x)/[y1 - F^x)]

- 2 ,for which |y1(xo> - y(xG)| < 0(jx ) be y1 (x)
Then y(x) - y1(x) -2

<  0 ( | jl ) for o < x < x .

Proof:

In the equations for y and y , we let x=xq- 5 and subtract, 

1*putting z=y-y Then
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dz gl 1 S1(F_F1) S -g
+ — --- z = —  [--------  +d i* 2  2  vv_|JL VV.̂  |JL 1 V i ]  ,

where v=y-F(x) and v^y^-F^ (x) .
-2Since z=0(|j, ) at |=o, we have

cx)i <  o ( M ,-2 ) % r c - ii +  £ ! i l 3 e x p  1. 1  f  ! i r 3 d ?
I —  n j L vv, v J 2 J vv.

gj f-f Z gndu

[i 1n u

Now v > o, v, > o, and g, > o in o < C < x , so that the —  1  — 1  —  — o
exponential factor is less than unity. Further, we use (a), (b) above, 

and jgj <  C to obtain

IZ ( X) | <  0(|JL 2 ) + •—  J {
V V 1M* « ^

« * 2 s
+ } <J? , i« r3 -

In order to obtain lower bounds on v,v , note that both F(x)

and Fn (x) may be bounded above, in o < x < x , by F(x ) + D(x-x ), for 
1  —  — O O o

some D=const. > o. (See Fig. 4). Then

v = y-F(x) > y-F(xQ) - D(x-xQ) > D ¡* , since y-F(xQ) > o,

and similarly for v^. Substituting these lower bounds on v,v , gives

Ci l ^

D o

for o < x < xq. This proves Lemma III.

z(x) < 0  (jx
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4.2

F(x ) + o
clearly

Consider the comparison equation for y^Cx), with F^Cx) = 

f(xo)(x-xQ) and g 1 (x) = g(xQ). This choice of comparison functions 

satisfies (a), (b). We have

s t e p ) ____________

M-2[y1̂ F(x0)-f (xQ) (x-xq) ]

On setting y = F(x ) + 77 and x = x - F. one obtains 
1 o ' o

S (xo>
[r/+f(xo)f ]

(4.1)
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The solution of Eq. (4.1) which satisfies the condition 

y ^ x  )=y(x ), or 77=0 at | = o, is

[7 7 f f (X Q) | +  g (X Q)/|JL f  (x

after taking logarithms and

2 g (x  )77(P ) = ____2_ 12E_B ,
f ( x  ) 2 +° p.

Q)] exp [-(jL2f (xo)77/g(xQ) ] = g(xQ)/|jL2f (xq) ;

some rearrangement, this becomes

S G O  g(x>
— ------ log[?7+f (x ) F + — ------] + 0 (pT )
H « O c  ) ° |i2 f(x )o 1 o

(4.2)

where log[g(xQ)/f(x q)] = 0 (1 ) has been used.

For any p in o < | < x , hence any x in o < x < x , Eq. (4.2)
- 2allows one to approximate a trajectory y(x) to 0 (p ) since y(x) = y^x) +

-2 -20(p, ) = F(x q) + T}(xq-x ) + 0(|jl ). The value of x q may be found by not­

ing that yQ = F(x q) + ^(xq) + 0 ( |jl 2). This gives, from Eq. (4.2),

yo F(xo)
2g(xQ)
f (x ) o

log |JL 
2 + 0 (n 2), (4.3)

as log[77+f (xq) g + g(xQ)/(i2f (xq) ] = 0(1), at g = xq. In Eq. (4.3), put 

XQ = B + ei, where F(B) = F(a). Then

ei = i k  [v  F(a) - f f s f  + 0(^ 2) •

- 2,A trajectory, y(x), which starts at x=o with y(o)=y +0(|jl ) ,

will therefore intersect y=F(x) at x=x , where
o ’
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x = B + o
yQ- F(a) 

f(B) - ♦ 0 ( ^ 2) 
f (B) \i

(4.4)

It is important to observe that y(x) is any trajectory which
_ 2starts on the y-axis, with y(o)=yQ+0 (|ji ). Consequently, the value of

x q (Eq. (4.4)), and the comparison solution (Eq. (4.2)), apply to every

member of the bundle. Even though the trajectories in the bundle diverge

from each other, in going from x=o to x=x , as can be seen from theo'
_ 2proof of Lemma III, the bundle remains of maximum width 0(|i ) in R .J

We now make use of the comparison solution, y^(x), to estimate

the time of traversal of the interval o < x < x .— — o

4.3 Corollary to Lemma III

The time taken to describe the arc of the trajectory, y(x),

from x=o to x=x , is o'

Proof: x
The time to traverse ( o , x q )  may be written T = - | jl J dy/g(x).

o
We divide the interval (o,x ) into two parts: (o,x„) and (x„,x ), whereo 4 4' o '

~ 2  — 2  x = x - A jjl (A =  const. >  o) . In (x ,x ) we have o <  5 <  0 (jjl );
- 2 ,from Eq. (4.2) one finds that o < 7] < 0(|jl ). Consequently, it follows

- 2  — 2  that y][(x4) - < 0(1̂  )• Since y (x) and y(x) ,agree to 0(|jl ),
_ 2according to Lemma III, we have y(x4) - y(xQ) < 0 (jjl ). Thus

x xo o -
-|JL J dy/g(x) is bounded by 0 ( | jl ), since g(x) = 0 (1 ) and J I dy| < 0(p, 2) ,
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We now have
x

T = - p. J dy/g(x) + 0  ( jjl 1 ) ,  

°

or, using the equivalent expression for the time,

T = - f , + Oip'1).(jl J y-F(x) r

We evaluate this time by using the comparison solution dis­

cussed in Lemma III.
iConsider = - J dx/[y1 -F 1 (x)]. We have

, 4 F-F + y-y
>T_ < -  T -!-------- ---- dx + 0(pT ).II — (JL J nVV,

On setting F-F^j < i ^ x - x ^ 2  I y-ŷ ĵ = | z | < E p , 2 (E = const. > o),
I I — 1 - 2and v,v > D(x -x), one finds that T-T < 0(p, ), where x -x = 0(p, )•A. u | XI O 4

has been used. Therefore is an estimate for T, to 0 ( |jl 1). Accordingly,

1 P° - 1 N
H J i?+f(xo)? + ^  

V 2

(4.5)

since x=x - i? and y, =F(x )+7 7.o  ̂ l o '

The integrand in Eq. (4.5) may be written as

, Jj'+f(x )
1 t 8 (xo)

f (x ) 1 71+f (x )£ 2 r ^  n=>12O 1 o'- p. [?7+f(x K ] } ,
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where 7/’ = g(x )/p, [?7+f(x )§]. One obtains

T = iZcoT) l0s [ ^ f (x0>?]
g(x ) o

—  I
V * 2 V- f ^ o V 2 [??+f<Xo)?]

and the integral may be bounded by 0 (|x 1) on noting that DJ , and

completing the integration. The dominant contribution to the first
_ 2  ..o

term occurs at , where 77+f(xQ) 5 = OCp. ). One obtains, finally,

T = f(x. T ^  + «i*"1). (4.6)

for the time taken, by any member of the bundle, to transverse

o < x < x .— — o
-4/3Recall, from Sec. 3, that yQ=F(a)+0(|j. ) hence, on using

-4/3Eq. (4.4), x q = B + 0 (p, ), Consequently, Eq. (4.6) may be written
as

T = f (B)
log [Jl

completing the proof of the corollary.

We have seen that a readily integrable comparison equation,

involving a linear approximation to F(x) and a constant in i>lace of

g(x), supplies a comparison solution which approximates the bundle to 
_ 2

0 ( |jl ), in R . Furthermore, the time of transit for this interval has 

been given. The discussion of the upper half-orbit of the periodic 

solution is now complete. The results of the previous sections are 

collected and summarized in Sec. 5.



36

5.1 The Amplitude and Period of the Periodic Solution

An explicit representation for the periodic orbit has been
, - 2 xobtained, to 0(|i ) , in the previous sections. Although the discussion

has been limited to the upper half-orbit, in the phase and Lienard 

planes, the description given applies equally well to the lower half­

orbit when the obvious changes in notation are made. The maximum 

positive x-excursion of the periodic orbit is given by Eq. (4.4), in 

terms of yQ, the positive y-axis intercept in the Lienard plane. If 

xp (t) denotes the periodic solution of Eq. (1.1), then ¿2u = max [x (t)], 

the positive amplitude, is obtained from Eq. (4.4) upon substitution of 

yQ from Sec. 3. We state the result in the form of a theorem.

Theorem 1:

The equation x + |j,f(x)x + g(x) = o, with f(x),g(x) and F(x) = 
x
J f(u) du satisfying the requirements of Sec. 1 , has a periodic solution, 

Xp(t), with positive a m p l i t u d e , = max [x (t)], given by

„ 2.33811
B + ^ T S T ~

r~2g2 (a) -.1/3 
L f *(a) J

-4/3
M-

1 r2g(B) 
f(B) ^f(B) + | g ’(a)

[
~ 4 g ( a ) 4 g(a)f,f(a)

2 J 9 2f ’ (a) y f»2 (a) }
log H 

2 
M-

+ 0((JL 2 ) . (5.1)

Observe that Eq. (5.1) also gives the negative amplitude of 

the periodic solution,/^ = min [x (t)], upon replacing B by A, and a by b.

We may now determine the time taken to describe the upper half 

of the periodic orbit, from x =&1 to x = . Summing the various con-
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tributions to the half-orbit, from the corollaries to Lemmas I, II, 

and III, we obtain the time to traverse the upper half-arc of a tra­

jectory which starts at x=x^, x=o, where, as mentioned in Sec. 1,

A - e < x^ < a . In order that the time obtained shall refer to the 

periodic orbit, we choose x =/£/ . The result is stated in the follow- 

ing corollary.

Corollary to Theorem 1:

The time taken to describe the arc of the periodic solution, 

Xp(t), from x = ¿2^  to x = ¿2/ is given by

T = ' 11 - i
& L

f(x)dx 
g(x) + 2.33811 [■ 2

g(a)f'(a)
1/3 -1/3

2 g*(a)
3 g(a)f'(a)

fM(a)
2 i f ' (a)

iSfiLUr + OCjji”1) . 
M-

(5.2)

”1/3The contributions of the integral in Eq. (5.2), of 0 ( |jl )  

and 0(log|j,/|jL), can be evaluated. We write

J fdx/g = J fdx/g + J fdx/g,
A

and expand the integrand, in the first integral, about x=A. The first 

integral becomes f (A) (A-^)/g(A) + 0 ( jjl 8/̂3), since ¿2/ = A + 0 ( jjl 4^3) 

from Eq. (5.1). One thus obtains

?'f(x) rr 2 11/3 1 r-2g2 (b)nl/3, -1/3T — "" (JL I y v dx + 2 • 33 811 f [ y \ JS t / \  J / A \ L „ • /, \  J | lir  J g(x) 1 g(a)f (a) g(A) f (b) J ^

(
. 2______ 2____2 g ’(a) 4 f"(a) _ __1_ 2 f-4g(b)1l/3
+ J f(B) f (A) 3 g(a) f ' (a) 9 ft2 (a) g(A) i-3 lf -2(b)J

+ J  Ü S p , )  iSSL* + O ^ ' 1).
9 f'2 (b) > *

(5.3)
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As an example of the use of Eq.’s (5.1) and (5.3), we compute 

the amplitude and period of the unique, nonzero periodic solution of 

the van der Pol equation: x + p,(x2-l)x + x = o. we have f(x) = x2-l,
3

F(x) = x /3 - x, g(x) = x so that b = -a = 1 and B = -A = 2. Since 

the periodic orbit is symmetrical about the origin, in both planes, 

t h e n a n d  the period is twice the value given by Eq. (5.2) or 

Eq. (5.3). Substitution into Eq.'s (5.1) and (5.3) gives

Amplitude = 2 + |  (2.33811) ¡j.~4/3 - i| + 0 (n'2), (5 .4)
M-

and

Period = (3-log4) p, + 3(2.33811) jjl“ 1 / 3  - | -°g- P + Oiu,"1). (5 .5 )3 p.

Eq. (5.4) agrees with the expression given by Dorodnicyn [4] 

and confirmed by Urabe [6 ]„ However, Eq. (5.5) for the period dis­

agrees with both writers. Dorodnicyn obtains a coefficient -22/9 for 

the logp/p, term in Eq. (5.5), and Urabe, repeating Dorodnicyn^ calcu­

lations, obtains -1/3 for this coefficient. The present authors have 

attempted to verify Eq. (5.5) by numerical integration of the phase and 

Lienard equations using a digital computer. The period was determined, 

for several values of p, from 8 to 2 0 0, and an estimate made of the terms 

succeeding the first two, in the asymptotic expansion for the period.

The results appear to justify the coefficient -2/3 in Eq. (5.5) [7].
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6.1 Nested Periodic Orbits

It will be observed that the conditions on F(x), given in 

Sec. 1, allow for minor maxima and minima in the interval a < x < b. 

It is quite possible that such extrema might support periodic orbits 

which lie in this interval. Fig. 5 illustrates this possibility.

The results of previous sections may be applied to the 

interval - e < x < + e, and, in particular, Eq.'s (5.1) and (5.3)

for the amplitude and period apply, with the appropriate changes in 

notation, to the periodic orbit depicted.

It might be pointed out that the periodic solutions described 

by the analysis given here, are orbitally stable [2]. That is, tra­

jectories which begin sufficiently near these periodic orbits will con­

verge to them as t -*°o. Nevertheless, the description may be made to 

apply, by the following artifice, to orbitally unstable periodic solutions.



40

In Eq. (1.3) we set t = -t , in order to consider the motion 

of trajectories in reversed time, and put y = -Y, so as to maintain 

clockwise motion in the Lienard plane. One then obtains

dx/dT = fi[Y+F(x>], dY/dT = -g(x)/p. (6.1)

which governs the reverse motions. Note that the characteristic curve 

is now Y = -F(x), as shown in Fig. 6 .

_ 2The periodic orbit shown is located, to 0 ( jjl ), by the 

methods described in the previous sections, and its amplitude and period 

may be found from Eq.’s (5.1) and (5.3) (with the obvious notational 

change). Furthermore, this periodic solution is orbitally stable, as 

t -* oo, hence orbitally unstable in the original equations of direct 

motion, as t -* oo.
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F(x), and the region in which it is to lie, are shown 
in the Lienard plane.



Figure 2

The periodic orbit, y^Cx), together with the zero-slope isocline 
of the phase plane, is shown in the Lienard plane.



Figure 3

Solutions of the Riccati equation; the comparison solution is shown



y

Figure 4

3*Coordinates and approximations used in R.



Figure 5

A possible configuration and limit cycle are shown.



Figure 6

A stable limit cycle for reverse time, hence unstable 
in direct time, is depicted.
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