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Multi-user Rate-Based Flow Control

Eitan Altman* and Tamer Ba§ar*

Abstract
Flow and congestion control allow the users of a telecommunication network to regulate the 

traffic it sends into the network according to the quality of service that they require. The flow 
control may be performed by the network, as is the case in ATM networks (the Available Bit 
Rate transfer capacity), or by the users themselves, as is the case in the Internet (TCP/IP). We 
consider in this paper both cases using optimal control techniques. For the first case, we obtain a 
formulation of a dynamic team problem. The second case is handled by dynamic non-cooperative 
game techniques; we establish the existence and uniqueness of a Nash Equilibrium, and compute 
the corresponding performance measures and equilibrium (dynamic) policies. We further show 
that when the users update their policies in a greedy manner, not knowing a priori the utilities 
of the other players, their policies converge to the Nash equilibrium.

Keywords: Multi-user rate-based flow control; High speed networks; Linear-quadratic control; 
Linear-quadratic differential games; Nash equilibria.

1 Introduction

We consider M  users that share a common bottleneck queue in a telecommunications network. The 
input flow of information from the users is controlled so as to achieve the best quality of service. As 
is the case in many proposed flow-control schemes [2, 11], we assume that there is some target value 
of the queue length which the users try to track; this value, and the control policies are chosen so as 
to avoid the buffer to be full (in order to minimize losses), and on the other hand, to avoid the queue 
to empty, in which case there is loss in the potential throughput. A second objective of each user is 
related to the input rate: we assume that some fraction of the available bandwidth is allocated to 
each user, and the user tries to minimize deviation from this allocated bandwidth.

The flow control is typically performed dynamically: some feedback information on the congestion 
or on round trip delay is used to update the input rate. For example, in the Tahoe version of TC P/IP  

congestion control [14], congestion is detected through losses or through time-out mechanisms. In 

the Vegas version of T C P /IP  [7] the available bandwidth is also used as feedback information (it is 

obtained through estimation of round-trip delays). More detailed queue length information may also
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be available as feedback information. In the Available Bit Rate (ABR) transfer capacity of ATM, 
both queue length information as well as information on the rate may be conveyed from the switches 
to the sources through special information cells that are called RM (Resource Management) cells.

Flow control is often performed in a decentralized way in telecommunication networks: each user 
controls its own flow. This is the case in the Internet, see [14], or in some best-effort type traffic 
in ATM (the Unspecified Bit Rate transfer capacity, see [1]). This gives rise to a non-cooperative 
dynamic game framework: each user has its own objectives, but the action of the different users 
influence the quality of service of other users. Controllers that have been implemented in large 
scale, such as the TCP/IP, have typically been designed using heuristic techniques based on growing 

experience (and on simulation studies); however, they did not involve a game-theoretical related 

analysis.

On the other hand, there has been some work on the use of non-cooperative game theoretical 
techniques to design simple flow controls. The problem of choosing fixed rates (non-state dependent) 

has been investigated in [5, 6, 8, 10, 17, 19]; existence and uniqueness of the Nash equilibrium have 
been proven and convergence of synchronous and asynchronous implementations of the flow control 
have been obtained. For state-dependent flow control, only structural results of the Nash equilibria 
have been proven [12, 16]. Another type of a non-cooperative flow control occurs when a central 
controller is interested in some globally optimal performance measure for the entire network, but 
the objectives (utilities) of the users are private information. In that case, the game occurs in the 

revealing policy of these utilities. The design of a (non-state dependent) flow control that induces a 

truthful revealing policy for all users has been obtained in [9, 18].

In this paper we study state-dependent decentralized control and game problems. For both the 
non-cooperative problem (that occurs when the controls are at end-points) as well as the cooperative 

team problem (occurring when the controllers are in the switches, as is the case in the Available Bit 

Rate transfer capacity of ATM [1]), we obtain explicitly the optimal (unique) controllers and the 
associated values. We then study asynchronous and synchronous update algorithms that the users 
might implement in order to compute their policies on line, since in practice, a user may not have 
access to full information on the utilities of other users, and thus, may not be able to construct its 
own Nash equilibrium solution off line. Instead, it is natural to assume that such a user would follow 
a “greedy approach” of optimizing from time to time its response against the current policies of other 
users. We present three such algorithms, and show that they converge to the unique equilibrium 
policy. Presentation of some numerical results complement the study.

2 The model

It is assumed that the network has linearized dynamics (for the control of queue length), and all 

performance measures (such as throughput, delays, loss probabilities, etc.) are determined essentially
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by a bottleneck node. Both these assumptions admit theoretical as well as experimental justifications; 

see, [2],

Let q(t) denote the queue length at a bottleneck link, and s(t) denote the total effective service 
rate available at that link. We assume that each user is assigned a fix proportion of the available 
bandwidth; the traffic of source m at that link at time t has an available bandwidth of am s(t).

Unless otherwise stated, we assume that a  :=  Ylm=i am =  1* We let s(t) be arbitrary, but assume 
that the controllers have perfect measurements of it. Let rm(t) denote the (controlled) rate of source 

m at time £, m € M  :=  { 1 , . . M} ,  and (0  •— 1*m « -  ams(t) be its shifted version.

Consider the following idealized dynamics for the queue length:

M M

^  =  Y ,  (r”>-  a™s) = ( i )
m=l m=l

which we call idealized because the end-point effects have been ignored. The objectives of the flow 

controllers are (i) to ensure that the bottleneck queue size stays around some desired level Q , and 

(ii) to achieve good tracking between input and output rates. In particular, the choice of Q and the 
variability around it have direct impact on loss probabilities and throughput. We therefore define a 
shifted version of q:

x(t) :=  q(t) - Q ,

in view of which (1) now becomes
. Mdx v ^

i t = ^ (2)
771 =  1

An appropriate local cost function that is compatible with the objectives stated above would be the 
one that penalizes variations in x(t) and um(t) around zero — a candidate for which is the weighted 
quadratic cost function. Associated with user m is a positive constant cm appearing in its immediate 
cost as described below.

We shall first consider two non-cooperative scenarios, formulated as non-cooperative differen­
tial games, in which each user minimizes its own individual cost function. Then we shall study 
two cooperative scenarios, formulated as team control problems, in which all users have a common 
objective.

We fix an initial state x(0), and assume that the actions of controller m (m € M )  are determined 
by a control policy € ¿Vm, where

(0 — Âm (U *̂ [o,<]) i t E [0, oo ).

Here, fim is taken to be piecewise continuous in its first argument, and piecewise Lipschitz continuous 
in its second argument. We denote the class of all such policies for user m by Um It will soon turn
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out that it will be sufficient to restrict attention to a subclass of Um, comprising policies that are 
linear in the current value of x.

The two non-cooperative cases are defined as follows:

• N l: the individual cost to be minimized by controller m (m 6 M )  is

Jml M  =  ( w o i 2 +  “ l«m(f)|2)  dt . (3)

• N2: the individual cost to be minimized by controller m (m € M )  is

j ^ ( u )  =  j H  ( ¿ W O I 2 +  ¿ l “ ">(f )l2)  d t . (4)

Note that in case N2 the “effort” for keeping the deviations of the queue length from the desired 
value is split equally between the users. The precise formulation of Nl and N2 is in terms of Nash 
equilibria: We seek a multi-policy /x* :=  p*M) such that no user has an incentive to deviate

from, i.e.

=  inf J Z H M f - m ] )  (5)Mm C tAm

where [/xm|/x*m] ls policy obtained when for each j  m, player j  uses policy- p,*-, and player m 

uses (im. The definition for N2 is similar.

The two cooperative (team) cases are defined as follows:

• T l: the global (team) cost to be minimized is

jTl^ = L i^ ^ 2+
• T2: the global cost to be minimized is

JT2(u) :=  Jq +  Y ,  “ l«m(i )|2 j  d t . (7)

Let c :=  Em =i cm.

T h eorem  1 For the noncooperative case Ni (i =  1,2), there exists a Nash equilibrium given by

H*Ni,mix ) =  ~ P m x i m =  1» •••» M, (8)
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where /3%l is given by

pNl =  p m )  _  / j * " 1)2 _  ~and _  ^  (9)

for cases N1 and N2, respectively; where ¡3^^ J2m= 1 Pm* > 1 =  1,2, are the unique solutions of

t N1) =  £  f ( P m ) )2 -  Cm and 0
m=1

(N2) _  1 0^ - P{N1)
~ W ^i L< V ^

Moreover,

Æ 1 =  Æ 2V F .

(10)

(11)

77ie cosis accruing to user m, under the two Nash equilibria above, are given by

OKI oN2 1
=  and J™ (p% 1) =  !f - x2 =  - m J Z 1( u-m ).

Cm cm V

For each case, (8) is the unique equilibrium among stationary policies and is time-consistent. In 
particular,

(i) for the symmetric case- cm — cj = : c /o r  a// m ,j 6 M.,

Pm = 2M  -  1’
and (3%2 =

M (2M  — 1) , Vm G A4 ; (12)

(ii) in the case o f M  — 2, with general cm ’s, we have for m =  1,2, j  ^  m,

1/2

=
2c, -Cm  2 V/Cl — Cl<* +  <5 /QiVi/oiV2 rm

~  x /2 ’

and if moreover, C\ =  C2 =  c then ¡ 3 =  \fcJZ, ( 3 — \ /c /6.

Proof: We prove the result only for the case iVl; its counterpart for case iV2 can be proven similarly. 
Also for ease of notation, we drop all superscripts pertaining to the case considered.

We first choose a candidate solution of the form (8) for each player, and consider the optimal 
response of player m to the fixed policy pj, j  ±  m of the other players. Let (3-m :=  Pi- Player

m is faced with a linear-quadratic optimal control problem with the dynamics

dx
dt — Um P—m%i
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and cost that is strictly convex in um. By a standard result in optimal control [3], there
exists a unique optimal response for player m, of the form um =  - c mPma:, where Pm is the unique 
positive solution of the Riccati equation

- 2 (3-mPm -  P l c m +  1 =  0. (13)

The optimal cost to player m is then J ^ 1 =  Pmx 2. Denoting p'm =  cmPm, we obtain from (13)

Pm =  fm {P-m ) •= ~P-m  +  \JP-m +  cm- (14)

A necessary and sufficient condition for p to be in equilibrium is then that /3' =  (3, or equivalently, 
that

t  =  0 l m =  Cm. (15)

This yields the expressions (9)-(10) ((10) is obtained by summing (9) over m £ M ).  The fact that 

(10) admits a unique solution follows from the fact that the left-hand side minus the right-hand side 

of (10) is strictly decreasing in p over the interval [maxm ^/c^, oo), it is positive at P =  maxm y/c^ 

and it tends to - o o  as P —» oo. (i) and (ii) are obtained by solving for p from (10). |

Corollary 1 P%\ i =  1,2, in (9) can be approximated by

3n  1 ~  3r'm n̂ z. 1 r':
jsf 2

y/2Mc

when
c > >  maxcm.

m

In that case, the Nash equilibrium costs per user m are approximated by

(16)

VTc ^m2(/xlV2) — V2 Me

which are independent o f m.

Proof: We again consider only Nl; the result for N2 is then follows from (11). We again drop the 

supercripts identifying the two cases. Assume that (16) holds. Then, (9) can be written as:

Pm =  P
2p2 .

(17)
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where O(-) is a function that satisfies l im ^ o 0 (x )  =  0. The right hand side of the expression for 

p N1 in (10) can be written as:

M

M
(3 ST' L cm

- ' h r ? M

a M

(3
M -  1

m=1 L

M _ 4 _  1 +  0  maXmCm
2 P

Substituting this in (10) yields

f3 = 1 +  0

A solution of (18) (and thus of (10)) is

l +  O

maXm cm

~ T ~

 ̂maxm cm

(18)

(19)

Since, by Theorem 1, the solution of (10) is unique, this is indeed the required expression for (3. 

Substituting this into (17) yields the approximation for (3m. |

Theorem 2 Consider cases T1 and T2. For each case, there exists a unique optimal policy which 
is stationary and is given by

£ !  =  -D lix, (20)

where
qT\ _  a 1* =
Pm ~  yfi' y / m '

T2 _ (-m m =  1, ..., M. (21)

The optimum team values are given by

(22)

Proof: Consider case T l. The form of (20) follows from standard results on linear quadratic control 

[3]. To compute the / ? /s, we note that agent j  is faced with a linear-quadratic optimal control 

problem with dynamics
dx — um

7



and where the cost to be minimized is

L ' l*(OIJ + 2Z — l*(0l2 + -r-l«m(i)l2 ) d t .
,*rn C> Cm /

The optimal control of player m is um =  - c mP x  =  - p mx where P  (which is independent of m) is 
the unique positive solution of the Riccati equation

-2 /3 - mP  -  P 2cm +  1 +  £  =  0,
J^m  Cj

which is

P =  _ É 2 1  +  i .
Cm Cm \

P^ -m d* Cm  +  Cm  ^  ]
• , CJ JT-m J

As P  =  Pm/cm, this yields

P\
P =  P -m +  C m +  C m  ~ T -  

j^m i

With c := °m and c_m :=  cj» this yieldsA/

C2P 2 =  C 2_ m P 2 + C m + C m  Y  Ci P j ’
j^rn

Solving this equation for P  yields P 2 =  1/c, from which (21) and (22) follow. The case for case T2 

follows by an appropriate rescaling of the c ,’s. |

3 Greedy decentralized algorithms

Although the Nash equilibrium is a natural solution concept for the non-cooperative decentralized 
control problem formulated here, its computation might yet require some coordination (and thus 

centralization and cooperation) between the users, since it involves the individual utilities of all 
players, as captured by the constants cm, m 6 M .  In practice, however, these utilities are typically 
private information, and communicating these might result in unacceptable additional complexity. 
It is thus natural to investigate whether simple greedy “best response” algorithms could be used for 
updating the users’ control policies in a decentralized way, thus avoiding the need for communication, 
coordination, and computation of the Nash equilibrium. We show in this section that this is indeed 
the case, and moreover, sequences generated by such algorithms converge to the Nash equilibrium.

A greedy “best response” algorithm is defined by the following four conditions [4]:
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• (i) Each user updates from time to time its policy by computing the best response against the 
most recently announced policies of the other users.

• (ii) The time between updates is sufficiently large, so that the control problem faced by a user 
when it updates its policy is well approximated by the original infinite horizon problem.

• (iii) The order of updates is arbitrary, but each user performs updates infinitely often.

• (iv) When the nth update occurs, a subset K n C {1, . . . , M }  of users simultaneously update 
their policies.

We shall consider the following particular cases, based on specific choices of K n:

• Parallel update algorithm (PUA): I<n =  {1 ,..., M ]  for all n.

• Round robin algorithm (RRA): Iin is a singleton for all n and equals (n +  fc)m odM + 1,
where k is an arbitrary integer.

• Asynchronous algorithm (A A ): K n is a singleton for all n and is chosen at random.

We assume that the initial policy used by each user is linear of the form of (8). Let ( 3 be the 

value corresponding to the end of the nth iteration. As in (14), the optimal response at each step n 

is obtained by

air11
if m £ K n 

otherwise ,
(23)

where f m is defined in (14).

We present a numerical analysis of the above three algorithms in Section 5. Below we study the 
convergence of the PUA algorithm.

Theorem 3 Consider PUA.

(i.a) Let =  0 for all k. Then /3[2n  ̂ monotonically increase in n and /?[2n+1  ̂ monotonically 

decrease, for every player k, and thus, the following limits exist:

Pk :=  lim p[2n).n—too
Pk :=  lim pn—>oo

(2n+l)
k

(i.b) Assume that Pk =  Pk (defined as above, with P ^  =  0 for all k). Consider now a different

initial condition satisfying either P ^  < Pk for all k, where Pk is as given in (9), or P ^  > Pk for all 

k. Then for all k,

lim P
n-> oo

( n )
k =  Pk•

9



(ii) Global convergence: If

-  (ii.a) M  =  2, and either (3^ < (3k for all k, or (3^  > (3k for all k; or if

-  (ii.b)  (3j.1̂  and c :=  Ck are the same for all k, 
then (3n converges to the unique equilibrium (3*.
(in) Local convergence: For arbitrary Ck, there exists some neighborhood V  o f (3 where (3 is given in 

(9), such that if (3^  6 V then ( 3 converges to the unique equilibrium (3*.

Proof: (i) We note that for all m, f m is decreasing in its argument:

dfm{(3-m)
d(3-m

(24)

and is nonnegative.

Consider first the case when (3^ — 0 for all k. Since fk is nonnegative, (3̂  > (3^ — 0 for all k 

so that (3^k > (3^1 =  0 for all k. (24) then implies that (3^ < (3̂  =  0. By an inductive argument 

it then follows that (3[2n) is an increasing sequence and (3̂ n+l* is a decreasing sequence in n, for all 

k. This leads to the result (i) for the initial condition (3̂  =  0.

Denote by /?[n^(0) the above sequence, obtained with the initial condition (3^  =  0. Consider 

now an arbitrary initial condition satisfying (3^ < Pk for all k. This condition on P ^  implies that 

P-k -  P-k, and hence by (24), P ^  > Pk- Proceeding by induction, we get for all integers n and for 

all &,

/3|2n) < 0k, 2n+1> > 0k- (25)

On the other hand, since /3̂ l) > 0 =  /3['*(0), we have by (24): < 0 ^ (0 ) ,  and thus > /?£3*(0).

Proceeding by induction, we get for all integers n and for all k

0 (k n) < /3i"2)(0). 0 k n+1) > (26)

Combining (25) with (26) establishes (ii.b).

(ii.a) Let M  — 2, and assume first that p [^ =  0, k =  1,2. Then it follows that both {Pi.Pf) 

as well as (/3i ,/32) (defined in the first part of the Theorem) are in Nash equilibrium (since for any 

integer 7z, p[n+^ is the optimal response against P ^  and /?Jn+1* is the optimal response against

p[n )̂- Since the Nash equilibrium is unique, we have ¡3 =  /?2. The proof of (ii.a) (for nonzero initial 

condition as well) now follows from part (i.b) of the Theorem.

10



(ii.b) Assume first that (3^ =  0 for all k. Due to the symmetry, /T 'v :=  E * /% "; giyen by
(n) ?W 5o rril

/?(n+1) =  ~ {M  -  l)/?(n) +  — l ) 2(/?<n>)2 +  Ai2c.

Hence, ¡3 :=  Em An and /3 :=  Em Pm satisfy

/3 =  —(Af -  1)0 + y/{M -  l ) 2(/3)2 +  M 2c, /3 =  -  1)4 +  \ /(M  -  !) W  +  M 2c-

This implies that both ¡3 =  0, satisfying

-(AT -  1 )20  +  yJ(M -  l ) 2/?2 +  M 2c +  Ai2c.0 =  ( M - l f 0  +  \ i ( M - l Y

Taking the square of both sides of this equation yields after some simplifications

p2 -  2 P2{M  -  l )2 -  M2c = -2/?(M  -  

Squaring again and simplifying, we get

/34[ - l  +  4(M -  l)2] +  2M2c/32 -  M ac2 = 0, 

whose only positive solution is

(3 =
M 2c 

2M  -  1

1/2

which corresponds to the Nash solution obtained in (12). Hence (3k — Pk for all k. (ii.b) is now 

established by applying part (i.b).

(iii) Let A P ^  :=  P ^  — Pk for all integers n and for all players k. The proof is established by 

showing that there exists some neighborhood V  of P such that /  =  ( / l5 . . . , / m ) is a contraction on 

V , where /  is defined in (14) (and is used in (23)). In other words, we have to show that there exists 
some matrix B whose eigenvalues are in the interior of the unit disk, such that

A p(n+l) =  B A p(n) +  o(A/3*n)), (27)

where o(-) is some function satisfying limx^po(x)/ x  =  0, and A P is an Af-dimensional vector whose 

kth. component is A  pk. Using (14)-(23), B is obtained as follows. The mfc-th entry of B  is given by

B-rnk —
dfm(P')

dPi
— bm k̂m >

P'=P
(28)

11



where

6m : = - l +  /?~m ■ (29)
yJPlrn +  Cm

and 5km is the Dirac delta function. A sufficient condition for all eigenvalues of B to be in the interior 
o f the unit disk is that Y,k±m IM < 1* which follows directly from Gersgorin’s Theorem (see [13] p.

344). This condition is indeed satisfied, as Ylk^m IM =  P-m/P- |

R em ark  1 (Rate o f convergence)
Numerical experimentation has shown that the PUA algorithm has a very slow rate o f convergence 
to the Nash equilibrium. To illustrate this (analytically), consider the symmetric case, where cm =  1

for all players, and the initial (3$  are the same. Combining (27), (28) and (29) yields

A / T 11 =  - ( M  -  1) ( l  -  ^ ~ ^  +  1)  * / t >  +  <XA/t>).

Substituting (3k =  \J2ivT̂ \ f rorn ( 12) ’ we obtain

A/?in+1) =
M  -

M
iA/3<n, +  o(A/3<n)).

Thus the difference between (3^  and its limit (3k decrease by a multiplicative factor o f (M  -  1 )/M, 

approximately, in the vicinity of the equilibrium, and it changes sign at each iteration. g

4 Multi-type traffic

We consider in this section the following extension of the model described in Section 2. We assume 
that source m (m € M )  may have several types (say sm) of possible traffic, with different kinds 
of requirements on the performance measures. Associated with type im traffic of user m, we have 
¿-independent positive constants, cm(i), appearing in the immediate cost (instead of the constants 

cm we had before). Typically, traffic requiring higher quality of service (QoS) might have a larger 
cm(i), which reflects the fact that it might require lower loss probabilities and higher throughput. It 

could be receiving a higher priority from the network in the sense that larger variations in um(i) will 

be tolerated so as to achieve the required QoS.

The occurrence of these different types of traffic is governed by a continuous-time Markov jump 
process taking values in a finite state space S ; an element 0 in S describes a possible traffic constel­
lation of the s different sources.

The controlled rate matrix (of transitions within S) is

A =  {AtJ}, i , j e S ,
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where the A ,/s  are real numbers such that for any i ^  j , Aty > 0, and for all i G S, Xu =  -  ^*'j•

Fix some initial state ¿0 of the Markov chain S. Consider the class of policies pm G Km for controller 
ra, whose elements are of the form

um{t) — Pm {f»  ̂ ^ [0, Oo) .

Here, pm is taken to be piecewise continuous in its first argument, and piecewise Lipschitz continuous 

in its second argument.

Theorem 4 Consider the non-cooperative framework, where user m minimizes the cost

Jm W  :=  E ^ [ f f  ^  + ctt x(0) =  30, 0(0) =  ¿o (30)

• (i) There exists a Nash equilibrium given by

Pm (•£> 0  =  Pm (®) % j — !>•••»

where

Pm{i) =  Cm(i)i^n(*), P—m •— ^  ̂ Pjt
j^m

and {P m{i) i € S, m € M )  is a solution of the coupled set o f equations

—2 0 -m(i)Pm(i) -  Pm(i)2cm(i) +  1 +  2  Ai}PmU) =  0.
jes

i G <S, m =  1,..., M .

• (H) Pm (0  w bounded by

0<Pm{i) < Xi)
minj V cm (i)

(31)

(32)

(33)

(34)

• (in) The cost for player m, corresponding to the Nash equilibrium above is given by

«An (•£> i)
_  Pm{i) 2

"  Cm (i)

Proof: We first show that a Nash equilibrium exists among policies of the form (31). To see that, 
first note that since Jm is positive-quadratic in x and um, and x is linear in um for each fixed 

/i)b, k G M , k ±  m, the costs J%l {x ,i ;p )  are strictly convex in pm for each user. This implies, in 
particular, that the cost of user m is strictly convex in Pm. We shall show, next, that p can be 
restricted without any loss of generality to a compact set.

13



Assume now that all players other than player m use policies of the form (31), for which the 

bound (34) is satisfied. Then player m is faced with a linear quadratic control problem with jump 
parameters, and has an optimal response given by (31)-(33) (see [15]). We show that this response 
also satisfies the bound (34). (32) and (33) imply that

-  M i ) 2 +  C + £  =  0, 
jes CmU>

which yields

Pm(i)[2/?M -  /M O ] =  Cm(i) +  £ 3  Cm( 0 7 7 7 7
je s  Cm^

Let i* be the state for which f3m(i)/cm(i) is maximized. We have

y Pm(j) /  «

(35)

so that (35) yields

This implies that

r ^ m i )  -  M i ) }  <  1.
Cm v* )

Pm{i*) < *)•

From the definition of i* we have, for each i G «S,

Pm(i) fim(im) < A
Cm(0 Cm(i ) yjCm (i*)

from which we obtain

0 < Pm(i) <
Cm (®) 

\/cm A )  ’

This implies that the optimal response of player m also satisfies (34).

Consider a constrained version of the game in which player k is restricted to use (3k{i) € [0, Bk{i)], 

where Bk(i) is an arbitrary constant larger than the bound Ck{i)/ minj y/ciJJ). Since the cost of a 
typical player k in this constrained game is strictly convex in the policy o f that player, and since the 
policy space is now compact and convex, there exists a Nash equilibrium /?* by a standard existence 
result for static games (see [4], Theorem 4.3, p.179). This turns out to be, however, an equilibrium in 
the unconstrained game as well. Indeed, consider the original unconstrained game, and assume that 

(3* is not in Nash equilibrium (for an initial state i 6 «5). Then there exists some player m whose
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optimal response against /3%,k ±  m, to be denoted f3'm, satisfies (34), and /3'm( j ) < j )• Since

P'm is feasible in the constrained game and performs better than ¡3̂  in the constrained game, this 
contradicts the fact that (3* is Nash for the constrained game. Hence, this establishes the existence 
of a Nash equilibrium of the form (31) for the original game, which satisfies (32) and (33). |

5 Numerical results

We present in this section results of a numerical study on the behavior of the three greedy decentral­
ized algorithms presented in Section 3. As pointed out in Remark 1, the rate o f convergence of PUA 
becomes slower as the number of users become large. We have therefore tested the convergence of the 
algorithms for two cases: M  moderate (M  =  4) and M  relatively large (M  =  10). We have focussed 
on the symmetric case cm — 1, for all m, and started the iterations with zero initial conditions. All 
three algorithms converged.

Figures 1 and 2 depict a comparison between the convergences of PUA and RRA, for M  — 10 
and M  =  4, respectively. In both figures we have focussed on user number 1, and have computed its 
(3 after each cycle, i.e. each time all users have updated their policies. The PUA is seen to converge 
quite slowly: it takes around 40 cycles for convergence, and it takes longer as the number of users 
grow. The RRA converges almost instantaneously to the Nash equilibrium.

Figures 3 and 4 pertain to AA for 4 and 10 users, respectively. The user that updates at a given 
iteration is chosen with equal probabilities, and the choices are independent. Thus, the time between 
updates o f user m are geometrically distributed with parameter 1 /M . Figure 3 depicts the behavior 
of each of the users, whereas Figure 4 depicts the behavior of only players 1,3,5,7,9. The basic unit 
o f the x axis is one iteration. We can see that there are iterations where no update occurs: this 
happens when the same user updates consecutively. The rate of convergence is seen to be faster than 
the PUA and slower than the RRA.

6 Concluding remarks

We present, in this section, some observations on the asymptotic behaviors o f the various solutions 
obtained, as the number of users grow, as well as the relative rates of convergence of the proposed 
algorithms — all for the single-type traffic.
Asymptotic behavior for large M
In order to come up with meaningful comparisons between systems with different numbers of users, 
we have to make some unifying assumptions on the cost functions. Natural assumptions in this 
context are:
(Al )  c is nondecreasing as the number of users increase,

(A2) c tends to infinity as M  -*  oo.

15



Figure 1: PUA versus RRA for M  — 10

Figure 2: PUA versus RRA for M  =  4
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Figure 3: AA for M  =  4

Figure 4: AA for M  — 10
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According to Theorem 2, (Al )  implies that the equilibrium value JT2 goes to 0 as M  grows to 

infinity. If (A2) also holds then J T1 goes to 0 as M  grows to infinity. The fact that the values are 
very low (when M  is large) might mean that the resources are underused in some sense: we have very 
small deviations from the target queue length which is obtained by minor effort on the part of the 

controllers (both the term that corresponds to x 2 and the term corresponding to v 2̂  are small when 
the total cost is low). This behavior is due to the fact that the dynamics of the queue length depend 
only on the sum of the um's; however, the total cost takes into account the sum of the squares of the 
um's. For the same (fixed) value of the sum of um’s, the sum of the squares of the um’s decreases as 

the number of users grow.

A problem that may arise due to this situation is that the users might choose non-optimal policies, 
which might cause an overall inefficient use of the network (for example, large variations of the sum 
of Um s) and still have a correspondingly low cost. A way to circumvent this situation is to choose a 

network pricing policy that does not satisfy (Al ) .  In other words, the individual costs l / c m may be 
chosen by the network according to the expected number of users; if the network is designed for a 
large number of users then the cm should be smaller than those used in pricing in a network with a 
smaller expected number of users.

The situation is different, however, in the non-cooperative case: the total cost (summing over all 
users) need not go to zero, as can be seen from Corollary 1. Assume that c grows linearly with M , 
i.e. c ~  M e. In the case N l, the sum of the values of the individual users goes to infinity as M  goes 

to infinity, whereas in case N2 it converges to a constant: x 2/y/2c.

Yet, even in the non-cooperative case, we see that the cost per user tends to 0 as M  tends to 
infinity, if c ~  M e. This again may result in the problems discussed above (for the team case), but 
a way to circumvent this situation is again to choose a network pricing policy for which c does not 
grow linearly in M . For example, if we choose c to be constant in M  then the value per user in case 
Nl will tend to a constant as M  goes to infinity. For case the N2, c has to be chosen to be decreasing 
(like l/M ) in order to achieve this same behavior of the value.

Comparing values and gains (/3m’s) in T1,T2, N1,N2

For both the cooperative and non-cooperative cases, we see that the /3m’s are smaller when the 
part of the cost corresponding to the queue length variations is smaller: (3m in cases T1 and Nl are 

larger by a factor of \fM  compared to the corresponding cases T2 and N2. The costs in cases T1 
and Nl are, as can be expected, larger than those in the corresponding cases T2 and N2.

In order to make a comparison between the cooperative and non-cooperative values (of /3), the 

proper quantities to compare are T1 on one hand, and the sum over all users of J%2, on the other 

hand. This is because, for a fixed policy p for all users, =  E m t f W -  A comparison of
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Corollary 1 and Theorem 2 reveals that when c > >  maxm cm,

As can be expected, the value is indeed higher under the non-cooperative mode of play.

For the symmetric case, where cm =  c for all m, this conclusion is also confirmed:

2 =  1 J  M 2 x 2 _  /  M  jT i  
^  m c V 2Af -  1 \ j 2 - M - 1 ’
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