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ABSTRACT

The sensitivity of a control system is usually taken to be the 
normalized variation of some desired characteristic with the variation of 
plant or controller parameters. Rather than the usual absolute sensitivity 
described above, a new definition of relative sensitivity is introduced for 
the optimal control problem, wherein the system performance is always compared 
with its optimum under the given circumstances. The implications of the 
relative sensitivity and its relevance to optimal system design are discussed 
in detail. Moreover, a theoretical approach to the problem of system optimi­
zation when plant parameters are subject to change is presented.
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II. Relative Sensitivity

The optimal control problem is taken to be that of minimizing a 
given performance index,1

V, u (t) V  - V, X (t), u (t), t
, 1 J  tw  o L  -

dt, (2 )

under the restrictions imposed by plant operation,

* (t) = f x (t), u (t), (3)

The quantities which appear in the performance index (2) and the state equa­
tions (3) are the n-dimensional state vector, x (t), the r-dimensional control 
vector, u (t), and the vector v which represents the variable plant parameters 
(the dimension of this vector is virtually unlimited in theory). It is 
assumed, moreover, that the control and plant parameters are members of given 
closed sets,

u (t) € U (4a)

and

V e V. (4b)

A grossly simplified version of the problem is presented in 
Figure 1. Although the performance index J is a functional, it is pre­
sented here as a function of a single control variable u for various values of 
the single variable plant parameter v. This picture is adequate for the sake 
of argument. The controls u ^  u2, and u3 are optimal for the plant parameters
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Figure 1. Simplified representation of 
optimal control problem.
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Vl> and v , respectively. Moreover, the picture has been drawn purposefully
so that the value of the performance index is "insensitive" to plant parameter 
variations for the fourth control u . But no right-thinking system designercl
would choose the control ua merely on the basis of this insensitivity; a control 
somewhere in the cluster u , u , u would be better in every sense. It should 
be noted that although the change in performance index when the plant changes 
from v3 to vi for control u3 is large absolutely, there is little that can be 
done to overcome the situation (the small gain obtained by changing to control 
u1 may not even be worth the effort involved)„ It is considerations such as 
these which motivate the introduction of relative sensitivity given below.

At a set of plant parameters v the relative sensitivity for the con­
trol u (t) is defined to be the difference between the actual value of the 
performance index and that which would be obtained if the control were the 
optimal for the plant parameters v (divided by the optimal performance index 
for normalization):

where uo (t) is the optimal control for plant parameters v,

(5)

J (xj ü° = min J \Z) H (t)^ 0 (6)V  I u (t) € U L V  / J

It should be re-emphasized that the relative sensitivity, S—  |v, u (t)J , is 
that for the given control u (t) at the plant "operating point" v. For "small" 
control differences from plant optimal,

ô u (t) = u (t) - u° (t), (7a)

II 6 B (t) // «  1, (7b)
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the relative sensitivity (5) takes on an especially simple form in terms of 
the calculus of variations ( c f A p p e n d i x  A) :

.Rs~  ( v, u (t) I » 62 J (z> u° (t), 6 u (t))

; 1j H°
(8a)

when the optimal control u (t) is interior to U;

6 J( u (t), 6 ii (t
J ^v, u° (ty)

(8b)

when the optimal control u (t) is on the boundary of U. It might be argued 
that the relative sensitivity should be further normalized by the difference 
in the control from the optimal, but then it would not be an accurate indi­
cation of the folly of very poor control choices .

Among the obvious advantages of the relative sensitivity is that it 
is always a positive number. Moreover, the relative senitivity reduces to 
zero at the value of plant parameters v for which the control u (t) is the 
optimal. System performance is always compared with an attainable value; con­
sequently, one is not traumatized by matters over which one has no control.
In Figure 2 is a simple illustration illuminating the above discussion; the
value of the relative sensitivity for the control u is zero at the plant 

R ^parameter v^, S—  (v^, 0, which is also true for the control u^ at the

plant parameter v^, S—  ̂ y2, U2 )̂ = °°

III. Optimal System Design

The relative sensitivity is a normalized measured of optimality.
The optimal value of relative sensitivity is zero for every plant regardless 
of the absolute value of its optimal performance index. Hence, before any
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Figure 2. Relative sensitivity illustration.
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statistic is introduced, the relative sensitivity provides a basis for comparing 
"the fact of optimality" among many plants . Those plant parameters which pro­
vide values near their optimal over a wide range of controls remain near zero 
in relative sensitivity —  they are relatively insensitive to the choice of 
control. When a control is to be found which in some sense provides optimality 
to a variable plant (or a number of plants), it is good procedure to allow those 
plant parameters with small relative sensitivity to have a lesser affect on 
the design decision. Consequently, the relative sensitivity is the quantity 
which is utilized in the design-oriented plant sensitivities evolved below.

The relative sensitivity, S—  (v, u (t)^ , is a functional of both 
the plant parameters and the choice of control. Small relative sensitivity 
assures a design close to the optimal. One cannot, however, in general choose 
a control u (t) for minimum relative sensitivity for any plant. Consequently, 
the concept of plant sensitivity which relates the design criterion to the 
relative sensitivity is evolved.

The optimization of a system depends a great deal upon the designer 
having complete knowledge of the system’s behavior. How one deals with a 
system in partial ignorance of its behavior is in great measure a function of 
the assumed goals of the design. Two reasonable design criteria can be 
immediately conjectured:

1) Minimize the maximum deviation from optimal behavior; and
2) Minimize the average deviation from optimal behavior.

Either of these criteria might be applied when the designer is attempting to 
find a single controller for a number of similar plants or when he is 
attempting to find a controller for a single, changeable plant. The first 
criterion is, of course, the more meaningful when critical tolerances are 
present; the second, however, would probably find more production line use.
The word "deviation" employed in the two criteria above can be the victim 
of various interpretations; here, the plant sensitivity is chosen as a 
simple quantitative measure of "deviation" . Actually, as has been explained 
above, the sensitivity is a normalized deviation from some unknown optimal 
behavior; consequently, it must not be counted upon as an absolute measure.
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With the first assumed design criterion in mind, one can define 
the plant sensitivity

M x N S—  f u (t)J = max
^ v € v

which is indeed a measure of the maximum deviation from optimal behavior for 
a given control implementation u (t). With the plant sensitivity (9) the 
optimal design criterion becomes choose

u (t) u* (t), (10a)

where

min 
l € U

s~  (il (t>) (10b)

In Figure 3, the above plant sensitivity is illustrated by means of a simplified 
example; for control u it isU

(V2' U3 ^ (11a)

and for control u4)

S -  ( u 4 )  =  s 5 ( V l , u 4 ) . (lib)

The analytical details of such a minimum plant sensitivity design are pre­
sented in Appendix B, while a simplified example is given in Section IV.
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Figure 3. Plant sensitivity illustration.
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When the second design criterion listed above is to be employed, 
an entirely different definition of plant sensitivity can be employed:

S - ( s  (t))

where "e " indicates expected value. Plant sensitivity (12) should be parti­
cularly effective in situations where plant parameters are given as random 
variables. Such a situation might arise when a single (universal) controller 
is to be designed to control a large number of similar plants. The design 
criterion, of course, becomes

u (t) = u (t), (13a)

E 
v €

j^s~  (z> Ü <t)) J  , (12)

where

(13b)

Since such considerations must enter the maximization (9) or the
expected value (12), the plant sensitivity is affected by the means of
implementation of the control u (t); e.g., closed-loop control renders u (t)
and u (t) —  see (5) and (6) —  dependent upon v, whereas open-loop control 

2does not. Since the plant sensitivity varies from one control implementation 
to another, as well as from one design criterion to another, it can be used 
as a basis for comparison among them in a manner analogous to that intro­
duced by Cruz and Perkins [4,5],
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ILz— Vxamgle:__S ^ s ^ j D ^ m i z a ^ n

The simple second order example which follows illustrates some of 
the principles outlined above. From the amount of manipulation involved in 
this contrived example, it should be obvious that a computer is in general 
mandatory for a reasonable design.

Example Given the second-order system characterized by

*£ + v £ = u, (14)

where v is the only variable plant parameter and is assumed to lie in the 
interval [0,2]; consider the problem of choosing the control u (t) in such 
a way that the performance index

/ 2 «2 2 (x + x + u ) dt (15)

is minimized. The optimal trajectories satisfy the second-order equation

oo , x + V-3 + v + x = 0, (16)

as can be shown by any one of a number of well-known optimization techniques 
[7,8,9]. The optimal control can be realized by linear feedback of the state 
variables:̂

ou ox + c2
o (17)



where, from (14) and (16),

and

(18a)

= v -y-i3 + v (18b)

Since is independent of v, the (not necessarily optimal) control is taken 
as

u = - X + c^ x. (19)

The performance index (15) now becomes a function of :v and -c ; (it coiilc be a 
function of c^ as well, but ¡such;a choice would unnecessarily obscure the 
discussi9 n) a simple:calculation yields

J (v, c2 )
2 2(c2 - v) + v + 3

2 (v - c_) Xo
+ 3

+ 2 x £ +o o 2(v-c2> XXr> i (20)

where

x = x (0) o (21a)

and

£ = £ (0) o (21b)

For the specific set of initial conditions x = 1 and x = 0, J (v. c ) becomeso o * * 2
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while, from (18b), the optimum is

J < v, c” ) /\J3 + v2 ' (22b)

Under the above circumstances, then, the relative sensitivity is

0R , S— (v
(v - c2 + y T T T "  j

, c ) - -

) v ^2 I v - c2 H /3 + v
(23)

.RFigure 4 graphs S (v, c9) versus v for several values of cQ . The design
4

2

2' ___ —  ~2
procedure being discussed is that of choosing the value of c„ which minimizes

.M „ _R

shows that
the plant sensitivity (9), S—  (c ) = max S—  (v, c ). Inspection of Figure 4V *

MS—  (c a - 1.3) « 0.04, (24a)

whereas other values of plant sensitivity are

S- (c »**-1.73) « 0 . 0 6 (24b)

and

S- (c2=s=—1.0) « 0.15; (24c)

for other values of c2 it is even higher. Consequently, the design optimal
c2 is approximately

C2 w '- 1 ‘3 ' (25)
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Figure 4. ,R (v, c^) versus v for the example.
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From Figure 5 it can be seen that J (v,-1.3) varies from 1.77 to 2.72, a gross 
variation of 35% over the interval [0,2] in v; however, these graphs also 
reveal that J (v,— 1.3) is extremely close to the optimal throughout the pre­
scribed range, [0,2].

y _ Con c lu s _i ops

The relative sensitivity (5) has been shown to be a meaningful 
measure of the performance of an optimal system. Moreover, two different 
measures of plant sensitivity, (9) and (12), have been indicated as rea­
sonable design criteria for the optimization of incompletely specified (or 
variable) plants. With the introduction of relative sensitivity to the 
system optimization problem, system designs can be compared in new and more 
meaningful ways. Moreover, computer techniques for optimizing whole classes 
of systems can be developed.

ACKNOWLEDGEMENT

The authors acknowledge invaluable discussions with Prof. J. B. Cruz, 
Jr., Prof. W. R. Perkins, and Mr. J. J. Mele.



Figure 5. J (v, c p  versus v for the example.
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1 APPENDIX A

1

1

The purpose of this appendix is to demonstrate the reasonability of 
expressions (8) for the relative sensitivity. The first term in the numerator 
of (5) is expanded about the minimum in the standard manner of the calculus of 
variations [6]: if

1

■
6 u (t) = u (t) - u° (t), (A .1)

1 then

1 J M (t)) = J Qi, u° (t))

I + s J (%, u° (t), 6 u (t>)

l + 62 j Qv, u ° (t), 6 U (t)y

l + ^terms of order ||6 u (t) || 3) • (A.2)

I■ Thus, the difference expressed by the numerator of (5) is 
by

given approximately

1

|
J Qi) H (t)^ - J (z, U° (t)) » 6 J Qz, u (t), 6 u a ) )

■

1
+ 6 2 J u (t), 6 u (t)^), (A.3)

■

l for "small" variations in u (t),

I
I
I

II6 u (t) || «  1. (A.4)
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When the optimal control u° (t) is interior to the region U, the first varia­
tion of the performance index vanishes.

S J (jL> (t), S u (t = 0, (A .5a)

and the second variation is nonnegative,

~° S & (t>) > 0; (A.5b)

consequently, expression (5) becomes approximately (8a)

S- 62 J ICx> a° (t), 6 B (t>)
J 1 u° (t))'11

(A .6)

to order ^j|6 u (t)||^ 3 . On the other hand, when the control u° (t) is on the 
boundary of the region of U, the first variation of the performance index does 
not vanish; the condition for a local minimum becomes rather

5 J ^v, u° (t), 6 u (t)) > 0.

In this situation expression (5) becomes approximately (8b)

(A.7)

£ ( x , u (tf) * -■J H° (t)> 5 a,(t))
| J (x> H° (t))|

(A.8)

to terms of order |||6 u (t)j|j . The intuitive notion that interior (sta­
tionary) control is qualitatively less sensitive than boundary control most of
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the time is thus reinforced (here the difference is of order ||6 u|| 3°
In the general control problem, of course, both types of control occur and 
both expressions (A .6) and (A.8) must be used, each where appropriate.
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APPENDIX B

To indicate what steps may be involved in a minimum plant sensitivity 
design, an analytical procedure is sketched below. It is assumed for simpli­
city that all extremals [ 6 ] occur in the interior of admissible regions; the 
extension of the procedure to more general cases is readily inferred. If the 
system equations (3),

*i = fi (~> t)} 1 = 1> n> (B.l)

are appended to the performance index (2) by means of lagrange multipliers 
[6], the integrand becomes

X  (v, x, *, u, t, \ )  = F + \i (xi - fi>
i = l

The resulting Euler equations for the optimal control, u (t), are

(B .2)

= fi 2S, u°, t), i = 1, ..., n, (B.3a)

and

i = - A.. "js—  l dx . fi x ; u ; t) d
+ ~ [ F (v, x, u°, t)

i = 1, ..., n, (B.3b)
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and

3u°J
P (v> Si H°) t) \  fi <Z> £°> t) = o,

i=l

j = !;•••) m . (B .3c)

In the second round one must obtain the plant sensitivity (9) by means of a 
maximization of the relative sensitivity (5):

S—  ^ u  (t)) = max

max 
v€ V

3~ Qi, u (tX)J 

ft f  F 2 <*>> H (t), tj dt

J f F [ *  x (t), u° (t), tj dt

(B.4a)

1 > (B .4b)

The constraint equations which must be appended for this maximization are the 
original system equations (B.l) plus the three sets of equations for the 
optimal control (B.3); thus, the variation is taken for the augmented quantity

i=l i=l

3f°» f o “i 3f°
+X  p 3i \ \  + \  
l A  \ 1 1

m n
+ Y  Pa - ---  F ' X. f I ,A  au ° * s  i  i  I *

j

(B .5)
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where superscript zero indicates that a quantity is to be evaluated on the 
optimal control. It must be kept in mind that the control quantities u (t) 
only enter this variation through their dependence on other quantities (i.e., 
because of the means of control implementation). The maximization leads to 
a set of equations for v, the plant parameters which yield the plant sensitivity, 
plus 6n + 2m auxilliary equations, 2n + m from (B.3), n from (B.l), and 3n + m 
for the Lagrange multipliers, p. .. All of these constraining relations must 
be carried in like manner into the final minimization —  that which yields the 
optimal design u (t).

It is clear that although such an optimization procedure can be out­
lined in detail as above, it is quite untractable in practice. The essential 
features of the design procedure are incorporated in the example of Section IV; 
in many practical cases similar simplifying assumptions may be employed.
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FOOTNOTES

1. This formulation of the problem is merely for notational convenience; 
relative sensitivity can be obtained for any optimization problem.

2. Strictly speaking, once a control implementation has been chosen, the 
control must be represented as

Such an interdependence between u (t) and x (t) and v obviously affects 
the maximization (9).

3. Already, the implementation of the optimal control law has been assumed; 
the reader can convince himself of the futility of attempting to complete 
the solution without such an assumption.
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