Files in this item

Files Description Format
untranslated Wang_Zidong.pdf (15MB) (no description provided) PDF

Description

Title: Bioinspired fabrication and assembly of hybrid materials for sensing and biomedical applications
Author(s): Wang, Zidong
Director of Research: Lu, Yi
Doctoral Committee Chair(s): Lu, Yi
Doctoral Committee Member(s): Braun, Paul V.; Murphy, Catharine J.; Shim, Moonsub; Zuo, Jian-Min
Department / Program: Materials Science & Engineerng
Discipline: Materials Science & Engr
Degree Granting Institution: University of Illinois at Urbana-Champaign
Degree: Ph.D.
Genre: Dissertation
Subject(s): Hybrid materials
metal nanoparticles
DNA
shape control
biosensors
biomedical applications
Abstract: The interface between materials science and biology has been a fertile research area to not only advance our fundamental knowledge of biomaterials, but also create novel hybrid materials with practical applications. Recent development in nanotechnology has revealed a variety of nanomaterials with unique size- and shape- dependent physiochemical properties. However, to create hybrid bio-nanomaterials for practical applications, there are two challenges that have to be overcome. First, control over the synthesis of nanomaterials with well tailored shapes and properties should be achieved. Second, for sensing and biomedical applications, the nanomaterials should be engineered to acquire target recognition abilities for selective targeting and signal transduction. In this document, several new functional hybrid materials or devices are demonstrated to tackle the above-mentioned challenges by integrating biomolecules with nanomaterials. Development of colorimetric and fluorescent biosensors for heavy metal ion detection based on functional DNA and nanometerials is first presented. Second, a DNA encoding method for shape controlled synthesis of metal nanoparticles is developed. Thirdly, a new method to use external stimuli (pH) to direct the morphology evolution of hierarchical gold nanostructures is demonstrated. These hybrid materials possess attractive properties for applications in sensing, biomedicine, catalysis and electronics.
Issue Date: 2011-05-25
URI: http://hdl.handle.net/2142/24350
Rights Information:
Copyright 2011 Zidong Wang
Date Available in IDEALS: 2013-06-03
Date Deposited: 2011-05


This item appears in the following Collection(s)

Item Statistics

  • Total Downloads: 127
  • Downloads this Month: 1
  • Downloads Today: 0